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Figure 1: Prototype of the interactive tool. This tool allows the users to provide their own seed sets (for defining bias directions)
and evaluation sets, or choose from a list of preloaded examples. The interface allows toggling between various functionalities
and stepping through the steps of a chosen debiasing algorithm.

ABSTRACT
Word vector embeddings have been shown to contain and am-
plify biases in data they are extracted from. Consequently, many
techniques have been proposed to identify, mitigate, and attenuate
these biases in word representations. In this tutorial, we will review
a collection of state-of-the-art debiasing techniques. To aid this,
we provide an open source web-based visualization tool and offer
hands-on experience in exploring the effects of these debiasing
techniques on the geometry of high-dimensional word vectors. To
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help understand how various debiasing techniques change the un-
derlying geometry, we decompose each technique into interpretable
sequences of primitive operations, and study their effect on the
word vectors using dimensionality reduction and interactive visual
exploration.
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1 TARGET AUDIENCE
The tutorial is designed to target NLP practitioners who are design-
ing decision making systems on top of word embeddings, and also
researchers working with fairness and ethics of machine learning
systems in NLP.
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Take-away from the tutorial. Attendees will gain a technical un-
derstanding and visual intuition of how debiasing techniques for
word embeddingwork, focusing on their geometric properties. They
will understand the differences and similarities between such tech-
niques contextualized using popular examples, evaluation metrics,
as well as their critiques. Finally, we hope that attendees will not
only understand the technical challenges in this important area of
research, but also gain experience with a visual tool that will guide
their own exploration of biases and debiasing of word embeddings.

2 TUTORIAL OUTLINE
2.1 Introduction (30 minutes)
We will begin with a brief introduction of the concept of word
embeddings, their computation and structure.Wewill motivate why
understanding the bias encoded in these embeddings is important
using examples of biases in embeddings. The notions of bias in
word embeddings are varied, and as a result, some aspects have
become contentious [1]. At this point, we will specifically address
what we mean by “bias” for the purpose of this tutorial. And we will
explain, and demonstrate how it manifests in word embeddings.

2.2 Debiasing word embeddings (30 minutes)
The audience will be introduced to the concept of debiasing through
various methods and evaluation metrics. We will focus on methods
that work on the native geometry of the word embedding space—
these methods admit visual exploration, generalize to embeddings
of structures other than just words, and do not require expensive
retraining of the complex embedding methods. We will first visually
demonstrate the concept of feature subspaces and ways to deter-
mine them, which is an important step towards understanding and
debiasing word representations.

We will include the following methods of debiasing:
• Hard Debiasing [2]
• Linear Projection [5]
• Iterative Nullspace Projection [8]
• Orthogonal Subspace Correction [4]

We will also visually interpret a common method (e.g., [3]) of
quantifying different types of bias based on word associations.

2.3 Overview of interactive tool (15 minutes)
Wewill go through the layout of the visualization tool for the explo-
ration of debiasing techniques. We will explain various components
of the tool and familiarize the audience with the various algorithmic,
design and visualization choices used in the tool.

During this time, we will walk through a simple auto-install of
the tool. We will also have a fallback server available that may be
able to support at about 20-30 users.

2.4 Worked examples of bias and how they are
mitigated and measured (45 minutes)

After an initial walk-through of all methods on a couple of standard
examples (e.g., gender/occupations), we will broaden the applica-
tion, and show how they work on less examined types of data and
concepts (e.g., age, ethnicity). We will illustrate instances of ex-
amples of bias in word embeddings and how various techniques

effect the bias. These will include many ways to examine and an-
alyze the gender subspace, but also other biases that may arise
around age, nationality, and ethnicity as encoded through words
with definitions related to those concepts.

2.5 Critiques of Debiasing (30 minutes)
These debiasing techniques are not without drawbacks and trade-
offs. We will explore through various examples and analysis, the
question of whether these methods are meaningfully eliminating
bias or only optimizing some evaluation metric. Is (and when is)
residual bias [6] retained through these methods? Is this unavoid-
able, or easily solvable? Are analogy-based evaluations inherently
flawed, or a feasible part of the puzzle, provided a more careful
standard is set? What about understanding biases expressed extrin-
sically in tasks or by contextual embeddings?Wewill examine these
questions through examples in our visual system, rebuffetted with
some large scale experimental numerical results. We do not plan
to provide an explicit point of view to these controversial topics
of active discussion, but present the audience with visual intuition
and data to lead to an informed decision on their own.

2.6 Looking ahead and discussion (30 minutes)
We will conclude the tutorial by looking ahead at future directions
for measuring and mitigating bias in NLP models. These include
extensions to contextual embeddings, what sources of biases are
captured this way and which are not, where and where-not to
use these attenuation tools, how to handle multiple sources and
forms of biases simultaneously. We aim to conclude with a lively
discussion on this perhaps controversial topic, but posing some
emerging challenges, and opportunities. [7] describes the design of
the tool in detail.
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