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This abstract considers geometric inference from a noisy point cloud using the kernel distance. Recently
Chazal, Cohen-Steiner, and Mérgot [2] introduced distance to a measure, which is a distance-like function
robust to perturbations and noise on the data. Here we show how to use the kernel distance in place of the
distance to a measure; they have very similar properties, but the kernel distance has several advantages.
• The kernel distance has a small coreset, making efficient inference possible on millions of points.
• Its inference works quite naturally using the super-level set of a kernel density estimate.
• The kernel distance is Lipschitz on the outlier parameter σ.

Kernels, Kernel Density Estimates, and Kernel Distance

Figure 1: Geometric inference us-
ing super-level sets of kernel den-
sity estimates on 2000 points.

A kernel is a similarity measure K : Rd × Rd → R+; more similar
points have higher value. For the purposes of this article we will focus
on the Gaussian kernel defined K(p, x) = σ2 exp(−‖p− x‖2/2σ2).

A kernel density estimate represents a continuous distribution func-
tion over Rd for point set P ⊂ Rd:

KDEP (x) =
1

|P |
∑
p∈P

K(p, x).

More generally, it can be applied to any measure µ (on Rd) as
KDEµ(x) =

∫
p∈Rd K(p, x)µ(p)dp.

The kernel distance [3, 5] is a metric between two point sets P and Q, or more generally two measures µ
and ν (as long asK is positive definite, e.g. the Guassian kernel). Define κ(P,Q) = 1

|P |
1
|Q|
∑

p∈P
∑

q∈QK(p, q).
Then the kernel distance is defined

DK(P,Q) =
√
κ(P, P ) + κ(Q,Q)− 2κ(P,Q).

For the kernel distance DK(µ, ν) between two measures µ and ν, we define κ more generally as κ(µ, ν) =∫
p∈Rd

∫
q∈Rd K(p, q)µ(p)µ(q)dpdq. When the points set Q (or measure ν) is a single point x (or unit Dirac

mass at x), then the important term in the kernel distance is κ(P, x) = KDEP (x) (or κ(µ, x) = KDEµ(x)).

Distance to a Measure: A Review

Let S be a compact set, and fS : Rd → R be a distance function to S. As explained in [2], there are a few
properties of fS that are sufficient to make it useful in geometric inference such as [1]:
(F1) fS is 1-Lipschitz: for all x, y ∈ Rd, |fS(x)− fS(y)| ≤ ‖x− y‖.
(F2) f2S is 1-semiconcave: the map x ∈ Rd 7→ (fS(x))2 − ‖x‖2 is concave.

Given a probability measure µ on Rd and let m0 > 0 be a parameter smaller than the total mass of µ, then
the distance to a measure dµ,m0 : Rn → R+ [2] is defined for any point x ∈ Rd as

dµ,m0(x) =

(
1

m0

∫ m0

m=0
(δµ,m(x))2dm

)1/2

, where δµ,m(x) = inf
{
r > 0 : µ(B̄r(x)) ≤ m

}
,



and where Br(x) is a ball of radius r centered at x and B̄r(x) is its closure. It has been shown in [2] using
dµ,m0 in place of fS satisfies (F1) and (F2), and furthermore has the following stability property:

(F3) [Stability] If µ and µ′ are two probability measures on Rd and m0 > 0, then ‖dµ,m0 − dµ′,m0‖∞ ≤
1√
m0
W2(µ, µ

′), where W2 is the Wasserstein distance between the two measures.

Our Results

We demonstrate (with proof sketches) that similar properties hold for the kernel distance defined as dP (x) =
DK(P, x). These properties also hold on dµ(·) = DK(µ, ·) for a measure µ in place of P .
(K1) dP is 1-Lipschitz.

This is implied by d2P being 1-semiconcave.
(K2) d2P is 1-semiconvave: The map x 7→ (dP (x))2 − ‖x‖2 is concave.

In any direction, the second derivative of (dP (x))2 is at most that of a single kernel K(p, x) for any
p, and this is maximized at x = p. The second derivative of ‖x‖2 is 2 everywhere, thus the second
derivative of (dP (x))2 − ‖x‖2 is non-positive, and hence is concave.

(K3) [Stability] If P and Q are two point sets in Rd, then ‖dP − dQ‖∞ ≤ DK(P,Q).

Using that DK(·, ·) is a metric, we compare DK(P,Q), DK(P, x) and DK(Q, x). Note: Wasserstein
and kernel distance are different integral probability metrics [5], so (F3) and (K3) are not comparable.

Advantages of the kernel distance.

• There exists a coreset Q ⊂ P of size O(((1/ε)
√

log(1/εδ))2d/(d+2)) [4] such that ‖dP − dQ‖∞ ≤ ε
and ‖KDEP −KDEQ‖∞ ≤ ε with probability at least 1−δ. The same holds under a random sample of
sizeO((1/ε2)(d+log(1/δ))) [3]. In ongoing work, this allows us to operate with |P | = 100,000,000.

Bottleneck distance between persistence diagrams dB(Dgm(KDEP ),Dgm(KDEQ)) ≤ ε is preserved.
• We can perform geometric inference on noisy P by considering the superlevel sets of KDEP ; the τ -

superlevel set of KDEP is {x ∈ Rd | KDEP (x) ≥ τ}. This follows since dP (·) is monotonic with
KDEP (·); as dP (x) gets smaller, KDEP (x) gets larger. This arguably is a more natural interpretation
than using the sublevel sets of some fS . Figure 1 shows an example with 25% of P as noise.
• Both the distance to a measure and the kernel distance have parameters that control the amount of

outliers allowed (m0 for dµ,m0 and σ for dP ). For dP the smoothing effect of σ has been well-studied,
and in fact dP (x) is Lipschitz continuous with respect to σ (for σ greater than a fixed constant).
Alternatively, dP,m0(x), for fixed x, is not known to be Lipschitz (for arbitrary P ) with respect to m0

and fixed x; we suspect that the Lipschitz constant form0 is a function of ∆(P ) = maxp,p′∈P ‖p−p′‖.
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