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Abstract

We show that geometric inference of a point cloud can be calculated by examining its kernel density
estimate with a Gaussian kernel. This allows one to consider kernel density estimates, which are robust
to spatial noise, subsampling, and approximate computation in comparison to raw point sets. This is
achieved by examining the sublevel sets of the kernel distance, which isomorphically map to superlevel
sets of the kernel density estimate. We prove new properties about the kernel distance, demonstrating
stability results and allowing it to inherit reconstruction results from recent advances in distance-based
topological reconstruction. Moreover, we provide an algorithm to estimate its topology using weighted
Vietoris-Rips complexes.
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1 Introduction

Geometry and topology have become essential tools in modern data analysis: geometry to handle spatial
noise and topology to identify the core structure. Topological data analysis (TDA) has found applications
spanning protein structure analysis [32, 52] to heart modeling [41] to leaf science [60], and is the central
tool of identifying quantities like connectedness, cyclic structure, and intersections at various scales. Yet it
can suffer from spatial noise in data, particularly outliers.

When analyzing point cloud data, classically these approaches consider α-shapes [31], where each point
is replaced with a ball of radius α, and the union of these balls is analyzed. More recently a distance
function interpretation [11] has become more prevalent where the union of α-radius balls can be replaced by
the sublevel set (at value α) of the Hausdorff distance to the point set. Moreover, the theory can be extended
to other distance functions to the point sets, including the distance-to-a-measure [15] which is more robust
to noise.

This has more recently led to statistical analysis of TDA. These results show not only robustness in the
function reconstruction, but also in the topology it implies about the underlying dataset. This work often
operates on persistence diagrams which summarize the persistence (difference in function values between
appearance and disappearance) of all homological features in single diagram. A variety of work has de-
veloped metrics on these diagrams and probability distributions over them [55, 67], and robustness and
confidence intervals on their landscapes [7, 39, 18] (summarizing again the most dominant persistent fea-
tures [19]). Much of this work is independent of the function and data from which the diagram is generated,
but it is now more clear than ever, it is most appropriate when the underlying function is robust to noise,
e.g., the distance-to-a-measure [15].

A very recent addition to this progression is the new TDA package for R [38]; it includes built in functions
to analyze point sets using Hausdorff distance, distance-to-a-measure, k-nearest neighbor density estima-
tors, kernel density estimates, and kernel distance. The example in Figure 1 used this package to generate
persistence diagrams. While, the stability of the Hausdorff distance is classic [11, 31], and the distance-to-a-
measure [15] and k-nearest neighbor distances have been shown robust to various degrees [5], this paper is
the first to analyze the stability of kernel density estimates and the kernel distance in the context of geometric
inference. Some recent manuscripts show related results. Bobrowski et al. [6] consider kernels with finite
support, and describe approximate confidence intervals on the superlevel sets, which recover approximate
persistence diagrams. Chazal et al. [17] explore the robustness of the kernel distance in bootstrapping-based
analysis.

In particular, we show that the kernel distance and kernel density estimates, using the Gaussian kernel,
inherit some reconstruction properties of distance-to-a-measure, that these functions can also be approxi-
mately reconstructed using weighted (Vietoris-)Rips complexes [8], and that under certain regimes can infer
homotopy of compact sets. Moreover, we show further robustness advantages of the kernel distance and
kernel density estimates, including that they possess small coresets [57, 71] for persistence diagrams and
inference.

1.1 Kernels, Kernel Density Estimates, and Kernel Distance

A kernel is a non-negative similarity measure K : Rd × Rd → R+; more similar points have higher
value. For any fixed p ∈ Rd, a kernel K(p, ·) can be normalized to be a probability distribution; that
is
∫
x∈Rd K(p, x)dx = 1. For the purposes of this article we focus on the Gaussian kernel defined as

K(p, x) = σ2 exp(−‖p− x‖2/2σ2). 1

1 K(p, x) is normalized so that K(x, x) = 1 for σ = 1. The choice of coefficient σ2 is not the standard normalization, but it is
perfectly valid as it scales everything by a constant. It has the property that σ2 −K(p, x) ≈ ‖p− x‖2/2 for ‖p− x‖ small.
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Figure 1: Example with 10,000 points in [0, 1]2 generated on a circle or line with N(0, 0.005) noise; 25% of points
are uniform background noise. The generating function is reconstructed with kde with σ = 0.05 (upper left), and
its persistence diagram based on the superlevel set filtration is shown (upper middle). A coreset [71] of the same
dataset with only 1,384 points (lower left) and persistence diagram (lower middle) are shown, again using kde.
This associated confidence interval contains the dimension 1 homology features (red triangles) suggesting they
are noise; this is because it models data as iid – but the coreset data is not iid, it subsamples more intelligently.
We also show persistence diagrams of the original data based on the sublevel set filtration of the standard distance
function (upper right, with no useful features due to noise) and the kernel distance (lower right).

A kernel density estimate [65, 61, 26, 27] is a way to estimate a continuous distribution function over
Rd for a finite point set P ⊂ Rd; they have been studied and applied in a variety of contexts, for instance,
under subsampling [57, 71, 3], motion planning [59], multimodality [64, 33], and surveillance [37], road
reconstruction [4]. Specifically,

KDEP (x) =
1

|P |
∑

p∈P
K(p, x).

The kernel distance [47, 42, 48, 58] (also called current distance or maximum mean discrepancy) is a
metric [56, 66] between two point sets P , Q (as long as the kernel used is characteristic [66], a slight
restriction of being positive definite [2, 70], this includes the Gaussian and Laplace kernels). Define a
similarity between the two point sets as

κ(P,Q) =
1

|P |
1

|Q|
∑

p∈P

∑

q∈Q
K(p, q).

Then the kernel distance between two point sets is defined as

DK(P,Q) =
√
κ(P, P ) + κ(Q,Q)− 2κ(P,Q).
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When we let point set Q be a single point x, then κ(P, x) = KDEP (x).
Kernel density estimates can apply to any measure µ (on Rd) as KDEµ(x) =

∫
p∈Rd K(p, x)dµ(p). The

similarity between two measures is κ(µ, ν) =
∫

(p,q)∈Rd×Rd K(p, q)dmµ,ν(p, q), where mµ,ν is the product
measure of µ and ν (mµ,ν := µ ⊗ ν), and then the kernel distance between two measures µ and ν is still a
metric, defined as DK(µ, ν) =

√
κ(µ, µ) + κ(ν, ν)− 2κ(µ, ν). When the measure ν is a Dirac measure at

x (ν(q) = 0 for x 6= q, but integrates to 1), then κ(µ, x) = KDEµ(x). Given a finite point set P ⊂ Rd, we
can work with the empirical measure µP defined as µP = 1

|P |
∑

p∈P δp, where δp is the Dirac measure on
p, and DK(µP , µQ) = DK(P,Q).

If K is positive definite, it is said to have the reproducing property [2, 70]. This implies that K(p, x) is
an inner product in some reproducing kernel Hilbert space (RKHS) HK . Specifically, there is a lifting map
φ : Rd → HK so that K(p, x) = 〈φ(p), φ(x)〉HK , and moreover the entire set P can be represented as
Φ(P ) =

∑
p∈P φ(p), which is a single element of HK and has a norm ‖Φ(P )‖HK =

√
κ(P, P ). A single

point x ∈ Rd also has a norm ‖φ(x)‖HK =
√
K(x, x) in this space.

1.2 Geometric Inference and Distance to a Measure: A Review

Given an unknown compact set S ⊂ Rd and a finite point cloud P ⊂ Rd that comes from S under some
process, geometric inference aims to recover topological and geometric properties of S from P . The offset-
based (and more generally, the distance function-based) approach for geometric inference reconstructs a
geometric and topological approximation of S by offsets from P (e.g. [13, 14, 15, 20, 21]).

Given a compact set S ⊂ Rd, we can define a distance function fS to S; a common example is fS(x) =
infy∈S ‖x − y‖ (i.e. α-shapes). The offsets of S are the sublevel sets of fS , denoted (S)r = f−1

S ([0, r]).
Now an approximation of S by another compact set P ⊂ Rd (e.g. a finite point cloud) can be quantified by
the Hausdorff distance dH(S, P ) := ‖fS − fP ‖∞ = infx∈Rd |fS(x) − fP (x)| of their distance functions.
The intuition behind the inference of topology is that if dH(S, P ) is small, thus fS and fP are close, and
subsequently, S, (S)r and (P )r carry the same topology for an appropriate scale r. In other words, to
compare the topology of offsets (S)r and (P )r, we require Hausdorff stability with respect to their distance
functions fS and fP . An example of an offset-based topological inference result is formally stated as
follows (as a particular version of the reconstruction Theorem 4.6 in [14]), where the reach of a compact set
S, reach(S), is defined as the minimum distance between S and its medial axis [54].

Theorem 1.1 (Reconstruction from fP [14]). Let S, P ⊂ Rd be compact sets such that reach(S) > R
and ε := dH(S, P ) < R/17. Then (S)η and (P )r are homotopy equivalent for sufficiently small η (e.g.,
0 < η < R) if 4ε ≤ r < R− 3ε.

Here η < R ensures that the topological properties of (S)η and (S)r are the same, and the ε parameter
ensures (S)r and (P )r are close. Typically ε is tied to the density with which a point cloud P is sampled
from S.

For function φ : Rd → R+ to be distance-like it should satisfy the following properties:

• (D1) φ is 1-Lipschitz: For all x, y ∈ Rd, |φ(x)− φ(y)| ≤ ‖x− y‖.
• (D2) φ2 is 1-semiconcave: The map x ∈ Rd 7→ (φ(x))2 − ‖x‖2 is concave.
• (D3) φ is proper: φ(x) tends to the infimum of its domain (e.g.,∞) as x tends to infinity.

In addition to the Hausdorff stability property stated above, as explained in [15], fS is distance-like. These
three properties are paramount for geometric inference (e.g. [14, 53]). (D1) ensures that fS is differentiable
almost everywhere and the medial axis of S has zero d-volume [15]; and (D2) is a crucial technical tool,
e.g., in proving the existence of the flow of the gradient of the distance function for topological inference
[14].
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Distance to a measure. Given a probability measure µ on Rd and a parameter m0 > 0 smaller than the
total mass of µ, the distance to a measure dccmµ,m0

: Rn → R+ [15] is defined for any point x ∈ Rd as

dccmµ,m0
(x) =

(
1

m0

∫ m0

m=0
(δµ,m(x))2dm

)1/2

, where δµ,m(x) = inf
{
r > 0 : µ(B̄r(x)) ≥ m

}
,

It has been shown in [15] that dccmµ,m0
is a distance-like function (satisfying (D1), (D2), and (D3)), and:

• (M4) [Stability] For probability measures µ and ν on Rd and m0 > 0, then ‖dccmµ,m0
− dccmν,m0

‖∞ ≤
1√
m0
W2(µ, ν).

HereW2 is the Wasserstein distance [69]: W2(µ, ν) = infπ∈Π(µ,ν)

(∫
Rd×Rd ||x− y||2dπ(x, y)

)1/2
between

two measures, where dπ(x, y) measures the amount of mass transferred from location x to location y and
π ∈ Π(µ, ν) is a transference plan [69].

Given a point set P , the sublevel sets of dccmµP ,m0
can be described as the union of balls [45], and then one

can algorithmically estimate the topology (e.g., persistence diagram) with weighted alpha-shapes [45] and
weighted Rips complexes [8].

1.3 Our Results

We show how to estimate the topology (e.g., approximate persistence diagrams, infer homotopy of compact
sets) using superlevel sets of the kernel density estimate of a point set P . We accomplish this by showing
that a similar set of properties hold for the kernel distance with respect to a measure µ, (in place of distance
to a measure dccmµ,m0

), defined as

dKµ (x) = DK(µ, x) =
√
κ(µ, µ) + κ(x, x)− 2κ(µ, x).

This treats x as a probability measure represented by a Dirac mass at x. Specifically, we show dKµ is distance-
like (it satisfies (D1), (D2), and (D3)), so it inherits reconstruction properties of dccmµ,m0

. Moreover, it is stable
with respect to the kernel distance:

• (K4) [Stability] If µ and ν are two measures on Rd, then ‖dKµ − dKν ‖∞ ≤ DK(µ, ν).

In addition, we show how to construct these topological estimates for dKµ using weighted Rips complexes,
following power distance machinery introduced in [8]. That is, a particular form of power distance permits
a multiplicative approximation with the kernel distance.

We also describe further advantages of the kernel distance. (i) Its sublevel sets conveniently map to the
superlevel sets of a kernel density estimate. (ii) It is Lipschitz with respect to the smoothing parameter
σ when the input x is fixed. (iii) As σ tends to ∞ for any two probability measures µ, ν, the kernel dis-
tance is bounded by the Wasserstein distance: limσ→∞DK(µ, ν) ≤ W2(µ, ν). (iv) It has a small coreset
representation, which allows for sparse representation and efficient, scalable computation. In particular, an
ε-kernel sample [48, 57, 71] Q of µ is a finite point set whose size only depends on ε > 0 and such that
maxx∈Rd |KDEµ(x)− KDEµQ(x)| = maxx∈Rd |κ(µ, x)− κ(µQ, x)| ≤ ε. These coresets preserve inference
results and persistence diagrams.

2 Kernel Distance is Distance-Like

In this section we prove dKµ satisfies (D1), (D2), and (D3); hence it is distance-like. Recall we use the σ2-
normalized Gaussian kernel Kσ(p, x) = σ2 exp(−‖p− x‖2/2σ2). For ease of exposition, unless otherwise
noted, we will assume σ is fixed and write K instead of Kσ.
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2.1 Semiconcave Property for dKµ

Lemma 2.1 (D2). (dKµ )2 is 1-semiconcave: the map x 7→ (dKµ (x))2 − ‖x‖2 is concave.

Proof. Let T (x) = (dKµ (x))2 − ‖x‖2. The proof will show that the second derivative of T along any
direction is nonpositive. We can rewrite

T (x) = κ(µ, µ) + κ(x, x)− 2κ(µ, x)− ‖x‖2

= κ(µ, µ) + κ(x, x)−
∫

p∈Rd
(2K(p, x) + ‖x‖2)dµ(p).

Note that both κ(µ, µ) and κ(x, x) are absolute constants, so we can ignore them in the second derivative.
Furthermore, by setting t(p, x) = −2K(p, x) − ‖x‖2, the second derivative of T (x) is nonpositive if the
second derivative of t(p, x) is nonpositive for all p, x ∈ Rd. First note that the second derivative of−‖x‖2 is
a constant−2 in every direction. The second derivative ofK(p, x) is symmetric about p, so we can consider
the second derivative along any vector u = x− p,

d2

du2
t(p, x) = 2

(‖u‖2
σ2
− 1

)
exp

(
−‖u‖

2

2σ2

)
− 2.

This reaches its maximum value at ‖u‖ = ‖x − p‖ =
√

3σ where it is 4 exp(−3/2) − 2 ≈ −1.1; this
follows setting the derivative of s(y) = 2(y− 1) exp(−y/2)− 2 to 0, ( d

dys(y) = (1/2)(3− y) exp(−y/2)),
substituting y = ‖u‖2/σ2.

We also note in Appendix A that semiconcavity follows trivially in the RKHS HK .

2.2 Lipschitz Property for dKµ

We generalize a (folklore, see [15]) relation between semiconcave and Lipschitz functions and prove it for
completeness. A function f is `-semiconcave if the function T (x) = (f(x))2 − `‖x‖2 is concave.

Lemma 2.2. Consider a twice-differentiable function g and a parameter ` ≥ 1. If (g(x))2 is `-semiconcave,
then g(x) is `-Lipschitz.

Proof. The proof is by contrapositive; we assume that g(x) is not `-Lipschitz and then show (g(x))2 cannot
be `-semiconcave. By this assumption, then in some direction u, there is a point x′ such that (d/du)g(x′) =
c > ` ≥ 1.

Now we examine f(x) = (g(x))2− `‖x‖2 at x = x′, and specifically its second derivative in direction u.

d

du
f(x)

∣∣
x=x′

= 2

(
d

du
g(x′)

)
g(x′)− 2`‖x′‖ = 2c · g(x′)− 2`‖x′‖

d2

du2
f(x)

∣∣
x=x′

= 2c

(
d

du
g(x′)

)
− 2` = 2c2 − 2` = 2(c2 − `)

Since c2 > c > ` ≥ 1, then 2(c2 − `) > 0 and f(x) is not `-semiconcave at x′.

We can now state the following lemma as a corollary of Lemma 2.2 and Lemma 2.1.

Lemma 2.3 (D1). dKµ is 1-Lipschitz on its input.
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2.3 Properness of dKµ

Finally, for dKµ to be distance-like, we need to show it is proper when its range is restricted to be less than
cµ :=

√
κ(µ, µ) + κ(x, x). Here, the value of cµ depends on µ not on x since κ(x, x) = K(x, x) = σ2.

This is required for a distance-like version [15], Proposition 4.2) of the Isotopy Lemma ([44], Proposition
1.8).

Lemma 2.4 (D3). dKµ is proper.

We delay this technical proof to Appendix A. The main technical difficulty comes in mapping standard
definitions and approaches for distance functions to our function dKµ with a restricted range.

Also by properness (see discussion in Appendix A), Lemma 2.4 also implies that dKµ is a closed map and
its levelset at any value a ∈ [0, cµ) is compact. This also means that the sublevel set of dKµ (for ranges
[0, a) ⊂ [0, cµ)) is compact. Since the levelset (sublevel set) of dKµ corresponds to the levelset (superlevel
set) of KDEµ, we have the following corollary.

Corollary 2.1. The superlevel sets of KDEµ for all ranges with threshold a > 0, are compact.

The result in [33] shows that given a measure µP defined by a point set P of size n, the KDEµP has
polynomial in n modes; hence the superlevel sets of KDEµP are compact in this setting. The above corollary
is a more general statement as it holds for any measure.

3 Power Distance using Kernel Distance

A power distance using dKµ is defined with a point set P ⊂ Rd and a metric d(·, ·) on Rd,

fP (µ, x) =
√

min
p∈P

(
d(p, x)2 + dKµ (p)2

)
.

A point x ∈ Rd takes the distance under d(p, x) to the closest p ∈ P , plus a weight from dKµ (p); thus
a sublevel set of fP (µ, ·) is defined by a union of balls. We consider a particular choice of the distance
d(p, x) := DK(p, x) which leads to a kernel version of power distance

fK
P (µ, x) =

√
min
p∈P

(
DK(p, x)2 + dKµ (p)2

)
.

In Section 4.2 we use fK
P (µ, x) to adapt the construction introduced in [8] to approximate the persistence

diagram of the sublevel sets of dKµ , using a weighted Rips filtration of fK
P (µ, x).

Given a measure µ, let p+ = arg maxq∈Rd κ(µ, q), and let P+ ⊂ Rd be a point set that contains p+.
We show below, in Theorem 3.3 and Theorem 3.2, that 1√

2
dKµ (x) ≤ fK

P+
(µ, x) ≤

√
14dKµ (x). However,

constructing p+ exactly seems quite difficult. We also attempt to use p? = arg minp∈P ‖p− x‖ in place of
p+ (see Section C.1), but are not able to obtain useful bounds.

Now consider an empirical measure µP defined by a point set P . We show (in Theorem C.2 in Appendix
C.2) how to construct a point p̂+ (that approximates p+) such that DK(P, p̂+) ≤ (1 + δ)DK(P, p+) for
any δ > 0. For a point set P , the median concentration ΛP is a radius such that no point p ∈ P has more
than half of the points of P within ΛP , and the spread βP is the ratio between the longest and shortest
pairwise distances. The runtime is polynomial in n and 1/δ assuming βP is bounded, and that σ/ΛP and d
are constants.

Then we consider P̂+ = P ∪ {p̂+}, where p̂+ is found with δ = 1/2 in the above construction. Then we
can provide the following multiplicative bound, proven in Theorem 3.4. The lower bound holds independent
of the choice of P as shown in Theorem 3.2.
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Theorem 3.1. For any point set P ⊂ Rd and point x ∈ Rd, with empirical measure µP defined by P , then

1√
2
dKµP (x) ≤ fK

P̂+
(µP , x) ≤

√
71dKµP (x).

3.1 Kernel Power Distance for a Measure µ

First consider the case for a kernel power distance fK
P (µ, x) where µ is an arbitrary measure.

Theorem 3.2. For measure µ, point set P ⊂ Rd, and x ∈ Rd, DK(µ, x) ≤
√

2fK
P (µ, x).

Proof. Let p = arg minq∈P
(
DK(q, x)2 +DK(µ, q)2

)
. Then we can use the triangle inequality and (DK(µ, p)−

DK(p, x))2 ≥ 0 to show

DK(µ, x)2 ≤ (DK(µ, p) +DK(p, x))2 ≤ 2(DK(µ, p)2 +DK(p, x)2) = 2fK
P (µ, x)2.

Lemma 3.1. For measure µ, point set P ⊂ Rd, point p ∈ P , and point x ∈ Rd then fK
P (µ, x)2 ≤

2DK(µ, x)2 + 3DK(p, x)2.

Proof. Again, we can reach this result with the triangle inequality.

fK
P (µ, x)2 ≤ DK(µ, p)2 +DK(p, x)2

≤ (DK(µ, x) +DK(p, x))2 +DK(p, x)2

≤ 2DK(µ, x)2 + 3DK(p, x)2.

Recall the definition of a point p+ = arg maxq∈Rd κ(µ, q).

Lemma 3.2. For any measure µ and point x, p+ ∈ Rd we have DK(p+, x) ≤ 2DK(µ, x).

Proof. Since x is a point in Rd, κ(µ, x) ≤ κ(µ, p+) and thus DK(µ, x) ≥ DK(µ, p+). Then by triangle
inequality of DK to see that DK(p+, x) ≤ DK(µ, x) +DK(µ, p+) ≤ 2DK(µ, x).

Theorem 3.3. For any measure µ in Rd and any point x ∈ Rd, using the point p+ = arg maxq∈Rd κ(µ, q)

then fK
{p+}(µ, x) ≤

√
14DK(µ, x).

Proof. Combine Lemma 3.1 and Lemma 3.2 as

fK
{p+}(µ, x)2 ≤ 2DK(µ, x)2 + 3DK(p+, x)2 ≤ 2DK(µ, x)2 + 3(4DK(µ, x)2) = 14DK(µ, x)2.

We now need two properties of the point set P to reach our bound, namely, the spread βP and the median
concentration ΛP . Typically log(βP ) is not too large, and it makes sense to choose σ so σ/ΛP ≤ 1, or at
least σ/ΛP = O(1).

Theorem 3.4. Consider any point set P ⊂ Rd of size n, with measure µP , spread βP , and median concen-
tration ΛP . We can construct a point set P̂+ = P ∪ p̂+ in O(n2((σ/ΛP δ)

d + log(β)) time such that for any
point x, fK

P̂+
(µP , x) ≤

√
71DK(µP , x).

Proof. We use Theorem C.2 to find a point p̂+ such that DK(P, p̂+) ≤ (3/2)DK(P, p+). Thus for any
x ∈ Rd, using the triangle inequality

DK(p̂+, x) ≤ DK(p̂+, p+) +DK(p+, x) ≤ DK(µP , p̂+) +DK(µP , p+) +DK(p+, x)

≤ (5/2)DK(µP , p+) +DK(p+, x).
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Now combine this with Lemma 3.1 and Lemma 3.2 as

fK
P̂+

(µP , x)2 ≤ 2DK(µP , x)2 + 3DK(p̂+, x)2

≤ 2DK(µP , x)2 + 3((5/2)DK(µP , x) +DK(p+, x))2

≤ 2DK(µP , x)2 + 3((25/4) + (5/2))DK(µP , x)2 + (1 + 5/2)DK(p+, x)2)

= (113/4)DK(µP , x)2 + (21/2)DK(p+, x)2

≤ (113/4)DK(µP , x)2 + (21/2)(4DK(µP , x)2) < 71DK(µP , x)2.

4 Reconstruction and Topological Estimation using Kernel Distance

Now applying distance-like properties from Section 2 and the power distance properties of Section 3 we can
apply known reconstruction results to the kernel distance.

4.1 Homotopy Equivalent Reconstruction using dKµ

We have shown that the kernel distance function dKµ is a distance-like function. Therefore the reconstruction
theory for a distance-like function [15] (which is an extension of results for compact sets [14]) holds in
the setting of dKµ . We state the following two corollaries for completeness, whose proofs follow from the
proofs of Proposition 4.2 and Theorem 4.6 in [15]. Before their formal statement, we need some notation
adapted from [15] to make these statements precise. Let φ : Rd → R+ be a distance-like function. A point
x ∈ Rd is an α-critical point if φ2(x + h) ≤ φ2(x) + 2α‖h‖φ(x) + ‖h‖2 with α ∈ [0, 1], ∀h ∈ Rd. Let
(φ)r = {x ∈ Rd | φ(x) ≤ r} denote the sublevel set of φ, and let (φ)[r1,r2] = {x ∈ Rd | r1 ≤ φ(x) ≤ r2}
denote all points at levels in the range [r1, r2]. For α ∈ [0, 1], the α-reach of φ is the maximum r such that
(φ)r has no α-critical point, denoted as reachα(φ). When α = 1, reach1 coincides with reach introduced in
[40].

Theorem 4.1 (Isotopy lemma on dKµ ). Let r1 < r2 be two positive numbers such that dKµ has no critical
points in (dKµ )[r1,r2]. Then all the sublevel sets (dKµ )r are isotopic for r ∈ [r1, r2].

Theorem 4.2 (Reconstruction on dKµ ). Let dKµ and dKν be two kernel distance functions such that ‖dKµ −
dKν ‖∞ ≤ ε. Suppose reachα(dKµ ) ≥ R for some α > 0. Then ∀r ∈ [4ε/α2, R − 3ε], and ∀η ∈ (0, R), the
sublevel sets (dKµ )η and (dKν )r are homotopy equivalent for ε ≤ R/(5 + 4/α2).

4.2 Constructing Topological Estimates using dKµ

In order to actually construct a topological estimate using the kernel distance dKµ , one needs to be able
to compute quantities related to its sublevel sets, in particular, to compute the persistence diagram of the
sub-level sets filtration of dKµ . Now we describe such tools needed for the kernel distance based on ma-
chinery recently developed by Buchet et al. [8], which shows how to approximate the persistent homology
of distance-to-a-measure for any metric space via a power distance construction. Then using similar con-
structions, we can use the weighted Rips filtration to approximate the persistence diagram of the kernel
distance.

To state our results, first we require some technical notions and assume basic knowledge on persistent
homology (see [34, 35] for a readable background). Given a metric space X with the distance dX(·, ·), a
set P ⊆ X and a function w : P → R, the (general) power distance f associated with (P,w) is defined
as f(x) =

√
minp∈P (dX(p, x)2 + w(p)2). Now given the set (P,w) and its corresponding power distance

f , one could use the weighted Rips filtration to approximate the persistence diagram of w, under certain
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restrictive conditions proven in Appendix D.1. Consider the sublevel set of f , f−1((−∞, α]). It is the
union of balls centered at points p ∈ P with radius rp(α) =

√
α2 − w(p)2 for each p. The weighted

Čech complex Cα(P,w) for parameter α is the union of simplices s such that
⋂
p∈sB(p, rp(α)) 6= 0. The

weighted Rips complex Rα(P,w) for parameter α is the maximal complex whose 1-skeleton is the same as
Cα(P,w). The corresponding weighted Rips filtration is denoted as {Rα(P,w)}.

Setting w := dKµP and given point set P̂+ described in Section 3, consider the weighted Rips filtration
{Rα(P̂+, d

K
µ )} based on the kernel power distance, fK

P̂+
. We view the persistence diagrams on a logarithmic

scale, that is, we change coordinates of points following the mapping (x, y) 7→ (lnx, ln y). dln
B denotes the

corresponding bottleneck distance between persistence diagrams. We now state a corollary of Theorem 3.1.

Corollary 4.1. The weighted Rips filtration {Rα(P̂+, d
K
µP

)} can be used to approximate the persistence
diagram of dKµP such that dln

B(Dgm(dKµP ),Dgm({Rα(P̂+, d
K
µP

)})) ≤ ln(2
√

71).

Proof. To prove that two persistence diagrams are close, one could prove that their filtration are interleaved
[12], that is, two filtrations {Uα} and {Vα} are ε-interleaved if for any α, Uα ⊆ Vα+ε ⊆ Uα+2ε.

First, Lemmas D.1 and D.2 prove that the persistence diagrams Dgm(dKµP ) and Dgm({Rα(P̂+, d
K
µP

)}))
are well-defined. Second, the results of Theorem 3.1 implies an

√
71 multiplicative interleaving. Therefore

for any α ∈ R,

(dKµP )
−1

((−∞, α]) ⊂ (fK
P̂+

)
−1

((−∞,
√

2α) ⊂ (dKµP )
−1

((−∞,
√

71
√

2α]).

On a logarithmic scale (by taking the natural log of both sides), such interleaving becomes addictive,

ln dKµP −
√

2 ≤ ln fK
P̂+
≤ ln dKµP +

√
71.

Theorem 4 of [16] implies
dln
B(Dgm(dKµP ),Dgm(fK

P̂+
)) ≤

√
71.

In addition, by the Persistent Nerve Lemma ([22], Theorem 6 of [62], an extension of the Nerve Theorem
[46]), the sublevel sets filtration of dKµ , which correspond to unions of balls of increasing radius, has the
same persistent homology as the nerve filtration of these balls (which, by definition, is the Čech filtration).
Finally, there exists a multiplicative interleaving between weighted Rips and Čech complexes (Proposition
31 of [16]), Cα ⊆ Rα ⊆ C2α. We then obtain the following bounds on persistence diagrams,

dln
B(Dgm(fK

P+
),Dgm({Rα(P+, d

K
µP

)})) ≤ ln(2).

We use triangle inequality to obtain the final result:

dln
B(Dgm(dKµP ),Dgm({Rα(P+, d

K
µP

)})) ≤ ln(2
√

71).

Based on Corollary 4.1, we have an algorithm that approximates the persistent homology of the sublevel
set filtration of dKµ by constructing the weighted Rips filtration corresponding to the kernel-based power
distance and computing its persistent homology. For memory efficient computation, sparse (weighted) Rips
filtrations could be adapted by considering simplices on subsamples at each scale [63, 16], although some
restrictions on the space apply.

4.3 Distance to the Support of a Measure vs. Kernel Distance

Suppose µ is a uniform measure on a compact set S in Rd. We now compare the kernel distance dKµ with
the distance function fS to the support S of µ. We show how dKµ approximates fS , and thus allows one to
infer geometric properties of S from samples from µ.
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A generalized gradient and its corresponding flow associated with a distance function are described in
[14] and later adapted for distance-like functions in [15]. Let fS : Rd → R be a distance function associated
with a compact set S of Rd. It is not differentiable on the medial axis of S. A generalized gradient function
∇S : Rd → Rd coincides with the usual gradient of fS where fS is differentiable, and is defined everywhere
and can be integrated into a continuous flow Φt : Rd → Rd that points away from S. Let γ be an integral
(flow) line. The following lemma shows that when close enough to S, that dKµ is strictly increasing along
any γ. The proof is quite technical and is thus deferred to Appendix D.2.

Lemma 4.1. Given any flow line γ associated with the generalized gradient function ∇S , dKµ (x) is strictly
monotonically increasing along γ for x sufficiently far away from the medial axis of S, for σ ≤ R

6∆G

and fS(x) ∈ (0.014R, 2σ). Here B(σ/2) denotes a ball of radius σ/2, G := Vol(B(σ/2))
Vol(S) , ∆G :=√

12 + 3 ln(4/G) and suppose R := min(reach(S), reach(Rd \ S)) > 0.

The strict monotonicity of dKµ along the flow line under the conditions in Lemma 4.1 makes it possible
to define a deformation retract of the sublevel sets of dKµ onto sublevel sets of fS . Such a deformation
retract defines a special case of homotopy equivalence between the sublevel sets of dKµ and sublevel sets of
fS . Consider a sufficiently large point set P ∈ Rd sampled from µ, and its induced measure µP . We can
then also invoke Theorem 4.2 and a sampling bound (see Section 6 and Lemma B.2) to show homotopy
equivalence between the sublevel sets of fS and dKµP .

Note that Lemma 4.1 uses somewhat restrictive conditions related to the reach of a compact set, however
we believe such conditions could be further relaxed to be associated with the concept of µ-reach as described
in [14].

5 Stability Properties for the Kernel Distance to a Measure

Lemma 5.1 (K4). For two measures µ and ν on Rd we have ‖dKµ − dKν ‖∞ ≤ DK(µ, ν).

Proof. Since DK(·, ·) is a metric, then by triangle inequality, for any x ∈ Rd we have DK(µ, x) ≤
DK(µ, ν) + DK(ν, x) and DK(ν, x) ≤ DK(ν, µ) + DK(µ, x). Therefore for any x ∈ Rd we have
|DK(µ, x)−DK(ν, x)| ≤ DK(µ, ν), proving the claim.

Both the Wasserstein and kernel distance are integral probability metrics [66], so (M4) and (K4) are both
interesting, but not easily comparable. We now attempt to reconcile this.

5.1 Comparing DK to W2

Lemma 5.2. There is no Lipschitz constant γ such that for any two probability measures µ and ν we have
W2(µ, ν) ≤ γDK(µ, ν).

Proof. Consider two measures µ and ν which are almost identical: the only difference is some mass of mea-
sure τ is moved from its location in µ a distance n in ν. The Wasserstein distance requires a transportation
plan that moves this τ mass in ν back to where it was in µ with cost τ · Ω(n) in W2(µ, ν). On the other
hand, DK(µ, ν) =

√
κ(µ, µ) + κ(ν, ν)− 2κ(µ, ν) ≤

√
σ2 + σ2 − 2 · 0 =

√
2σ is bounded.

We conjecture for any two probability measures µ and ν that DK(µ, ν) ≤ W2(µ, ν). This would show
that dKµ is at least as stable as dccmµ,m0

since a bound on W2(µ, ν) would also bound DK(µ, ν), but not vice
versa. Alternatively, this can be viewed as dKµ is less discriminative than dccmµ,m0

; we view this as a positive
in this setting, as it is mainly less discriminative towards outliers (far away points). Here we only show that
this property for a special case and as σ →∞. To simplify notation, all integrals are assumed to be over the
full domain Rd.

10



Two Dirac masses. We first consider a special case when µ is a Dirac mass at a point p and ν is a Dirac
mass at a point q. That is they are both single points. We can then write DK(µ, ν) = DK(p, q). Figure 2
illustrates the result of this lemma.

Lemma 5.3. For any points p, q ∈ Rd it always holds that ‖p − q‖ ≥ DK(p, q). When ‖p − q‖ ≤
√

3σ
then DK(p, q) ≥ ‖p− q‖/2.

Proof. First expand DK(p, q)2 as

DK(p, q)2 = 2σ2 − 2K(p, q) = 2σ2

(
1− exp

(−‖p− q‖2
2σ2

))
.

Now using that 1− t ≤ e−t ≤ 1− t+ (1/2)t2 for t ≥ 0

DK(p, q)2 = 2σ2

(
1− exp

(−‖p− q‖2
2σ2

))
≤ 2σ2

(‖p− q‖2
2σ2

)
= ‖p− q‖2

and

DK(p, q)2 = 2σ2

(
1− exp

(−‖p− q‖2
2σ2

))

≥ 2σ2

(‖p− q‖2
2σ2

− 1

2

‖p− q‖4
4σ4

)

=
‖p− q‖2

4

(
4− ‖p− q‖

2

σ2

)

≥ ‖p− q‖2/4,

where the last inequality holds when ‖p− q‖2 ≤
√

3σ.

One Dirac mass. Consider the case where one measure ν is a Dirac mass at point x ∈ Rd.

Lemma 5.4. Consider two probability measures µ and ν on Rd where ν is represented by a Dirac mass at
a point x ∈ Rd. Then dKµ (x) = DK(µ, ν) ≤ W2(µ, ν) for any σ > 0, where the equality only holds when
µ is also a Dirac mass at x.

Proof. Since both W2(µ, ν) and DK(µ, ν) are metrics and hence non-negative, we can instead consider
their squared versions: (W2(µ, ν))2 =

∫
p ‖p− x‖2µ(p)dp and

(DK(µ, ν))2 = K(x, x) +

∫

(p,q)
K(p, q)dmµ,µ(p, q)− 2

∫

p
K(p, x)dµ(p)

= σ2

(
1 +

∫

(p,q)
exp

(
−‖p− q‖

2

2σ2

)
dmµ,µ(p, q)− 2

∫

p
exp

(
−‖p− x‖

2

2σ2

)
dµ(p)

)
.

Now use the bound 1− t ≤ e−t ≤ 1 for t ≥ 0 to approximate

(DK(µ, ν))2 ≤ σ2

(
1 +

∫

(p,q)
(1)d(mµ,µ(p, q)− 2

∫

p

(
1− ‖p− x‖

2

2σ2

)
dµ(p)

)

=

∫

p
‖p− x‖2dµ(p) = (W2(µ, ν))2.

The inequality becomes an equality only when ‖p− x‖ = 0 for all p ∈ P , and since they are both metrics,
this is the only location where they are both 0.
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Figure 2: Showing that ‖x − 0‖/2 ≤ DK(x, 0) ≤ ‖x − 0‖, where the second inequality holds for ‖x‖ ≤
√

3σ.
The kernel distance DK(x, 0) is shown for σ = {1/2, 1, 2} in purple, blue, and red, respectively.

General case. Next we show that if ν is not a unit Dirac, then this inequality holds in the limit as σ goes
to infinity. The technical work is making precise how σ2 −K(p, x) ≤ ‖x − p‖2/2 and how this compares
to bounds on DK(µ, ν) and W2(µ, ν).

For simpler exposition, we assume µ is a probability measure, that is
∫
p µ(p)dp = 1; otherwise we can

normalize µ at the appropriate locations, and all of the results go through.

Lemma 5.5. For any p, q ∈ Rd we have K(p, q) = σ2 − ‖p− q‖
2

2
+

∞∑

i=2

(−‖p− q‖2)i

2i+1σ2i−2i!
.

Proof. We use the Taylor expansion of ex =
∑∞

i=0 x
i/i! = 1 + x+

∑∞
i=2 x

i/i!. Then it is easy to see

K(p, q) = σ2 exp

(
−‖p− q‖

2

2σ2

)
= σ2 − ‖p− q‖

2

2
+

∞∑

i=2

(−‖p− q‖2)i

2iσ2i−2i!
.

This lemma illustrates why the choice of coefficient of σ2 is convenient. Since then σ2 − K(p, q) acts
like 1

2‖p − q‖2, and becomes closer as σ increases. Define µ̄ =
∫
p p · dµ(p) to represent the mean point

of measure µ; Var(µ) = (
∫
p ‖p‖2dµ(p)) − ‖µ̄‖2 to represent the variance of the measure µ; and ∆µ,ν =

∫
(p,q)

∑∞
i=2

(−‖p−q‖2)i

2iσ2i−2i!
dmµ,ν(p, q).

Lemma 5.6. For any x ∈ Rd we have
∫

p
‖p− x‖2dµ(p) = ‖µ̄− x‖2 + Var(µ).
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Proof.
∫

p
‖p− x‖2dµ(p) =

∫

p

(
‖p‖2 + ‖x‖2 − 2〈p, x〉

)
dµ(p)

=

∫

p
‖p‖2dµ(p) + ‖x‖2 − 2

∫

p
〈p, x〉dµ(p)

=

(∫

p
‖p‖2dµ(p)− ‖µ̄‖2

)
+ ‖µ̄‖2 + ‖x‖2 − 2〈µ̄, x〉

= Var(µ) + ‖µ̄− x‖2.

Lemma 5.7. For probability measures µ and ν on Rd, κ(µ, ν) = σ2− 1
2

(
‖µ̄− ν̄‖2 + Var(µ) + Var(ν)

)
+

∆µ,ν .

Proof. We use Lemma 5.5 to expand

κ(µ, ν) =

∫

(p,q)
K(p, q)dmµ,ν(p, q)

= σ2 −
∫

(p,q)

(
‖p− q‖2

2
−
∞∑

i=2

(−‖p− q‖2)i

2i+1σ2i−2i!

)
dmµ,ν(p, q).

After shifting the ∆µ,ν term outside, we can use Lemma 5.6 (twice) to rewrite
∫

p

(∫

q
‖p− q‖2dν(q)

)
dµ(p) =

∫

p

(
‖p− ν̄‖2 + Var(ν)

)
dµ(p)

= ‖µ̄− ν̄‖2 + Var(µ) + Var(ν).

Theorem 5.1. For any two probability measures µ and ν defined on Rd lim
σ→∞

DK(µ, ν) = ‖µ̄− ν̄‖.

Proof. First expand

(DK(µ, ν))2 = κ(µ, µ) + κ(ν, ν)− 2κ(µ, ν)

=

(
σ2 − 1

2
‖µ̄− µ̄‖2 − Var(µ) + ∆µ,µ

)
+

(
σ2 − 1

2
‖ν̄ − ν̄‖2 − Var(ν) + ∆ν,ν

)

− 2

(
σ2 − 1

2
‖µ̄− ν̄‖2 − 1

2
Var(µ)− 1

2
Var(ν) + ∆µ,ν

)

= ‖µ̄− ν̄‖2 + ∆µ,µ + ∆ν,ν − 2∆µ,ν .

Finally we observe that since all terms of ∆µ,ν are divided by σ2 or larger powers of σ. Thus as σ increases
∆µ,ν approaches 0 and (DK(µ, ν))2 approaches ‖µ̄− ν̄‖2, completing the proof.

Now we can relate DK(µ, ν) to W2(µ, ν) through ‖µ̄− ν̄‖. The next result is a known lower bounds for
the Earth movers distance [23][Theorem 7]. We reprove it in Appendix E for completeness.

Lemma 5.8. For any probability measures µ and ν defined on Rd we have ‖µ̄− ν̄‖ ≤W2(µ, ν).

We can now combine these results to achieve the following theorem.

Theorem 5.2. For any two probability measures µ and ν defined on Rd lim
σ→∞

DK(µ, ν) = ‖µ̄ − ν̄‖ and

‖µ̄− ν̄‖ ≤W2(µ, ν). Thus limσ→∞DK(µ, ν) ≤W2(µ, ν).
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5.2 Kernel Distance Stability with Respect to σ

We now explore the Lipschitz properties of dKµ with respect to the noise parameter σ. We argue any distance
function that is robust to noise needs some parameter to address how many outliers to ignore or how far
away a point is that is an outlier. For instance, this parameter in dccmµ,m0

is m0 which controls the amount of
measure µ to be used in the distance.

Here we show that dKµ has a particularly nice property, that it is Lipschitz with respect to the choice of σ
for any fixed x. The larger σ the more effect outliers have, and the smaller σ the less the data is smoothed
and thus the closer the noise needs to be to the underlying object to effect the inference.

Lemma 5.9. Let h(σ, z) = exp(−z2/2σ2). We can bound h(σ, z) ≤ 1, d
dσh(σ, z) ≤ (2/e)/σ and

d2

dσ2h(σ, z) ≤ (18/e3)/σ2 over any choice of z > 0.

Proof. The first bound follows from y = −z2/2σ2 ≤ 0 and exp(y) ≤ 1 for y ≤ 0.
Next we define

w1(σ, z) =
d

dσ
h(σ, z) =

z2

σ3
exp

(−z2

2σ2

)
, and

w2(σ, z) =
d2

dσ2
h(σ, z) =

(
z4

σ6
− 3z2

σ4

)
exp

(−z2

2σ2

)
.

Now to solve the first part, we differentiate w1 with respect to z to find its maximum over all choices of
z.

d

dz
w1(σ, z) =

(
2z

σ3
− z3

σ5

)
exp

(−z2

2σ2

)

Where (d/dz)w1(σ, z) = 0 at z = 0, z =
√

2σ and as z approaches∞. Thus the maximum must occur at
one of these values. Both w1(σ, 0) = 0 and limz→∞w1(σ, z) = 0, while w1(σ,

√
2σ) = (2/e)/σ, proving

the first part.
To solve the second part, we perform the same approach on w2.

d

dz
w2(σ, z) =

(−z5

σ8
+

3z3

σ6
+

4z3

σ6
− 6z

σ4

)
exp

(−z2

2σ2

)

=
z

σ4

(−z4

σ4
+

7z2

σ2
− 6

)
exp

(−z2

2σ2

)

Thus (d/dz)w2(σ, z) = 0 at z = {0, σ,
√

6σ} and as z goes to∞ for z ∈ [0,∞). Both w2(σ, 0) = 0 and
limz→∞w2(σ, z) = 0. The minimum occurs at w2(σ, z = σ) = (−2/

√
e)/σ2. The maximum occurs at

w2(σ, z =
√

6σ) = (18/e3)/σ2.

Theorem 5.3. For any measure µ defined on Rd and x ∈ Rd, dKµ (x) is `-Lipschitz with respect to σ, for
` = 18/e3 + 8/e+ 2 < 6.

Proof. Recall that mµ,ν is the product measure of any µ and ν, and define Mµ,ν as Mµ,ν(p, q) = mµ,µ(p, q)+
mν,ν(p, q)− 2mµ,ν(p, q). It is now useful to define a function fx(σ) as

fx(σ) =

∫

(p,q)
exp

(−‖p− q‖2
2σ2

)
dMµ,δx(p, q).

So dKµ (x) = σ
√
fx(σ) and we can write another function as

F (σ) = (dKµ (x))2 − `‖σ‖2 = σ2fx(σ)− `σ2.
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Now to prove dKµ (x) is `-Lipschitz, we can show that (dKµ )2 is `-semiconcave with respect to σ, and apply
Lemma 2.2. This boils down to showing the second derivative of F (σ) is always non-positive.

d

dσ
F (σ) = 2σfx(σ) + σ2 d

dσ
fx(σ)− 2σ`.

d2

dσ2
F (σ) = σ2 d2

dσ2
fx(σ) + 4σ

d

dσ
fx(σ) + 2fx(σ)− 2`.

First we note that since
∫

(p,q) c · dmµ,ν(p, q) = c for any product distribution mµ,ν of two distributions µ
and ν, including when µ or ν is a Dirac mass, then

∫

(p,q)
c · dMµ,δx(p, q) =

∫

(p,q)
c · d

[
mµ,µ + mδx,δx − 2mµ,δx

]
(p, q) ≤ 2c.

Thus since exp
(
−‖p−q‖2

2σ2

)
is in [0, 1] for all choices of p, q, and σ > 0, then 0 ≤ fx(σ) ≤ 2 and 2fx(σ) ≤ 4.

This bounds the third term in d2

dσ2F (σ), we now need to use a similar approach to bound the first and second
terms.

Let h(σ, z) = exp
(
−z2
2σ2

)
, so we can apply Lemma 5.9.

4σ
d

dσ
fx(σ) = 4σ

∫

(p,q)

(
d

dσ
h(σ, ‖p− q‖)

)
dMµ,δx(p, q) ≤ 4σ((2/e)/σ)2 = 16/e

σ2 d2

dσ2
fx(σ) = σ2

∫

(p,q)

(
d2

dσ2
h(σ, ‖p− q‖)

)
dMµ,δx(p, q) ≤ σ2

(
(18/e3)/σ2

)
2 = 36/e3

Then we complete the proof using the upper bound of each item of d2

dσ2F (σ)

d2

dσ2
F (σ) = σ2 d2

dσ2
fx(σ) + 4σ

d

dσ
fx(σ) + 2fx(σ)− 2`

≤ 36/e3 + 16/e+ 4− 2(18/e3 + 8/e+ 2) = 0.

Lipschitz in m0 for dccmµ,m0
. We show that there is no Lipschitz property for dccmµ,m0

, with respect to m0

that is independent of the measure µ. Consider a measure µP for point set P ⊂ R consisting of two points
at a = 0 and at b = ∆. Now consider dccmµP ,m0

(a). When m0 ≤ 1/2 then dccmµP ,m0
(a) = 0 is constant. But

for m0 = 1/2 + α for α > 0, then dccmµP ,m0
(a) = α∆/(1/2 + α) and d

dm0
dccmµP ,m0

(a) = d
dαd

ccm
µP ,

1
2

+α
(a) =

(1/2+2α)∆
(1/2+α)2

, which is maximized as α approaches 0 with an infimum of 2∆. If n − 1 points are at b and
1 point at a, then the infimum of the first derivative of m0 is n∆. Hence for a measure µP defined by a
point set, the infimum of d

dm0
dccmµP ,m0

(a) and, hence a lower bound on the Lipschitz constant is n∆P where
∆P = maxp,p′∈P ‖p− p′‖.

6 Algorithmic and Approximation Observations

Kernel coresets. The kernel distance is robust under random samples [48]. Specifically, if Q is a point
set randomly chosen from µ of size O((1/ε2)(d+ log(1/δ)) then ‖KDEµ − KDEQ‖∞ ≤ ε with probability
at least 1 − δ. We call such a subset Q and ε-kernel sample of (µ,K). Furthermore, it is also possible
to construct ε-kernel samples Q with even smaller size of |Q| = O(((1/ε)

√
log(1/εδ))2d/(d+2)) [57];

in particular in R2 the required size is |Q| = O((1/ε)
√

log(1/εδ)). Exploiting the above constructions,
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recent work [71] builds a data structure to allow for efficient approximate evaluations of KDEP where |P | =
100,000,000.

These constructions of Q also immediately imply that ‖(dKµ )2 − (dKQ )2‖∞ ≤ 4ε since (dKµ (x))2 =
κ(µ, µ) + κ(x, x) − 2KDEµ(x), and both the first and third term incur at most 2ε error in converting to
κ(Q,Q) and 2KDEQ(x), respectively (see Lemma B.1). Thus, an (ε2/4)-kernel sampleQ of (µ,K) implies
that ‖dKµ − dKQ‖∞ ≤ ε (see Lemma B.2).

This implies algorithms for geometric inference on enormous noisy data sets. Moreover, if we assume an
input point set Q is drawn iid from some underlying, but unknown distribution µ, we can bound approxima-
tions with respect to µ.

Corollary 6.1. Consider a measure µ defined on Rd, a kernel K, and a parameter ε ≤ R(5 + 4/α2).
We can create a coreset Q of size |Q| = O(((1/ε2)

√
log(1/εδ))2d/(d+2)) or randomly sample |Q| =

O((1/ε4)(d + log(1/δ))) points so, with probability at least 1 − δ, any sublevel set (dKµ )η is homotopy
equivalent to (dKQ )r for r ∈ [4ε/α2, R− 3ε] and η ∈ (0, R).

Proof. Those bounds are obtained by constructing an (ε2/4)-kernel sample [48, 57], which guarantees
‖dKµ −dKQ‖∞ ≤ ε via Lemma B.2. Then since ε ≤ R/(5+4/α2), with Theorem 4.2 any sublevel set (dKµ )η

is homotopy equivalent to (dKQ )r.

Stability of persistence diagrams. Furthermore, the stability results on persistence diagrams [24] hold
for kernel density estimates and kernel distance of µ and Q (where Q is a coreset of µ with the same
size bounds as above). If ‖f − g‖∞ ≤ ε, then dB(Dgm(f),Dgm(g)) ≤ ε, where dB is the bottleneck
distance between persistence diagrams. Combined with the coreset results above, this immediately implies
the following corollaries.

Corollary 6.2. Consider a measure µ defined on Rd and a kernel K. We can create a core set Q of size
|Q| = O(((1/ε)

√
log(1/εδ))2d/(d+2)) or randomly sample |Q| = O((1/ε2)(d + log(1/δ))) points which

will have the following properties with probability at least 1− δ.

• dB(Dgm(KDEµ),Dgm(KDEQ)) ≤ ε.

• dB(Dgm((dKµ )2),Dgm((dKQ )2)) ≤ ε.

Corollary 6.3. Consider a measure µ defined on Rd and a kernel K. We can create a coreset Q of size
|Q| = O(((1/ε2)

√
log(1/εδ))2d/(d+2)) or randomly sample |Q| = O((1/ε4)(d+ log(1/δ))) points which

will have the following property with probability at least 1− δ.

• dB(Dgm(dKµ ),Dgm(dKQ )) ≤ ε.

Another bound was independently derived to show an upper bound on the size of a random sample Q
such that dB(Dgm(KDEµP ),Dgm(KDEQ)) ≤ ε in [3]; this can, as above, also be translated into bounds
for Dgm((dKQ )2) and Dgm(dKQ ). This result assumes P ⊂ [−C,C]d and is parametrized by a bandwidth
parameter h that retains that

∫
x∈Rd Kh(x, p)dx = 1 for all p using that K1(‖x − p‖) = K(x, p) and

Kh(‖x − p‖) = 1
hd
K1(‖x − p‖2/h). This ensures that K(·, p) is (1/hd)-Lipschitz and that K(x, x) =

Θ(1/hd) for any x. Then their bound requires |Q| = O( d
ε2hd

log( Cdεδh)) random samples.
To compare directly against the random sampling result we derive from Joshi et al. [48], for kernel

Kh(x, p) then ‖KDEµP−KDEQ‖∞ ≤ εKh(x, x) = ε/hd. Hence, our analysis requires |Q| = O((1/ε2h2d)(d+
log(1/δ))), and is an improvement when h = Ω(1) or C is not known or bounded, as well as in some other
cases as a function of ε, h, δ, and d.
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7 Discussion

We mention here a few other interesting aspects of our results and observations about topological inference
using the kernel distance. They are related to how the noise parameter σ affects the idea of scale, and a few
more experiments, including with alternate kernels.

7.1 Noise and Scale

Much of geometric and topological reconstruction grew out of the desire to understand shapes at various
scales. A common mechanism is offset based; e.g., α-shapes [31] represent the scale of a shape with the
α parameter controlling the offsets of a point cloud. There are two parameters with the kernel distance:
r controls the offset through the sublevel set of the function, and σ controls the noise. We argue that
any function which is robust to noise must have a parameter that controls the noise (e.g. σ for dKµ and
m0 for dccmµ,m0

). Here σ clearly defines some sense of scale in the setting of density estimation [65] and
has a geometrical interpretation, while m0 represents a fraction of the measure and is hard to interpret
geometrically, as illustrated by the lack of a Lipschitz property for dccmµ,m0

with respect to m0.
There are several experiments below, in Section 7.2, from which several insights can be drawn. One

observation is that even though there are two parameters r and σ that control the scale, the interesting values
typically have r very close to σ. Thus, we recommend to first set σ to control the scale at which the data
is studied, and then explore the effect of varying r for values near σ. Moreover, not much structure seems
to be missed by not exploring the space of both parameters; Figure 3 shows that fixing one (of r and σ)
and varying the other can provide very similar superlevel sets. However, it is possible instead to fix r and
explore the persistent topological features in the data [36, 34] (those less affected by smoothing) by varying
σ. On the other hand, it remains a challenging problem to study two parameter persistent homology [10, 9]
under the setting of kernel distance (or kernel density estimate).

7.2 Experiments

We consider measures µP defined by a point set P ⊂ R2. To experimentally visualize the structures of the
superlevel sets of kernel density estimates, or equivalently sublevel sets of the kernel distance, we do the
simplest thing and just evaluate dKµP at every grid point on a sufficiently dense grid.

Grid approximation. Due to the 1-Lipschitz property of the kernel distance, well chosen grid points
have several nice properties. We consider the functions up to some resolution parameter ε > 0, consistent
with the parameter used to create a coreset approximation Q. Now specifically, consider an axis-aligned
grid Gε,d with edge length ε/2

√
d so no point x ∈ Rd is further than ε from some grid point g ∈ Gε,d.

Since K(x, y) ≤ ε when ‖x − y‖ ≥ 2σ2 ln(σ2/ε) = δε,σ, we only need to consider grid points g ∈ Gε,d
which are within δε,σ of some point p ∈ P (or q ∈ Q, of coreset Q of P ) [48, 71]. This is at most
(2
√
d/ε)d(2δε,σ)d = O((σ2 log(ε/d)/ε)d) grid points total for d a fixed constant. Furthermore, due to the

1-Lipschitz property of dKP , when considering a specific level set at r

• a point x such that dKP (x) ≤ r − ε is no further than ε from some g ∈ G such that dKP (g) ≤ r, and

• every ball Bε(x) centered at some point x ∈ Rd of radius ε so that all y ∈ Bε(x) has dKP (y) ≤ r has
some representative point g ∈ Gε,d such that g ∈ Bε(x), and hence dKP (g) ≤ r.

Thus “deep” regions and spatially thick features are preserved, however thin passageways or layers that are
near the threshold r, even if they do not correspond to a critical point, may erroneously become disconnected,
causing phantom components or other topological features. However, due to the Lipschitz property, these
can be different from r by at most ε, so the errors will have small deviation in persistence.
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Figure 3: Sublevel sets for the kernel distance while varying the isolevel γ, for fixed σ (left) and for fixed isolevel
γ but variable σ (right), with Gaussian kernel. The variable values of σ and γ are chosen to make the plots
similar.

Figure 4: Alternate kernel density estimates for the same dataset as Figure 3. From left to right, they use the
Laplace, triangle, Epanechnikov, and the ball kernel.

Varying parameter r or σ. We demonstrate the geometric inference on a synthetic dataset in [0, 1]2

where 900 points are chosen near a circle centered at (0.5, 0.5) with radius 0.25 or along a line segment
from (0, 0) to (1, 1). Each point has Gaussian noise added with standard deviation 0.01. The remaining
1100 points are chosen uniformly from [0, 1]2. We use a Gaussian kernel with σ = 0.05. Figure 3 shows
(left) various sublevel sets γ ∈ Γ for the kernel distance at a fixed σ = 0.05 and (right) various superlevel
sets for a fixed γ = 0.04853, but various values of σ ∈ Σ, where

Γ = [0.05005, 0.04979, 0.04954, 0.04904, 0.04853] and

Σ = [0.0485, 0.0489, 0.0492, 0.0495, 0.05].

This choice of Γ and Σ were made to highlight how similar the isolevels can be.

Alternative kernels. We can choose kernels other than the Gaussian kernel in the kernel density estimate,
for instance

• the Laplace kernel K(p, x) = exp(−2‖x− y‖/σ),
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• the triangle kernel K(p, x) = max{0, 1− ‖x− y‖/σ},
• the Epanechnikov kernel K(p, x) = max{0, 1− ‖x− y‖2/σ2}, or

• the ball kernel (K(p, x) = {1 if ‖p− x‖ ≤ σ; o.w. 0}.

Figure 4 chooses parameters to make them comparable to the Figure 3(left). Of these only the Laplace
kernel is characteristic [66] making the corresponding version of the kernel distance a metric. Investigating
which of the above reconstruction theorems hold when using the Laplace or other kernels is an interesting
question for future work.

Additionally, normal vector information and even k-forms can be used in the definition of a kernel [42,
68, 30, 29, 43, 48]; this variant is known as the current distance. In some cases it retains its metric properties
and has been shown to be very useful for shape alignment in conjunction with medical imaging.

7.3 Open Questions

This work shows it is possible to prove formal reconstruction results using kernel density estimates and the
kernel distance. But it also opens many interesting questions.

• For what other types of kernels can we show reconstruction bounds? The Laplace and triangle kernels
are natural choices. For both the coresets results match those of the Gaussian kernel. The kernel
distance under the Laplace kernel is also a metric, but is not known to be for the triangle kernel. Yet,
the triangle kernel would be interesting since it has bounded support, and may lend itself to easier
computation.

• The power distance construction in Section 3 requires a point p̂+, which approximates the point with
minimum kernel distance. This is intuitively because it is possible to construct a point set P (say
points lying on a circle with no points inside) such that the point p+ ∈ Rd which minimizes the kernel
distance and maximizes the kernel density estimate is far from any point in the point set. For one, can
p̂+ be constructed efficiently without dependence on βP or ΛP /σ?

But more interestingly, can we generally approximate the persistence diagram without creating a
simplicial complex on a subset of the input points? We do describe some bounds on using a grid-based
technique in Section 7.2, but this is also unsatisfying since it essentially requires a low-dimensional
Euclidean space.

• Since dKµ is Lipschitz in x and σ, it may make sense to understand the simultaneous stability of both
variables. What is the best way to understand persistence over both parameters?

• We provided some initial bound comparing the kernel distance under the Gaussian kernel and the
Wasserstein 2 distance. Can we show that under our choice of normalization that DK(µ, ν) ≤
W2(µ, ν), unconstrained? More generally, how does the kernel distance under other kernels com-
pare with other forms of Wasserstein and other distances on measures?
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currents for statistics on curves and surfaces. In 11th International Conference on Medical Image
Computing and Computer Assisted Intervention, 2008.

[31] Herbert Edelsbrunner. The union of balls and its dual shape. Proceedings 9th Annual Symposium on
Computational Geometry, pages 218–231, 1993.

[32] Herbert Edelsbrunner, Michael Facello, Ping Fu, and Jie Liang. Measuring proteins and voids in
proteins. In Proceedings 28th Annual Hawaii International Conference on Systems Science, 1995.

21

http://pub.hal3.name/daume04rkhs.ps
http://pub.hal3.name/daume04rkhs.ps


[33] Herbert Edelsbrunner, Brittany Terese Fasy, and Günter Rote. Add isotropic Gaussian kernels at own
risk: More and more resiliant modes in higher dimensions. Proceedings 28th Annual Symposium on
Computational Geometry, pages 91–100, 2012.

[34] Herbert Edelsbrunner and John Harer. Persistent homology - a survey. Contemporary Mathematics,
453:257–282, 2008.

[35] Herbert Edelsbrunner and John Harer. Computational Topology: An Introduction. American Mathe-
matical Society, Providence, RI, USA, 2010.

[36] Herbert Edelsbrunner, David Letscher, and Afra J. Zomorodian. Topological persistence and simplifi-
cation. Discrete and Computational Geometry, 28:511–533, 2002.

[37] Ahmed Elgammal, Ramani Duraiswami, David Harwood, and Larry S. Davis. Background and fore-
ground modeling using nonparametric kernel density estimation for visual surveillance. Proc. IEEE,
90:1151–1163, 2002.

[38] Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, and Clément Maria. Introduction to the R package
TDA. Technical report, arXiV:1411.1830, 2014.

[39] Brittany Terese Fasy, Fabrizio Lecci, Alessandro Rinaldo, Larry Wasserman, Sivaraman Balakrish-
nan, and Aarti Singh. Statistical inference for persistent homology: Confidence sets for persistence
diagrams. In The Annals of Statistics, volume 42, pages 2301–2339, 2014.

[40] H. Federer. Curvature measures. Transactions of the American Mathematical Society, 93:418–491,
1959.

[41] Mingchen Gao, Chao Chen, Shaoting Zhang, Zhen Qian, Dimitris Metaxas, and Leon Axel. Segment-
ing the papillary muscles and the trabeculae from high resolution cardiac CT through restoration of
topological handles. In Proceedings International Conference on Information Processing in Medical
Imaging, 2013.
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[43] Joan Glaunès and Sarang Joshi. Template estimation form unlabeled point set data and surfaces for
computational anatomy. In International Workshop on Mathematical Foundations of Computational
Anatomy, 2006.

[44] Karsten Grove. Critical point theory for distance functions. Proceedings of Symposia in Pure Mathe-
matics, 54:357–385, 1993.
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A Details on Distance-Like Properties of Kernel Distance

We provide further details on distance-like properties of the kernel distance.

A.1 Semiconcave Properties of Kernel Distance

We also note that semiconcavity follows quite naturally and simply in the RKHS HK for dKµ .

Lemma A.1. (dKµ )2 is 1-semiconcave in HK: the map x 7→ (dKµ (x))2 − ‖φ(x)‖2HK is concave.

Proof. We can write

(dKµ (x))2 = (DK(µ, x))2 = κ(µ, µ)+κ(x, x)−2κ(µ, x) = ‖Φ(µ)‖2HK +‖φ(x)‖2HK−2‖Φ(µ)−φ(x)‖2HK .

Now
(dKµ (x))2 − ‖φ(x)‖2HK = ‖Φ(µ)‖2HK − 2‖Φ(µ)− φ(x)‖2HK .

Since the above is twice-differentiable, we only need to show that its twice-differential is non-positive. By
definition, for a fixed µ, Φ(µ) and ‖Φ(µ)‖2HK are both constant. Suppose Φ(µ) = c1 and ‖Φ(µ)‖2HK = c2,
we have (dµ(x))2 − ‖φ(x)‖2HK = c2 − ‖c1 − φ(x)‖2HK . Since the RKHS HK is a vector space with
well-defined norm ‖ · ‖HK , the above is a concave parabolic function.

However, this semiconcavity in HK is not that useful. For unit weight elements x, y ∈ Rd, an element
sα such that φ(sα) = αφ(y) + (1 − α)φ(x) is a weighted point set with a point at x with weight (1 − α)
and another at y with weight α. Lemma A.1 only implies that (dK(sα))2 − ‖φ(sα)‖2HK ≤ α((dK(x))2 −
‖φ(x)‖2HK ) + (1− α)((dK(y))2 − ‖φ(y)‖2HK ).

A.2 Kernel Distance is Proper

We use two more general, but equivalent definitions of a proper map. Definition (i): A continuous map
f : X → Y between two topological spaces is proper if and only if the inverse image of every compact
subset in Y is compact in X ([50], page 84; [51], page 45). Definition (ii): a continuous map f : X → Y
between two topological manifolds is proper if and only if for every sequence {pi} in X that escapes to
infinity, {f(pi)} escapes to infinity inY ([51], Proposition 2.17). Here, for a topological spaceX, a sequence
{pi} in X escapes to infinity if for every compact set G ⊂ X, there are at most finitely many values of i for
which pi ∈ G ([51], page 46).

Lemma A.2 (Lemma 2.4). dKµ is proper.

Proof. To prove that dKµ is proper, we prove the following two claims: (a) A continuous function f : Rd →
[0, c) (where c is a constant) is proper, if for any sequence {xi} in Rd that escapes to infinity, the sequence
{f(xi)} tends to c (approaches c in the limit); (b) Let f := dKµ and one needs to show that for any sequences
{xi} that escapes to infinity, the sequence {f(xi)} tends to cµ; or equivalently, κ(µ, xi) tends to 0.

We prove claim (a) by proving its contrapositive. If a continuous function f : Rd → [0, c) is not proper,
then there exists a sequence {xi} in Rd that escapes to infinity, such that the sequence {f(xi)} does not
tend to c. Suppose f is not proper, this implies that there exists a constant b < c such that f−1[0, b] is not
compact (based on properness definition (i)) and therefore either not closed or unbounded. We first show
that A := f−1[0, b] is closed. We make use of the following theorem ([49], page 88, Theorem 10’): A
mapping f of a topological space X into a topological space Y is continuous if and only if the pre-image
f−1(F ) of every closed set F ⊂ Y is closed in X. Since f is continuous, it implies that the pre-image
of every closed set [a, b] ⊂ R is closed in Rd. Therefore, A is closed, therefore it must be unbounded.
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Since every unbounded sequence contains a monotone subsequence that has either +∞ or −∞ as a limit,
therefore A contains a subsequence S := {xi} that tends to an infinite limit. In addition, as elements in S
escapes to infinity, {f(xi)} tends to b and does not tend to c. Therefore (a) holds by contraposition.

To prove claim (b), we need to show that for any sequence {xi} that escapes to infinity, κ(µ, xi) tends to 0.
For each xi, define a radius ri = ‖xi−0‖/2 and define a ballBi that is centered at the origin 0 and has radius
ri. As xi goes to infinity, ri increases until for any fixed arbitrary ε > 0, we have

∫
p∈Bi µ(p)dp ≥ 1−ε/2σ2

and thus
∫
p∈Rd\Bi dµ(p) ≤ ε/2σ2. Furthermore, let pi = arg minp∈B ‖p − xi‖, so ‖xi − pi‖ = ri. Thus

also as xi goes to infinity, ri increases until for any ε > 0 we have K(pi, xi) ≤ ε/2. We now decompose
κ(µ, xi) =

∫
p∈Bi K(p, xi)dµ(p) +

∫
q∈Rd\Bi K(q, xi)dµ(q). Thus for any ε > 0, as xi goes to infinity, the

first term is at most ε/2 since all K(p, xi) ≤ K(pi, xi) ≤ ε/2 and the second term is at most ε/2 since
K(q, x) ≤ σ2 and

∫
q∈Rd\Bi µ(q)dq ≤ ε/2σ2. Since these results hold for all ε, as xi goes to infinity and ε

goes to 0, κ(µ, xi) goes to 0.
Combine (a) with (b) and the fact that dKµ is a continuous (in fact, Lipschitz) function, we obtained the

properness result.

B ε-Approximation of the Kernel Distance

Here we make explicit the way that an ε-kernel sample approximated the kernel distance. Recall that if Q is
an ε-kernel sample of µ, then ‖KDEµ − KDEµQ‖ = maxx∈Rd |κ(µ, x)− κ(µQ, x)| ≤ ε.

Lemma B.1. If Q is an ε-kernel sample of µ, then ‖(dKµ )2 − (dKµQ)2‖∞ ≤ 4ε.

Proof. First expand DK(µ, x)2 = κ(x, x) + κ(µ, µ) − 2κ(µ, x) = σ2 + κ(µ, µ) − 2κ(µ, x). Replacing µ
with µQ, the first term is unaffected. The second term is bounded,

κ(µ, µ) =

∫

(p,q)
K(p, q)dmµ,µ(p, q) =

∫

p

(∫

q
K(p, q)dµ(q)

)
dµ(p)

=

∫

p
KDEµ(p)dµ(p) ≤

∫

p
(KDEµQ(p) + ε)dµ(p)

=

∫

p
KDEµQ(p)dµ(p) + ε =

∫

p

(∫

q
K(p, q)dµQ(q)

)
dµ(p) + ε

= κ(µQ, µ) + ε

≤ κ(µQ, µQ) + 2ε.

Similar results hold by switching µQ with µ in the above inequality, that is, κ(µQ, µQ) ≤ κ(µ, µ)+2ε. And
for the third term we have similar inequality, |2κ(µ, x) − 2κ(µQ, x)| ≤ 2ε. Combining all three terms, we
have the desired result: |DK(µ, x)2 −DK(µQ, x)2| ≤ 4ε.

Lemma B.2. If Q is an (ε2/4)-kernel sample of µ, then ‖dKµ − dKµQ‖∞ ≤ ε.

Proof. By Lemma B.1 this condition on Q implies that ‖(dKµ )2 − (dKµQ)2‖∞ ≤ ε2. We then use a basic fact
for values ε ≥ 0 and γ ≥ 0.
•
√
γ2 + ε2 ≤ γ + ε. This follows since (γ + ε)2 = γ2 + ε2 + 2γε ≥ γ2 + ε2.

We now prove the main result as an upper and lower bound using for any x ∈ Rd. We first use γ =
dKµ (x) ≥ 0 and expand dKµQ(x) to obtain

dKµQ(x) =
√

(dKµQ(x))2 ≤
√

(dKµ (x))2 + ε2 ≤ dKµ (x) + ε.
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Now we use γ = dKµQ(x) ≥ 0 and expand dKµ (x) to obtain

dKµ (x) =
√

(dKµ (x))2 ≤
√

(dKµQ(x))2 + ε2 ≤ dKµQ(x) + ε.

Hence for any x ∈ Rd we have dKµ (x)− ε ≤ dKµQ(x) ≤ dKµ (x) + ε.

C Power Distance Constructions

Recall we want to consider the following power distance using dKµ (as weight) for a measure µ associated
with a subset P ⊂ Rd and metric d(·, ·) on Rd,

fP (µ, x) =

√
min
p∈P

(
d(p, x)2 + dKµ (p)2

)
.

We consider a particular choice of the distance metric d(p, x) = DK(p, x) which leads to a kernel version
of the power distance

fK
P (µ, x) =

√
min
p∈P

(
DK(p, x)2 + dKµ (p)2

)
.

Recall that dKµ (x) = DK(µ, x). In this section, we will always use the notation DK(µ, ν), and when µ or
ν are points (e.g. µ is a Dirac mass at p and ν is a Dirac mass at q), then we will just write DK(p, q). This
will be especially helpful when we apply the triangle inequality in several places.

C.1 Kernel Power Distance on Point Set P

Given a set P defining a measure of interest µP , it is of interest to consider if fK
P (µP , x) is multiplicatively

bounded by DK(µP , x). Theorem 3.2 shows that the lower bound holds. In this section we try to provide a
multiplicative approximation upper bound.

Let p? = arg minp∈P ‖p − x‖. We can start with Lemma 3.1 which reduces the problem finding a
multiplicative upper bound for DK(p?, x) in terms of DK(µP , x). However, we are not able to provide very
useful bounds, and they require more advanced techniques that the previous section. In particular, they will
only apply for points x ∈ Rd when DK(µP , x) is large enough; hence not well-approximating the minima
of dKµ .

For simplicity, we write dKP (·) = DK(µP , ·) as DK(P, ·).
The difficult case is when DK(P, x) is very small, and hence κ(P, P ) is very small. So we start by

developing tools to upper bound κ(P, P ) using p̂ = arg minp∈P DK(P, p), a point which only provides a
worse approximation that p?.

We first provide a general result in a Hilbert space (a refinement of a vector space [25]), and then next
apply it to our setting in the RKHS.

Lemma C.1. Consider a set V = {v1, . . . , vn} of vectors in a Hilbert space endowed with norm ‖ · ‖ and
inner product 〈·, ·〉. Let each vi have norm ‖vi‖ = η. Consider weights W = {w1, . . . , wn} such that
wi ≥ 0 and

∑n
i=1wi = 1. Let r =

∑n
i=1wivi. Let v̂ = arg minvi∈V ‖vi − r‖. Then

‖r‖2 ≤ η2 − ‖r − v̂‖2.

Proof. Recall elementary properties of inner product space: ‖x‖2 = 〈x, x〉, 〈ax, y〉 = a〈x, y〉, 〈x− y, x−
y〉 = 〈x, x〉+ 〈y, y〉 − 2〈x, y〉. By definition of v̂, for any vi ∈ V ,

‖vi − r‖2 ≥ ‖v̂ − r‖2 ⇒ 〈vi, vi〉+ 〈r, r〉 − 2〈vi, r〉 ≥ 〈v̂, v̂〉+ 〈r, r〉 − 2〈v̂, r〉 ⇒ 〈vi, r〉 ≤ 〈v̂, r〉.
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We can decompose r (based on linearity of an inner product space) as

‖r‖2 = 〈r, r〉 =

n∑

i=1

wi〈vi, r〉 ≤
n∑

i=1

wi〈v̂, r〉 = 〈v̂, r〉 =
1

2
(‖r‖2 + ‖v̂‖2 − ‖v̂ − r‖2).

The last inequality holds by ‖v̂ − r‖2 = ‖r‖2 + ‖v̂‖2 − 2〈v̂, r〉. Then since ‖v̂‖ = η we can solve for ‖r‖2
as

‖r‖2 ≤ η2 − ‖v̂ − r‖2.

Lemma C.2. Let p̂ = arg minp∈P DK(P, p), then κ(P, P ) ≤ σ2 −DK(P, p̂)2.

Proof. Let φK : Rd → HK map points in Rd to the reproducing kernel Hilbert space (RKHS) HK defined
by kernel K. This space has norm ‖P‖HK =

√
κ(P, P ) defined on a set of points P and inner product

κ(P, P ). Let ΦK(P ) = 1
|P |
∑

p∈P φK(p) be the representation of a set of points P in HK . Note that
DK(P,Q) = ‖ΦK(P )−ΦK(Q)‖HK . We can now apply Lemma C.1 to {φK(p)}p∈P with weights w(p) =
1/|P | and r = ΦK(P ), and norm η = σ. Hence κ(P, P ) = ‖P‖2HK ≤ σ

2 −DK(P, p̂)2.

Lemma C.3. For any s > 0 and any x, then
√
s2 − x ≤ s− x/2s.

Proof. We expand the square of the desired result

(s2 − x) ≤ (s− x/2s)2 = s2 − x+ x2/4s2.

After subtracting (s2 − x) from both sides, it is equivalent to 0 ≤ x2/4s2. This holds since x2 and s are
always nonnegative.

Lemma C.4. DK(P, x) ≥ DK(p?, x)2/Cσ for Cσ = 2σ + 2.

Proof. Refer to Figure 5 for geometric intuition in this proof. Let ν0 be a measure that is ν0(p) = 0 for all
p ∈ Rd; thus it has a norm κ(ν0, ν0) = 0. We can measure the distance from ν0 to x and P , noting that
DK(ν0, x) =

√
κ(x, x) = σ and DK(ν0, P ) =

√
κ(P, P ). Thus by triangle inequality, Lemma C.2, and

Lemma C.3,

DK(P, x) ≥ DK(ν0, x)−DK(ν0, P )

= σ −
√
κ(P, P )

≥ σ −
√
σ2 −DK(P, p̂)2

≥ DK(P, p̂)2/2σ.

We now assume that DK(P, x) < DK(p?, x)/Cσ and show this is not possible. First observe that
DK(P, p̂) +DK(P, x) ≥ DK(p̂, x) ≥ DK(p?, x). These expressions imply that DK(P, p̂) ≥ DK(p?, x)−
DK(P, x) ≥ (1− 1/Cσ)DK(p?, x), and thus

DK(P, x) ≥ 1

2σ
DK(P, p̂)2 ≥ 1

2σ

(
1− 1

Cσ

)2

DK(p?, x)2 ≥ 1

Cσ
DK(p?, x)2,

a contradiction. The last steps follows by setting

1

2σ

(
1− 1

Cσ

)2

≥ 1

Cσ
⇒ C2

σ − (2 + 2σ)Cσ + 1 ≥ 0
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x

p? p̂P

⌫0

Figure 5: Illustration of x, p?, p̂, ν0, and P as vectors in a RKHS. Note we have omitted the φK and ΦK maps
to unclutter the notation.

and solving for Cσ,

Cσ ≥
(2 + 2σ) +

√
(2 + 2σ)2 − 4

2
= 1 + σ +

√
σ2 + 2σ = 1 + σ +

√
(σ + 1)2 − 1.

Since Cσ = 2σ + 2 > 1 + σ +
√

(σ + 1)2 − 1, so we have 1
2σ

(
1− 1

Cσ

)2
≥ 1

Cσ
.

Recall that an ε-kernel sample P of µ satisfies maxx∈Rd |κ(µ, x)− κ(µP , x)| ≤ ε.

Theorem C.1. If DK(P, x) ≥ 1 then fK
P (P, x) ≤

√
6σ + 8DK(P, x). If P is an (ε/4)-kernel sample of µ

then fK
P (µ, x) ≤

√
6σ + 8(DK(µ, x) + ε).

Proof. We combine Lemma C.4 with Lemma 3.1 to achieve

fK
P (P, x)2 ≤ 2DK(P, x)2 + 3DK(p?, x)2 ≤ 2DK(P, x)2 + 3(2σ + 2)DK(P, x).

Aside: Note that the first DK(P, x) is squared and the second is not. If DK(P, x) ≥ α then DK(P, x) ≤
(1/α)DK(P, x)2 we have

fK
P (P, x)2 ≤ (2 + (6 + 6σ)/α)DK(P, x)2.

Let α = 1. We have
fK
P (P, x)2 ≤ (6σ + 8)DK(P, x)2.

Since DK(P, x) ≤ DK(µ, x) + ε, via Lemma B.1. We obtain,

fK
P (µ, x) ≤

√
6σ + 8(DK(µ, x) + ε).

C.2 Approximating the Minimum Kernel Distance Point

The goal in this section is to find a point that approximately minimizes the kernel distance to a point set P .
We assume here P contains n points and describes a measure made of n Dirac mass at each p ∈ P with
weight 1/n (this is the empirical measure µP defined in Section 1.1). Let p+ = arg minq∈Rd DK(µP , q) =
arg maxq∈Rd κ(µP , q). Since DK(µP , q) = DK(P, q), for simplicity in notation, we work with point set
P instead of µP for the remaining of this section. That is, we define p+ = arg minq∈Rd DK(P, q) =

arg maxq∈Rd κ(P, q). Note that p+ is chosen over all of Rd, as the bound in Theorem C.1 is not sufficient
when choosing a point from P . In particular, for any δ > 0, we want a point p̂+ such that DK(P, p̂+) ≤
(1 + δ)DK(P, p+).
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Note that Agarwal et al. [1] provide an algorithm that with high probability finds a point q̂ such that
κ(P, q̂) ≥ (1− δ)κ(P, p+) in time O((1/δ4)n log n). However this point q̂ is not sufficient for our purpose
(that is, q̂ does not satisfy the condition DK(P, q̂+) ≤ (1 + δ)DK(P, p+)), since q̂ yields

DK(P, q̂)2 ≤ σ2+κ(P, P )−2(1−δ)κ(P, p+) � (1+δ)
(
σ2+κ(P, P )−2κ(P, p+)

)
= (1−δ)DK(P, p+)2,

since in general it is not true that 4κ(P, p+) ≤ σ2 + κ(P, P ), as would be required.
First we need some structural properties. For each point x ∈ Rd, define a radius rx = arg supr>0{|Br(x)∩

P | ≤ n/2}, where Br(x) is a ball of radius r centered at x. In other words, it is the largest radius such that
at most half of points in P are within Br(x). Let p̂2 be the point in P such that ‖p+ − p̂2‖ = rp+ . In other
words, p̂2 is a point such that no more than n/2 points in P satisfy ‖p+ − p‖ ≥ ‖p+ − p̂2‖. Finally it is
useful to define rx,K which is rx,K = DK(x, p) where ‖x− p‖ = rx; in particular rp+,K = DK(p+, p̂2).

We now need to lower bound DK(P, p+) in terms of DK(P, p̂2). Lemma C.4 already provides a bound
in terms of the closest point for any x ∈ Rd. We follow a similar construction here.

Lemma C.5. Consider a set V = {v1, . . . , vn} of vectors in a Hilbert space endowed with norm ‖ · ‖
and inner product 〈·, ·〉. Let each vi have norm ‖vi‖ = η. Consider weights W = {w1, . . . , wn} such that
1/2 ≥ wi ≥ 0 and

∑n
i=1wi = 1. Let r =

∑n
i=1wivi. Define a partition of V with V1 and V2 such that V2 is

the smallest set such that
∑

vi∈V2 wi ≥ 1/2, and for all v1 ∈ V1 and v2 ∈ V2 we have ‖r− v1‖ < ‖r− v2‖.
Let v̂2 = arg minvi∈V2 ‖vi − r‖. Then

‖r‖2 ≤ η2 − ‖r − v̂2‖2
2

.

Proof. For ease of notation, we assume that 〈vi, r〉 > 〈vi+1, r〉 for all i, and let {v1, . . . , vk} = V1. Let
v̂1 = arg minvi∈V1 ‖vi − r‖ = arg minvi∈V ‖vi − r‖. Let v̂ be a norm η vector that has 〈v̂, r〉 = (〈v̂1, r〉+
〈v̂2, r〉)/2. Since

∑
vi∈V2 wi ≥ 1/2 and

∑
vi∈V1 wi ≤ 1/2, let

∑
vi∈V2 wi = 1/2 + δ and

∑
vi∈V1 wi =

1/2− δ (for 0 ≤ δ ≤ 1/2). By definition, we also have 〈v̂1, r〉 ≥ 〈v̂2, r〉. We can decompose r as

‖r‖2 = 〈r, r〉 =
n∑

i=1

wi〈vi, r〉 =
k∑

i=1

wi〈vi, r〉+
n∑

i=k+1

wi〈vi, r〉

≤
k∑

i=1

wi〈v̂1, r〉+
n∑

i=k+1

wi〈v̂2, r〉 =

(
k∑

i=1

wi

)
〈v̂1, r〉+

(
n∑

i=k+1

wi

)
〈v̂2, r〉

= (1/2− δ)〈v̂1, r〉+ (1/2 + δ)〈v̂2, r〉 = (1/2)(〈v̂1, r〉+ 〈v̂2, r〉) + δ(〈v̂2, r〉 − 〈v̂1, r〉)
≤ (〈v̂1, r〉+ 〈v̂2, r〉)/2 = 〈v̂, r〉

=
1

2
(‖r‖2 + ‖v̂‖2 − ‖v̂ − r‖2).

The last inequality holds by ‖v̂ − r‖2 = ‖r‖2 + ‖v̂‖2 − 2〈v̂, r〉. Then since ‖v̂‖ = η we can solve for ‖r‖2
as

‖r‖2 ≤ η2 − ‖v̂ − r‖2 = η2 − (‖v̂2 − r‖2 + ‖v̂1 − r‖2)/2 ≤ η2 − ‖v̂2 − r‖2/2.

Lemma C.6. Using p̂2 as defined above, then κ(P, P ) ≤ σ2 −DK(P, p̂2)2/2.

Proof. Let φK : Rd → HK map points in Rd to the reproducing kernel Hilbert space (RKHS) HK defined
by kernel K. This space has norm ‖P‖HK =

√
κ(P, P ) defined on a set of points P and inner product

κ(P, P ). Let ΦK(P ) = 1
|P |
∑

p∈P φK(p) be the representation of a set of points P in HK . Note that
DK(P,Q) = ‖ΦK(P )−ΦK(Q)‖HK . We can now apply Lemma C.5 to {φK(p)}p∈P with weights w(p) =
1/|P | and r = ΦK(P ), and norm η = σ. Finally note that we can use φK(p̂2) = v̂2 since V2 represents the
set of points which are further or equal to P than is p̂2. In addition, by the property of RKHS, ‖ΦK(P ) −
φK(p̂2)‖ = DK(P, p̂2). Hence κ(P, P ) = ‖P‖2HK ≤ σ

2 −DK(P, p̂2)2/2.
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Lemma C.7. DK(P, p+) ≥ DK(p+, p̂2)2/(4σ).

Proof. Refer to Figure 5 for geometric intuition in this proof. Let ν0 be a measure that is ν0(p) = 0 for all
p ∈ Rd; thus it has a norm κ(ν0, ν0) = 0. We can measure the distance from ν0 to p+ and P , noting that
DK(ν0, x) =

√
κ(x, x) = σ and DK(P, ν0) =

√
κ(P, P ). Thus by triangle inequality, Lemma C.6, and

Lemma C.3

DK(P, p+) ≥ DK(ν0, p+)−DK(P, ν0)

= σ −
√
κ(P, P )

≥ σ −
√
σ2 −DK(P, p̂2)2/2

≥ DK(P, p̂2)2/4σ.

Now we place a net N on Rd; specifically, it is a set of points such that for some q ∈ N that ‖q − p+‖ ≤
δDK(p+, p̂2)2/4σ ≤ δDK(P, p+) (we refer to this inequality as the net condition, therefore, N is a set
of points such that some points in it satisfy the net condition). Since DK(P, ·) is 1-Lipschitz, we have
DK(P, p+) − DK(P, q) ≤ ‖q − p+‖. This ensures that some point q ∈ N satisfies DK(P, q) ≤ (1 +
δ)DK(P, p+), and can serve as p̂+. In other words, N is guaranteed to contain some point q that can serve
as p+.

Note that p+ must be in CH(P ), the convex hull of P . Otherwise, moving to the closest point on CH(P )
decreases the distance to all points, and thus increases κ(P, p+), which cannot happen by definition of p+.
Let ∆ be the diameter of P (the distance between the two furthest points). Clearly for some p ∈ P we must
have ‖p+ − p‖ ≤ ∆.

Also note that p+ := arg maxq∈Rd κ(P, q) must be within a distance Rσ = σ
√

2 ln(n) to some p ∈ P ,
otherwise for p? = arg minp∈P ‖p+− p‖, we can bound κ(P, p+) ≤ K(p?, p+) ≤ σ2/n = K(p?, p?)/n ≤
κ(P, p?), which means p+ is not a maximum. The first inequality is by definition of p∗, the second by
assuming ‖p+ − p?‖ ≥ σ

√
2 ln(n).

Let BR(p) be the ball centered at p with radius R = min(Rσ,∆). Let Rp = min(R, rp/2). So p+ must
be in

⋃
p∈P BR(p). We describe a net Np construction for one ball BR(p); that is for any x such that p ∈ P

is the closest point to x, then some point q ∈ Np satisfies ‖q−x‖ ≤ δ(rx,K)2/4σ. Thus if this point x = p+,
the correct property holds, and we can use the corresponding q as p̂+. Then N =

⋃
p∈P Np, and is at most n

times the size of Np. Let kp be the smallest integer k such that rp/2 ≥ R/2k. The net Np will be composed
of Np =

⋃kp
i=0 Ni = N0 ∪N′p, where N′p =

⋃kp
i=1 Ni.

Before we proceed with the construction, we need an assumption: That ΛP = minp∈P rp is a bounded
quantity, it is not too small. That is, no point has more than half the points within an absolute radius ΛP . We
call ΛP the median concentration.

Lemma C.8. A net N0 can be constructed of size O((σ/δΛP )d + logd/2(n)) so that all points x ∈ BRp(p)
satisfy ‖q − x‖ ≤ δ(rx,K)2/4σ for some q ∈ N0.

If x = p+, then such a point satisfies the net condition, that is there is a point q ∈ N0 such that ‖q−x‖ =
‖q − p+‖ ≤ δ(rp+,K)2/(4σ) = δDK(p+, p̂2)/(4σ) ≤ δDK(P, p+).

Proof. For all points x ∈ BRp ⊂ Brp/2(p), they must have rx ≥ rp/2, otherwise Brp/2(x) is completely
inside Brp(p), and cannot have enough points. Within BRp(p) we place the net N0 so that all points x ∈
BRp(p) satisfy ‖x − q‖ ≤ min(δr2

p/32σ,
√

3σ) for some q ∈ N0. Now δr2
p/32σ ≤ δr2

x/8σ, and since
‖x− y‖2/2 ≤ DK(x, y)2 (for ‖x− y‖ ≤

√
3σ, via Lemma 5.3), thus the net ensures if p+ ∈ BRp(p), then

some q ∈ N0 is sufficiently close to p+.
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Since BRp(p) fits in a squared box of side length min(2Rσ, rp), then we can describe N0 as an axis-
aligned grid with g points along each axis. We define two cases to bound g. When δr2

p/32σ <
√

3σ then
we can set

g =
Rp

δr2
p/(32σ

√
d)
≤ 32σ

√
d

δrp
= O(σ/δrp) = O(σ/δΛP )

Otherwise,

g =
Rp√

3σ/
√
d
≤ σ

√
2 ln(n)√

3σ/
√
d

=
√

2d ln(n)/3 = O(
√

log(n)).

Then we need |N0| = O(gd) = O((σ/δΛP )2 + lnd/2(n)).

When rp/2 < R we still need to handle the case for x ∈ Ap where the annulus Ap = BR(p) \Brp/2(p).
For a point x ∈ Ap if p = minp′∈P ‖x− p′‖ then rx ≥ ‖x− p‖. We only worry about the net N′p on Ap for
these points where p is the closest point, the others will be handled by another Np′ for p′ ∈ P and p′ 6= p.

Recall kp is the smallest integer k such that rp/2 ≥ R/2k.

Lemma C.9. A net N′p can be constructed of size O(kp + (σ/δΛP )d + logd/2(n)) so that all points x ∈ Ap
where p = arg minp′∈P ‖x− p′‖, satisfy ‖q − x‖ ≤ δ(rx,K)2/4σ for some q ∈ N′p.

If x = p+, then such a point satisfies the net condition, that is there is a point q ∈ N′p such that ‖q−x‖ =
‖q − p+‖ ≤ δ(rp+,K)2/(4σ) = δDK(p+, p̂2)/(4σ) ≤ δDK(P, p+).

Proof. We now consider the kp annuli {A1, . . . , Akp} which cover Ap. Each Ai = {x ∈ Rd | R/2i−1 ≥
‖p − x‖ > R/2i} has volume O((R/2i−1)d). For any x ∈ Ai we have rx ≥ ‖x − p‖ ≥ R/2i, so the
Euclidean distance to the nearest q ∈ Ni can be at most min(

√
3σ, δ(R/2i)2/8σ). Thus we can cover Ai

with a net Ni of size ti based on two cases again. If δ(R/2i)2/8σ <
√

3σ then

ti = O


1 +

(
R

2i
/

(
δ

σ

(
R

2i

)2
))d

 = O

(
1 +

(
2i

R

σ

δ

)d)
= O(1) +O

(( σ

δR

)d
(2d)i

)
.

Otherwise

ti = O

(
1 +

((
R

2i

)
/
√

3σ

)d)
= O


1 +

(
Rσ = σ

√
log(n)

2iσ

)d
 = O(1) +O

(
logd/2(n)

(2d)i

)
.

Since R/2kp ≥ rp/2 ≥ ΛP /2, then the total size of N′p, the union of all of these nets, is
∑kp

i=1 ti ≤
O(kp) + 2tkp + 2t1 = O(kp + (σ/δΛP )d + logd/2(n)). In the first case tkp dominates the cost and in the
second case it is t1.

Thus the total size of Np is O((σ/δΛP )d + logd/2(n) + kp) where kp ≤ log(R/rp) + 2. It just re-
mains to bound kp. Given that no more than n/2 points are collocated on the same spot (which already
holds by ΛP being a bounded quantity), then for all p ∈ P , rp ≥ minq 6=q′∈P ‖q − q′‖. The value
βP = ∆/minq 6=q′∈P ‖q − q′‖ is known as the spread of a point set, and it is common to assume it is
an absolute bounded quantity related to the precision of coordinates, where log(βP ) is not too large. Thus
we can bound kp = O(log(βP )).

Theorem C.2. Consider a point set P ⊂ Rd with n points, spread βP , and median concentration ΛP . For
any δ > 0, in timeO(n2((σ/δΛP )d+logd/2(n)+log(βP ))) we can find a point p̂+ such thatDK(P, p̂+) ≤
(1 + δ)DK(P, p+).
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Proof. Using Lemma C.8 and Lemma C.9 we can build a net N of size O(n((σ/δΛP )d + logd/2(n) +
log(βP )) such that some q ∈ N satisfies ‖q − p+‖ ≤ δDK(q, p+)2/4σ ≤ δDK(P, p+). Lemma C.7
ensures that this q satisfies DK(P, q) ≤ (1 + δ)DK(P, p+) since DK(P, ·) is 1-Lipschitz.

We can find such a q and set it as p+ by evaluating κ(P, q) for all q ∈ N and taking the one with largest
value. This takes O(n) for each q ∈ N.

We claim that in many realistic settings σ/ΛP = O(1). In such a case the algorithm runs inO(n2(1/δd+
logd/2 n + log(βP ))) time. If σ/ΛP = o(1), then over half of the measure described by P will essentially
behave as a single point. In many settings P is drawn uniformly from a compact set S, so then choosing σ
so that more than half of S has negligible diameter compared to σ will cause that data to be over smoothed.
In fact, the definition of ΛP can be modified so that this radius never contains more than any τn points for
any constant τ < 1, and the bounds do not change asymptotically.

D Details on Reconstruction Properties of Kernel Distance

In this section we provide the full proof for some statements from Section 4.

D.1 Topological Estimates using Kernel Power Distance

For persistence diagrams of sublevel sets filtration of dKµ and the weighted Rips filtration {Rα(P, dKµ )} to be
well-defined, we need the technical condition (proved in Lemma D.1 and D.2) that they are q-tame. Recall
a filtration F is q-tame if for any α < β, the homomorphism between H(Fα) and H(Fβ) induced by the
canonical inclusion has finite rank [12, 16].

Lemma D.1. The sublevel sets filtration of dKµ is q-tame.

Proof. The proof resembles the proof of q-tameness for distance to measure sublevel sets filtration (Propo-
sition 12, [8]). We have shown that dKµ is 1-Lipschitz and proper. Its properness property implies that any
sublevel set A := (dKµ )−1([0, α]) (for α < cµ) is compact. Since Rd is triangulable (i.e. homeomorphic to
a locally finite simplicial complex), there exists a homeomorphism h from Rd to a locally finite simplicial
complex C. For any α > 0, since A is compact, we consider the restriction of C to a finite simplicial
complex Cα that contains h(A). The function (dKµ ◦ h−1) |Cα is continuous on Cα, therefore its sublevel
set filtration is q-tame based on Theorem 2.22 of [16], which states that the sublevel sets filtration of a
continuous function (defined on a realization of a finite simplicial complex) is q-tame. Extending the above
construction to any α, the sublevel sets filtration of dKµ ◦h−1 is therefore q-tame. As homology is preserved
by homeomorphisms h, this implies that the sublevel sets filtration of dKµ is q-tame.

Setting µ = µP , Lemma D.1 implies that the sublevel sets filtration of dKµP is also q-tame.

Lemma D.2. The weighted Rips filtration {Rα(P, dKµ )} is q-tame for compact subset P ⊂ Rd.

Proof. Since P is compact subset of Rd, Dgm({Rα(P, dKµ )})) is q-tame based on Proposition 32 of [16],
which states that the weighted Rips filtration with respect to a compact subset P in metric space and its
corresponding weight function is q-tame.

Setting P = P̂+, µ = µP , Lemma D.2 implies that the weighted Rips filtration {Rα(P̂+, d
K
µP

)} is well-
defined.
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Figure 6: Illustrations of the geometric inference of S from dKµ at three scales.

D.2 Inference of Compact Set S with the Kernel Distance

Suppose µ is a uniform measure on a compact set S in Rd. We now compare the kernel distance dKµ with
the distance function fS to the support S of µ. We show how dKµ approximates fS , and thus allows one to
infer geometric properties of S from samples from µ.

For a point x ∈ Rd, the distance function fS measures the minimum distance between x and any point
in S, fS(x) = infy∈S ||x − y||. The point xS that realizes the minimum in the definition of fS(x) is the
orthogonal projection of x on S. The location of the points x ∈ Rd that have more than one projection on S
is the medial axis of S [54], denoted as M(S). Since M(S) resides in the unbounded component Rd \ S, it
is referred to as the outer medial axis similar to the concept found in [28]. The reach of S is the minimum
distance between a point in S and a point in its medial axis, denoted as reach(S). Similarly, one could define
the medial axis of Rd \ S (i.e. the inner medial axis which resides in the interior of S) following definitions
in [53], and denote its associated reach as reach(Rd \ S). The concepts of reach associated with the inner
and outer medial axis of S capture curvature information of the compact set.

Recall that a generalized gradient and its corresponding flow to a distance function are described in [14]
and later adapted for distance-like functions in [15]. Let fS : Rd → R be a distance function associated with
a compact set S of Rd. It is not differentiable on the medial axis of S. It is possible to define a generalized
gradient function ∇S : Rd → Rd coincides with the usual gradient of fS where fS is differentiable, and
is defined everywhere and can be integrated into a continuous flow Φt : Rd → Rd. Such a flow points
away from S, towards local maxima of fS (that belong to the medial axis of S) [54]. The integral (flow)
line γ of this flow starting at point in Rd can be parameterized by arc length, γ : [a, b] → Rd, and we have
fS(γ(b)) = fS(γ(a)) +

∫ b
a ||∇S(γ(t))||dt.

Lemma D.3 (Lemma 4.1). Given any flow line γ associated with the generalized gradient function ∇S ,
dKµ (x) is strictly monotonically increasing along γ for x sufficiently far away from the medial axis of S,

for σ ≤ R
6∆G

and fS(x) ∈ (0.014R, 2σ). Here B(σ/2) denotes a ball of radius σ/2, G := Vol(B(σ/2))
Vol(S) ,

∆G :=
√

12 + 3 ln(4/G) and suppose R := min(reach(S), reach(Rd \ S)) > 0.

Proof. Since dKµ (x) is always positive, and dKµ (x) =
√
cµ − 2KDEµ(x) where cµ is a constant that depends

only on µ, K, and σ, then it is sufficient to show that KDEµ(x) is strictly monotonically decreasing along γ.
Let u be the negative of the direction of the flow line γ at x (i.e u is a unit vector that points towards S).

We show that KDEµ(x) is strictly monotonically increasing along u. Informally, we will observe that all
parts of S that are “close” to x are in the direction u, and that these parts dominate the gradient of KDEµ(x)
along u. We now make this more formal by describing two quantities, Bx and Ax, illustrated in Figure 6.

For a point x ∈ Rd, let xS = arg minx′∈S ‖x′−x‖; since x is not on the medial axis of S, xS is uniquely
defined and u points in the direction of (xS − x)/fS(x). First, we claim that there exists a ball Bx of radius
σ/2 incident to xS that is completely contained in S. This holds since σ/2 ≤ R

6∆G
< R ≤ reach(Rd \ S).

In addition, since fS(x) < 2σ, no part in Bx is further than 3σ from x. Second, we claim that no part of S
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within ∆G · σ (≤ R/6) of x (this includes Bx) is in the halfspace Hx with boundary passing through x and
outward normal defined by u. To see this, let o be the center of a ball with radius R that is incident to xS but
not in S, refer to such a ball as Bo. This implies that points o, x and xS are colinear. Then a ball centered at
xwith radiusR/6 should intersect S outside ofBo, and in the worst case, on the boundary ofHx. This holds
as long as ‖x−xS‖ ≥ 0.014R ≥ (1−

√
35/36)R; see Figure 6. DefineAx = {y ∈ S | ‖x−y‖ > ∆G ·σ}.

Now we examine the contributions to the directional derivative of KDEµ(x) along the direction of u
from points in Bx and Ax, respectively. Such a directional derivative is denoted as DuKDEµ(x). Recall
KDEµ(x) =

∫
y∈SK(x, y)dµ(y) and µ is a uniform measure on S, DuKDEµ(x) = 1

Vol(S)

∫
y∈S DuK(x, y).

For any point y ∈ Rd, we define g(y) := DuK(x, y) = exp(−‖x − y‖2/2σ2)〈y − x, u〉. Therefore
DuKDEµ(x) = 1

vol(S)

∫
y∈S g(y).

We now examine the contribution to DuKDEµ(x) from points inBx, 1
Vol(S)

∫
y∈Bx g(y). First, for all points

y ∈ Bx, since ||x− y|| ≤ 3σ, we have exp(−‖x− y‖2/2σ2) ≥ exp(−9/2). Second, at least half of points
y ∈ Bx (that covers half the volume of Bx) is at least σ/2 away from xS , and correspondingly for these
points 〈y−x, u〉 ≥ σ/2. We have

∫
y∈Bx g(y) ≥ 1

2Vol(Bx) ·exp(−9/2) ·σ/2. Given Vol(Bx) = G ·Vol(S),
we have 1

Vol(S)

∫
y∈Bx g(y) ≥ 1

4G · exp(−9/2) · σ. Denote B = 1
4G · exp(−9/2) · σ.

We now examine the contribution to DuKDEµ(x) from points in Ax, 1
Vol(S)

∫
y∈Ax g(y). For any point

y ∈ Rd (including y ∈ Ax), 〈y−x, u〉 ≤ ‖x−y‖. Let φy = ‖x−y‖/σ so we have g(y) ≤ exp(−φ2
y/2)φyσ.

Since this bound on g(y) is maximized at φy = 1, under the condition φy ≥ ∆G ≥
√

12 > 1, we can
set φy = ∆G to achieve the bound g(y) ≤ exp(−∆2

G/2) · ∆Gσ for ‖x − y‖ ≥ ∆G · σ (that is, for
all y ∈ Ax). Now we have

∫
y∈Ax g(y) ≤ Vol(S) exp(−∆2

G/2) · ∆Gσ, leading to 1
Vol(S)

∫
y∈Ax g(y) ≤

exp(−∆2
G/2) ·∆Gσ. Denote A = exp(−∆2

G/2) ·∆Gσ.
Since only the points y ∈ Ax could possibly reside in Hx and thus can cause g(y) to be negative, we just

need to show that B > A. This can be confirmed by plugging in ∆G =
√

12 + 3 ln(4/G), and using some
algebraic manipulation.

E Lower Bound on Wasserstein Distance

We note the next result is a known lower bounds for the Earth movers distance [23][Theorem 7]. We reprove
it here for completeness.

Lemma E.1 (Lemma. 5.8). For any probability measures µ and ν defined on Rd we have ‖µ̄ − ν̄‖ ≤
W2(µ, ν).

Proof. Let π : Rd×Rd → R+ describes the optimal transportation plan from µ to ν. Also let uµ,ν = (µ̄−ν̄)
‖µ̄−ν̄‖

be the unit vector from µ̄ to ν̄. Then we can expand

(W2(µ, ν))2 =

∫

(p,q)
‖p− q‖2dπ(p, q) ≥

∫

(p,q)
(〈(p− q), uµ,ν〉)2dπ(p, q)

≥ ‖µ̄− ν̄‖2.

The first inequality follows since 〈(p − q), uµ,ν〉 is the length of a projection and thus must be at most
‖p − q‖. The second inequality follows since that projection describes the squared length of mass π(p, q)
along the direction between the two centers µ̄ and ν̄, and the total sum of squared length of unit mass moved
is exactly ‖µ̄− ν̄‖2. Note the left-hand-side of the second inequality could be larger since some movement
may cancel out (e.g. a rotation).
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