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THE RELATIONSHIP BETWEEN THE INTRINSIC CECH AND
PERSISTENCE DISTORTION DISTANCES FOR METRIC GRAPHS

Ellen Gasparovic,* Maria Gommel,! Emilie Purvine,* Radmila Sazdanovic,S Bei Wang,T
Yusu Wang,| and Lori Ziegelmeier™

ABSTRACT. Metric graphs are meaningful objects for modeling complex structures that arise
in many real-world applications, such as road networks, river systems, earthquake faults,
blood vessels, and filamentary structures in galaxies. To study metric graphs in the context
of comparison, we are interested in determining the relative discriminative capabilities of two
topology-based distances between a pair of arbitrary finite metric graphs: the persistence
distortion distance and the intrinsic Cech distance. We explicitly show how to compute the
intrinsic Cech distance between two metric graphs based solely on knowledge of the shortest
systems of loops for the graphs. Our main theorem establishes an inequality between the
intrinsic Cech and persistence distortion distances in the case when one of the graphs is a
bouquet graph and the other is arbitrary. The relationship also holds when both graphs are
constructed via wedge sums of cycles and edges.

1 Introduction

When working with graph-like data equipped with a notion of distance, a very useful means
of capturing existing geometric and topological relationships within the data is via a metric
graph. Given an ordinary graph G = (V, E) and a length function on the edges, one may
view G as a metric space with the shortest path metric in any geometric realization.

Metric graphs are used to model a variety of real-world data sets, such as road net-
works, river systems, earthquake faults, blood vessels, and filamentary structures in galax-
ies [1, 25, 26]. Given these practical applications, it is natural to ask how to compare two
metric graphs in a meaningful way. Such a comparison is important to understand the sta-
bility of these structures in a noisy setting. One way to do this is to check whether there
is a bijection between the two input graphs as part of a graph isomorphism problem, which
is NP-complete [3]. Another way is to define, compute, and compare various distances on
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the space of graphs. In this paper, we are interested in determining the discriminative capa-
bilities of two distances (both of which may be defined on arbitrary metric spaces, not just
metric graphs) that arise from computational topology: the persistence distortion distance
and the intrinsic Cech distance. If two distances d; and dy on the space of metric graphs
satisfy an inequality dq(G1,G2) < ¢ - d2(G1,G2) (for some constant ¢ > 0 and any pair of
metric graphs G; and G2), this means that ds has greater discriminative capacity for dif-
ferentiating between two input graphs. For instance, if di(G1,G2) = 0 and do(G1, G2) > 0,
then do has a better discriminative power than d;.

1.1 Related work

Well-known methods for comparing graphs using distance measures include combinatorial
(e.g., graph edit distance [28]) and spectral (e.g., eigenvalue decomposition [27]) approaches.
Graph edit distance minimizes the cost of transforming one graph to another via a set
of elementary operators such as node/edge insertions/deletions, while spectral approaches
optimize objective functions based on properties of the graph spectra.

Recently, several distances for comparing metric graphs have been proposed based
on ideas from computational topology. In the case of a special type of metric graph called a
Reeb graph, these distances include: the functional distortion distance [4], the combinatorial
edit distance [15], the interleaving distance [23], and its variant in the setting of merge
trees [19]. In particular, the functional distortion distance can be considered as a variation
of the Gromov-Hausdorff distance between two metric spaces [4]. The interleaving distance
is defined via algebraic topology and utilizes the equivalence between Reeb graphs and
cosheaves [23|. For metric graphs in general, both the persistence distortion distance [13]
and the intrinsic Cech distance [11] take into consideration the structure of metric graphs,
independent of their geometric embeddings, by treating them as continuous metric spaces. In
[21], Oudot and Solomon point out that since compact geodesic spaces can be approximated
by finite metric graphs in the Gromov-Hausdorff sense [6] (see also the recent work of
Mémoli and Okutan [18]), one can study potentially complicated length spaces by studying
the persistence distortion of a sequence of approximating graphs.

In the context of comparing the relative discriminative capabilities of these distances,
Bauer, Ge, and Wang [4] show that the functional distortion distance between two Reeb
graphs is bounded from below by the bottleneck distance between the persistence diagrams
of the Reeb graphs. Bauer, Munch, and Wang [5] establish a strong equivalence between the
functional distortion distance and the interleaving distance on the space of all Reeb graphs,
which implies the two distances are within a constant factor of one another. Carriére and
Oudot [9] consider the intrinsic versions of the aforementioned distances and prove that they
are all globally equivalent. They also establish a lower bound for the bottleneck distance
in terms of a constant multiple of the functional distortion distance. In [13|, Dey, Shi,
and Wang show that the persistence distortion distance is stable with respect to changes
to input metric graphs as measured by the Gromov-Hausdorff distance. In other words,
the persistence distortion distance is bounded above by a constant factor of the Gromov-
Hausdorff distance. Furthermore, the intrinsic Cech distance is also bounded from above by
the Gromov-Hausdorff distance for general metric spaces [11].
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1.2 Our contribution

The main focus of this paper is relating two specific topological distances between general
metric graphs G; and Ga: the intrinsic Cech distance and the persistence distortion distance.
Both of these can be viewed as distances between topological signatures of Gy and Gs.
Indeed, in the case of the intrinsic Cech distance, a metric graph (G, dq) is mapped to the
persistence diagram Dg;ICqg induced by the so-called intrinsic Cech filtration I Cq, and
we may think of Dg,/Cq as the signature of G. The intrinsic Cech distance drc(G1, Ga)
between two metric graphs G; and G» is the bottleneck distance between these signatures,
denoted dp(Dg,ICq,,DgICq,).

For the persistence distortion distance, each metric graph G is mapped to a set ®(G)
of persistence diagrams, which is the signature of the graph G in this case. The persistence
distortion distance dpp(G1,G2) between G; and G2 is measured by the Hausdorff distance
between these signatures. See Section 2 for the definition of ®, along with more detailed
definitions of these two distances.

Our objective is to determine the relative discriminative capacities of such signa-
tures. We conjecture that the persistence distortion distance is more discriminative than
the intrinsic Cech distance.

Conjecture 1. d;jc < c-dpp for some constant ¢ > 0.

It is known from [16] that Dg,IC¢s depends only on the lengths of the shortest
system of loops in G, and thus, the persistence distortion distance appears to be more
discriminative, intuitively. We show in Section 3 that the intrinsic Cech distance between
two arbitrary finite metric graphs is determined solely by the difference in these shortest
cycle lengths; see Theorem 5 for a precise statement. This further implies that the intrinsic
Cech distance between two arbitrary metric trees is always 0. In contrast, the persistence
distortion distance takes relative positions of loops as well as branches into account, and is
nonzero in the case of two trees. In other words, the conjecture holds for metric trees.

We make progress toward proving the conjecture in greater generality in this paper.
Theorem 11 establishes an inequality between the intrinsic Cech and persistence distortion
distances for two finite metric graphs in the case when one of the graphs is a bouquet graph
and the other is arbitrary. In this case, the constant is ¢ = 1/2. The theorem and proof
appear in Section 4, and we conclude that section by proving that Conjecture 1 also holds
when both graphs are constructed by taking wedge sums of cycles and edges. We believe
there are potential applications to the study of RNA foldings in the case when both graphs
are obtained via wedges of cycles and edges.

While this does not yet prove the conjecture for arbitrary metric graphs, our work
provides the first non-trivial relationship between these two meaningful topological distances.
Our proofs also provide insights on the map ® from a metric graph into the space of persis-
tence diagrams as utilized in the definition of the persistence distortion distance. This map
® is of interest itself; indeed, see the recent study of this map in [21].

In general, we believe that this direction of establishing qualitative understanding
of topological signatures and their corresponding distances is interesting and valuable for
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use in applications. We leave the proof of the conjecture for arbitrary metric graphs as an
open problem, discuss its technical challenges, and give a brief discussion on some future
directions in Section 5.

2 Background

2.1 Persistent homology and metric graphs

We begin with a brief summary of persistent homology and how it can be utilized in the
context of metric graphs. We specifically focus on extended persistence, defined in [12, 14],
as it is crucial to the definition of the involved distances. For background on homology and
simplicial complexes, we refer the reader to [17, 20|, and for further details on persistent
homology, see, e.g., |7, 14].

Persistent homology. Consider a continuous function f : X — R on a compact topological
space X and suppose f is a Morse function, or more generally, f is of Morse type [10]. Let
a1 < ag < ... < a, be the critical values of f and by < a1 < b1 < as < ... < a, < by
be the interleaved regular values. Define sublevel sets X; = f~!(—o0, b;] and superlevel sets
X' = f~lb;,00). By compactness, we have Xg = X" = ), X,, = X° = X. Extended
persistence arises from the following sequence of absolute and relative homology groups
connected by inclusions (referred to as an extended filtration) in any homological dimension
k with coefficients in some field:

0= Hk(Xo) — ... Hk(Xn)
— Hiy (X, X") — ... = Hy(X,X") = 0.

Elements of each homology group are tracked through the above filtration. In the top row of
the filtration, the inclusions X; < X, induce maps f* : H(X;) — H(X;) for 0 <i < j < n.
A homological element (class) o € H(X;) is born at X; if a ¢ imf*~1% it dies entering
X; if f49(a) € imf=Y but f497Ya) ¢ imfi~197L. The notion of birth and death can
be extended to the bottom row as well as the entire filtration, giving rise to an extended
persistence diagram. An (extended) persistence diagram is a multi-set of points in the plane
(RU +00)?: it contains a point (a;,a;) for each element that is born at X; (or at (X, X?))
and dies at X; (or at (X, X7)). An ordinary persistence point arises from an element that is
born and dies in the top row, a relative persistence point arises from an element that is born
and dies in the bottom row, and an extended persistence point corresponds to an element
that is born in the top row and dies in the bottom row. It has been shown in [8], via the
Mayer—Vietoris pyramid, that the 0- and 1-dimensional extended persistence diagrams of f
are equivalent to the 0-dimensional levelset zigzag persistence diagram induced by f. In this
paper, we restrict our attention to only the 1-dimensional extended persistence points, as
these correspond to loops inherent in the underlying structure of a metric graph.

We illustrate the idea of extended persistence with an example in Figure 1. We equip
a topological space on the left with a height function, whose critical values are specified
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Figure 1: A topological space and its associated height function (left) and its correspond-
ing extended persistence diagram (right). Red indicates 0-dimensional and blue indicates
1-dimensional features. Circles, crosses, and squares are ordinary, extended and relative
persistence points, respectively.

vertically. Its corresponding extended persistence diagram is shown on the right. We track
the evolution of homological elements following the above extended filtration. In the top
row of the filtration, we see that two 0O-dimensional elements (connected components) are
born at 0 and 2, respectively. The component that is born at 2 dies at 4 by merging with the
component that is born at 0. This event gives rise to an ordinary persistence point (2,4).
We also see that two smaller loops are born at 7 (right loop) and 11 (left loop) respectively,
while a large loop is not born until 14. In the bottom row of the filtration, from left to right,
we observe that the 0-dimensional element that is born at 0 now dies at 14 via the relative
homology computation. Each of the loops born in the first row now dies in the second row:
the large loop dies at 2, the small loop on the right dies at 4, and the small loop on the left
dies at 8. These events correspond to four extended persistence points, (0, 14) (in dimension
0), (7,4), (11,8), and (14,2) (in dimension 1). Finally, one additional loop is born at 14 via
the relative homology, which dies at 11 and gives rise to a relative persistence point (14, 11).

Metric graphs. We are interested in summarizing the topological information of a finite
metric graph, specifically in homological dimension ¥ = 1.  Given a graph G = (V, E),
where V' and E denote the vertex and edge sets, respectively, as well as a length function,
length : E — R, on edges in E, a finite metric graph (|G|, dg) is a metric space where
|G| is a geometric realization of G and d¢ is defined as in [13]. Namely, if e and |e| denote
an edge and its image in the geometric realization, we define « : [0,length(e)] — |e| to be
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the arclength parametrization, so that dg(u,v) = |[a~!(v) — a~!(u)| for any u,v € |e|. This
definition may then be extended to any two points in |G| by restricting a given path from
one point to another to edges in G, adding up these lengths, then taking the distance to be
the minimum length of any such path. In this way, all points along an edge are points in a
metric graph, not just the original graph’s vertices.

A system of loops of G refers to a set of cycles whose associated homology classes
form a minimal generating set for the 1-dimensional (singular) homology group of G. The
length-sequence of a system of loops is the sequence of lengths of elements in this set listed
in non-decreasing order. Thus, a system of loops of G is shortest if its length-sequence is
lexicographically smallest among all possible systems of loops of GG. Intuitively, these loops
are the extended persistence features (not the ordinary or relative features) in 1-dimensional
extended persistence, and as such, we restrict our discussion to these extended persistence
points.

One particular class of metric graphs we will be working with are bouquet graphs.
These are metric graphs containing a single vertex with a number of self-loops of various
lengths attached to it.

2.2 Intrinsic Cech and persistence distortion distances

In this section, we recall the distances between metric graphs that are being explored in
this work. We note that both are actually pseudo-distances because it can be the case that
d(G1,G2) = 0 when G # Go. However, for ease of exposition, we will refer to them simply
as distances in this paper. Both rely on the bottleneck distance on the space of persistence
diagrams, a version of which we now state.

Definition 2. Let X and Y be persistence diagrams with p : X — Y a bijection. The
bottleneck distance between X and Y is

dp(X,Y):= inf sugH:n—,u(m)Hl.

wX—=Y xe

Although this definition differs from the standard version of the bottleneck distance, which
uses ||z — p(x)||co rather than ||z — p(x)||1, the two are related via the inequalities ||z||oo <
(11 < 2|2l

Next, let (G,dg) be a metric graph with geometric realization |G|. Define the in-
trinsic ball B(z,a;) = {y € |G| : dg(z,y) < a;} for any = € |G|, as well as the uncountable
open cover U,, = {B(z,a;) : € |G|}. We use Cech(a;) to denote the nerve of the cover
U,,, referred to as the intrinsic Cech complex. See Figure 2 for an illustration. Then
{Cech(a;) — éech(aj)}ogai@j is the intrinsic Cech filtration inducing the intrinsic Cech
persistence module {Hy(Cech(a;)) — Hk(éech(aj))}ogai@j in any dimension k, and the
corresponding persistence diagram is denoted DgrICq. In this paper, we work with dimen-
sion k = 1. The intrinsic Cech complex was first introduced in [11]. The stability theorem
that appears in that paper could be rephrased in terms of the intrinsic Cech distance defined
below.
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Figure 2: A finite subset of the infinite cover at a fixed radius (left) and its corresponding
nerve (right).

Definition 3. Given two metric graphs (G1,dg,) and (Ga2,dq,), their intrinsic Cech
distance is
d[C(Gl, GQ) = dB(DglfCGl,Dg1[CG2).

The persistence distortion distance was first introduced in [13|. Given a base point
v € |G|, define the geodesic distance function f, : |G| — R where f,(z) = dg(v,z). In [13],
Dg(fy) is the union of the 0— and 1—dimensional extended persistence diagrams for f,, or
equivalently, it is the 0—dimensional levelset zigzag persistence diagram as noted in Section
2.1. In this paper, however, we take Dg( f,) to be only the 1-dimensional extended persistence
points as they correspond to loops in a metric graph for computing the persistence distortion
signature. We therefore abuse notation by using Dg(f,) to refer to the diagram containing
only the 1-dimensional extended persistence points.  Define ® : |G| — SpDg, ®(v) =
Dg(fy), where SpDg denotes the space of persistence diagrams for all points v € |G|. The
set ®(|G|) C SpDyg is the persistence distortion of the metric graph G.

Definition 4. Given two metric graphs (G1,dg,) and (Ga,dg, ), their persistence distor-
tion distance is

dpp(G1, G2) := du(®(|G1]), 2(|G2]))

where dpr denotes the Hausdorff distance. In other words,

dpp(G1,G2) = max sup inf  dg(Djy,Ds), sup inf  dg(Di1,D2) ;.
D1€2(|G1]) D2€2(|G2]) D2€®(|G2|) D1€2(|G1])

We give an example in Figure 3 to illustrate the intuitive connection between the
loops in a metric graph and the 1-dimensional extended persistence points. A graph G is
given with v being the base point of a geodesic distance function f, : |G| — R. For simplicity,
assume all edges are of unit length. In this example, following the extended filtration using
the sublevel and superlevel sets of f,, we see that four loops are born in the top row of
the filtration, at critical values 2, 3, 4.5, and 5.5, respectively. The birth time of each loop
corresponds to a location (not necessarily a vertex) in the graph that is furthest away from
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the base point (i.e., a local maximum of f,). Now, all four such loops die in the bottom row
of the filtration. The death time of each loop corresponds to a location in the same loop
whose distance is the closest to the base point. Thus, the loops born at 3, 4.5, and 5.5 all
die at 1, while the loop born at 2 dies at 0. We therefore obtain four 1-dimensional extended
persistence points: (2,0), (3,1),(4.5,1), and (5.5,1). The right of Figure 3 illustrates the
general correspondence between loops in a metric graph and the critical points in |G| that
correspond to 1-dimensional extended persistence points.

G A
v
v
1+ X X X .
- m birth
—%—t—t—t—>
0 2 3 4555 m death

Figure 3: A metric graph G with a geodesic distance function f, : |G| — R from base
point v where graph edges are unit length (left). This graph gives rise to four 1-dimensional
extended persistence points: (2,0), (3,1), (4.5,1), and (5.5,1) (center). Red squares indicate
locations (critical points of f,) at which a cycle is born, while blue squares show where a
cycle dies (right).

3 Calculating the intrinsic Cech distance

In this section, we show that the intrinsic Cech distance between two metric graphs may
be easily computed from knowing the shortest systems of loops for the graphs. We begin
with a theorem that characterizes the bottleneck distance between two sets of points in the
extended plane.

Theorem 5. Let Dy = {(0,a1),...,(0,a,)} and Dy = {(0,b1),...,(0,b,)} be two per-
sistence diagrams with 0 < a1 < -+ < ap and 0 < by < --- < by, respectively. Then
dB(Dl,DQ) = m%lx\al — b1|

1=

Proof. To simplify notation, we use the convention that for all i = 1,...,n, (0,q;) = @,
(0,b;) = b;, and (0,0) = 0. Let u be any matching of points in D7 and Ds, where each
point @; in D is either matched to a unique point E in Dy or to the nearest neighbor in
the diagonal (and similarly for Dj). Assume that C), is the cost of the matching p, i.e., the
maximum distance between two matched points.
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Now, let u* be the matching such that u*(a@;) = b; for all 0 < i < n. By construction,
the cost of this matching is C)« = m%lx la; — b;]. We claim that the matching cost of p* is
1=

less than or equal to that of pu, i.e., Cy« < C). If this is the case, then p* is the optimal
bottleneck matching and therefore dp(D1, Dy) = Cp.

To show this, we look at where the matchings p and p* differ. Note that since all
of the off-diagonal points in Dy and Ds lie on the y-axis, any such point matched to the
diagonal under p may simply be matched to (0,0) since this will yield the same value in
the ¢1—norm. Now, starting with by, let j be the first index where u(aj) # b;. Then, we
have two cases: (1) u(ag) = b; for some k > j (i.e., b; is matched with some @y, # @;); or
(2) w(0) = b; (i-e., b; is matched with the diagonal, or equivalently, to 0). We show that in
either case, matching E with @; instead does not increase the cost of the matching.

In the first case, let us also assume that u(aj) = b; for some | > j (the situation
where p(@;) = 0 will be taken care of in the second case). Then, max{|a; — b;|, | — bi|} <
max{|a;—by|, |ar —b;|}. That is, if we were to instead pair @; with b; and @ with b, the cost
of the matching would be lower. This can be seen by working through a case analysis on
the relative order of a;, ax, b;, and b; along the y-axis. Intuitively, we can think of a;, ax, b;,
and b; as the four corners of a trapezoid as in Figure 4. The diagonals of the trapezoid
represent the distances under the matching p, while the legs of the trapezoid represent the
distances when we pair @; with E and @y with b;. The maximum of the lengths of the legs
will always be less than the maximum of the lengths of the diagonals. Adjusting the lengths
of the top and bottom bases (which amounts to changing the order of a;, ai, b;, and b; along
the y-axis) does not change this fact. Therefore, matching E with @; instead of @ does not
increase the cost of the matching.

e a
Figure 4: A trapezoid formed by a;, ax, b, and b;.

In the second case, if E is matched to 0, there must be some aj with k > j that is
matched to 0, as well. If we were to instead match b; to @y, this does not increase the cost
of the matching since max{b;, ay} > |ax — b;| (i.e., the original cost is greater than the new
cost). After this rematching, E is no longer matched to 0 and this reverts to the first case.
Similarly, if @; is matched to 0, it may be rematched in a similar manner.

By looking at all the pairings where p and p* differ Qn increasing order of indices),
pairing a@; with b; instead of p(a@;) (and similarly, pairing b; with @; rather than what it
was paired with under p) always results in the same or lower cost matching. Therefore,
C,» < C, for all matchings p; hence, dg(D1, D) = C» = mrélx la; — b;|. O

1=

To see how this applies to the computation of the intrinsic Cech distance between
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two metric graphs, let G1 be a metric graph with a shortest system of m loops of lengths
0<2t) <--- <2t and let Gy be a metric graph with a shortest system of n loops of
lengths 0 < 281 < --- < 2s,,. Without loss of generality, suppose n > m. From [16], the
1-dimensional intrinsic Cech persistence diagrams of G; and G4 are the multisets of points

t t! n
Dg, ICg, = {(o 21> (0, ;)} and Dg,1Cg, = {(o %) (o, %)} In order to

apply Theorem 5, we add n — m copies of the point (0,0) at the start of the list of points in

DgIICGU i.e., let
g1 G1 ) 9 [ 5 2 5

where t1 =+ =tp_m =0, thmi1 = t1,..., and t,, =t .
Corollary 6. Let G1 and Go be as above. Then

dic(Gh, Ga) = mix si ~ 4]
1=

Note that the corollary implies that the intrinsic Cech distance could instead be defined as
a matching distance between the sets of loop lengths in shortest systems of loops for G; and
G2, which does not require Cech complexes or persistent homology.

4 Relating the intrinsic Cech and persistence distortion distances for a bouquet graph
and an arbitrary graph

4.1 Feasible regions in persistence diagrams

Our eventual goal for our main theorem (Theorem 11) is to estimate a lower bound for the
persistence distortion distance between metric graphs G; = (V1, E1) and Go = (Va, Es) so
that we can compare it with the intrinsic Cech distance between them, given in Corollary 6.
A fundamental part of this process relies on the notion of a feasible region for a point in a
given persistence diagram lying on the y-axis.

Definition 7. The feasible region for a point 5 := (0,s) € R? is defined as

FgZ{Z:(Zl,ZQ):0§21§22,8§22§Z1+8}-

An illustration of a feasible region is shown in Figure 5.

The following lemma establishes an important property of feasible regions that will
be used later in the proof of the main theorem.

Lemma 8. Given any point z € Fs and any point t = (0,t), |[s —t||l1 < ||z —¢||1-
Proof. We proceed with a simple case analysis using the definition of Fs. Let z = (21, 22).

Case 1: Assume s >t so that |[s—¢||; = s —¢. By the definition of Fg, we have zo > s and
thus
lz—th=214+2—t>zn+s—t>s—t=|5—1.
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A A
7 [Case 2.2],

s 7 [Case 2.1] 4

§=(O,S), §=(075)-

t [Case 1]

Figure 5: Left: An illustration of the feasible region for 5. Right: The three cases within
the proof of Lemma 8.

Case 2.1: If s < t, then ||s—¢||; =t —s. If t < 29, then since 21 > 29 — s and 23 > s,
llz—th=z1+2—t>(z2—8)+2z—t>t—s+t—t=t—s=|5—t|.
Case 2.2: If s <t but t > 29, then since 29 < 21 + s, it follows that
llz—th=21+t—22>z21+t—(21+s)=t—s=|5—t|.

The lemma now follows. O

4.2 Properties of the geodesic distance function for an arbitrary metric graph

Let G = (V,E) be an arbitrary metric graph with shortest system of loops of lengths
251, ,28,. Fix an arbitrary base point v € |G| and consider Dg(f,), as defined in Sec-
tion 2.2. Let T, denote the shortest path tree in G rooted at v.

We consider the base point v € |G| to be a graph node of G; that is, we add it to
V if necessary. We further assume that the pair (G, v) is “generic” in the sense that there
do not exist two or more shortest paths from the base point v to any graph node of G in
V. This will be important later to ensure that local maxima of f, are not at graph nodes
but instead occur at internal points within edges of G. Later we will assume that (G,v)
is generic for all v € |G| since for any input metric graph G and base point v, we can
perturb it to be one that is generic within arbitrarily small Gromov-Hausdorff distance. In
particular, Figure 3 is not generic, but due to the stability of both the persistence distortion
and intrinsic Cech distances with respect to the Gromov-Hausdorff distance [11, 13|, there
exists a small perturbation to ensure genericity.

For simplicity, when v is fixed, we shall omit v in our notation and speak of the
persistence diagram D := Dg(f,), the function f := f,, and the shortest path tree T':= T,,.

We present three straightforward observations, the first of which follows immediately

from the definition of the shortest path tree and the Extreme Value Theorem.

Observation 1. The shortest path tree T of G has |V |—1 edges, and there are |E|—|V|+1
non-tree edges. For each non-tree edge e € E\ T, there exists a unique u € e such that f(u)
is a local mazimum value of f.

JoCG 10(1), 477-499, 2019 487


http://jocg.org/

Journal of Computational Geometry jocg.org

Figure 6 contains an example of a metric graph on the left and the corresponding
shortest path tree illustrating Observation 1 in the middle.

u
°

v v

Figure 6: Left: An example of a metric graph G. The dark blue, light blue, red, and
green edges are of lengths 4, 3, 2, and 1, respectively, and v is the base point. Middle: An
illustration of Observation 1 for the shortest path tree T' of G. Thick blue and green edges
are part of the shortest path tree 7T, and the others are the non-tree edges. Black points
represent local maxima of f. Right: An illustration of Observation 3. Thick edges are part
of v, f(v) = p, and p’ is either f(w) or f(w') depending on the relative positions of w and
w'.

Note that every feature in the persistence diagram D must die at a point in the
graph that is an up-fork, i.e., a point coupled with a pair of adjacent directions along which
the function f is increasing. Since there are no local minimum points of f (except for v
itself), these must be vertices in the graph of degree at least 3 (see, e.g., [21]).

Observation 2. The diagram D is a multiset of points {(p;, f(u;))|i € {1,...,|E| —|V|+
1}}, where for every i, p; = f(w) for some graph node w € V.

The final observation relates to points belonging to cycles in G that yield local
maximum values of f (see [2]).

Observation 3. Let v be an arbitrary cycle in G. If uw is the point in vy corresponding to
the largest local maximum value of f, let p be the lowest function value of f for all points in
v. Then there is a point in the persistence diagram D of the form (p', f(u)), where p’ > p.

See Figure 6 (right) for an illustration.

To delve further into this, let {71,...,7,} denote the elements of the shortest system
of loops for G listed in non-decreasing order of loop length, s; < ... < s,.

Lemma 9. Consider a cycle v =7, + ...+ i, (m <n), where each ~;, (1 <k <m)is
an element of the shortest system of loops for G and i1 < i9 < ... < 4. Suppose the edge
e € v contains the point u in ~y with the largest local maximum value of f. Then f(u) > s;,,
where s;,, is half the length of cycle v;,, in the shortest system of loops.

Proof. The proof of this lemma will proceed by contradiction. We assume instead that
f(u) < s;,,. Under this assumption we will show that the cycle v can be decomposed as the
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sum of cycles {c;}, each of which has length strictly smaller than s;,,, which contradicts the
fact that {v;;} are in the shortest system of loops and implies that f(u) must be at least
Sim -

Since each 7;, (1 < k < m) is an element of the shortest system of loops for G and
i1 <ig < ... <1y, this implies that s;; <--- <'s; , where 2s;, is the length of cycle v;, in
the shortest system of loops of G.

The cycle v in G must contain at least one non-tree edge as it is a cycle. Let
e1,...,eq = e be all non-tree edges of G with largest function value at most f(u). Assume
they contain maximum points uq, ..., uy = u, respectively, where the edges and maxima are
sorted in order of increasing function value of f.

For two points z,y € |T|, let a(x,y) denote the unique tree path from z to y within
the shortest path tree. For each j € {1,...,¢}, let ¢; = (e?, 6]1-) and let ¢; denote the cycle
cj = o(v, ejl-) oejo a(e?, v). By assumption, since u = uy is the point in v with the largest
local maximum value of f and f(u) < s;,,, it follows that the length of every cycle ¢; is
less than s; . However, the set of cycles {ci,...,c/} forms a basis for the subgraph of
G spanned by all edges containing only points of function value at most f(u). Therefore,
we may represent 7 as a linear combination of cycles from the set {ci,...,¢cs}, i.e., v may
be decomposed into shorter cycles, each of length less than s;,, = w. This is a
contradiction to the fact that v;,,...,7;,, are elements of the shortest system of loops for
G. Hence, we conclude that f(u) >s;, .. O

Figure 7: An illustration of the proof of Lemma 9. In this case, 7y is the sum of three smaller
cycles and there are four non-tree edges highlighted in green. One ¢; is shown corresponding
to the local maximum u;.

An example that illustrates the proof of Lemma 9 is shown in Figure 7. Later we
will use the following simpler version of Lemma 9, where - is a single element of the shortest
system of loops.

Corollary 10. Let v be an element of the shortest system of loops for G with a length 2s,
and let u denote the point in any edge of v with largest maximum value of f. Then f(u) > s.
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4.3 The main theorem and its proof

We are now ready to establish a comparison of the intrinsic Cech and persistence distortion
distances between a bouquet metric graph and an arbitrary metric graph.

Theorem 11. Let G1 and G2 be finite metric graphs such that G s a bouquet graph and
G is arbitrary. Then

1
dic(G1,Ga) < idPD(GlyGﬂ-

Proof. Let G be a bouquet graph consisting of m cycles of lengths 0 < 2t} < ... <2t |
all sharing one common point o € |G1|. Let G2 be an arbitrary metric graph with shortest
system of loops consisting of n loops of lengths 2sq, - - - ,2s,, listed in non-decreasing order.
In what follows, we suppose n > m; the case when m > n proceeds similarly. As before,
we obtain a sequence of length n, 2ty < 2ty--- < 2t, (where t; = -+ = tp_py, = 0,
tn—m+t1 =t},---, and t, = t,,). Let f and g denote the geodesic distance functions on G
and G, respectively.

First, as in Corollary 6, the intrinsic Cech distance between Gy and (9, denoted by
4, is

§ = dic(Gh,Ga) = m%f |si ; til

(1)

Second, note that the persistence diagram D; := Dg(f,) with respect to the base
point o is Dy = {(0,t1),---,(0,t,)} (of course, this may include some copies of (0,0) if
m < n). Next, fix an arbitrary base point v € |G2| and consider the persistence diagram
Dy := Dg(gy). Consider the abstract persistence diagram D* := {(0,s1),---,(0,5,)} =
{51,...,3,} that consists only of points on the y-axis at the s; values. Unless G is also a
bouquet graph, D* is not necessarily in ®(|G2|). Nevertheless, we will use this persistence
diagram as a point of comparison and relate points in Ds to D*. Notice that a consequence
of Theorem 5 is that

dg(Dy, D*) = m%lx |si — ti| = 26. (2)
=

In order to accomplish our objective of relating points in Do with points in the ideal
diagram D*, we need the following lemma relating to feasible regions, which were introduced
in Section 4.1.

Lemma 12. Let D' = {z1,...,z,} be an arbitrary persistence diagram such that z; € Fs;.
Then dB(Dl, D*) S dB(Dl, D/)

Proof. Consider the optimal bottleneck matching between Dq and D’. According to Lemma 8,
if the point ¢; = (0,¢;) € Dy is matched to z; € D" under this optimal matching, the match-
ing of 57 = (0,s;) € D* to t; will yield a smaller distance. In other words, the induced
bottleneck matching between D; and D*, which is equal to 2J, can only be smaller than
dp(Dy,D’). O

The outline of the remainder of the proof of Theorem 11 is as follows. Theorem 13
shows that one can assign points in D to the points in D* in such a way that the condition in
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Lemma 12 is satisfied. The fact that one can assign points in the fixed persistence diagram
D, to the distinct feasible regions Fj; relies on the series of structural observations and
results in Section 4.2, along with an application of Hall’s marriage theorem. Finally, the
inequality in Lemma 12 and the definition of the persistence distortion distance imply that

20 =dp(Dy1,D*) < I?Cg ldB(Dl,Dg) < dpp(Gy,Gs), (3)
ve |Gz

which, together with (1), completes the proof of Theorem 11. Notice that if any (Ge,v) is
not generic, we can perturb either Gy or v so that |dg(D1, D2) — dg(D1, Dj)| < e for any
€>0.

The following theorem establishes the existence of a one-to-one correspondence be-
tween points in D* and points in Ds. The goal is to construct a bipartite graph G =
(D*, Do, E’), where there is an edge é € E from 5 € D* to z € D, if and only if z € Fg;. To
prove the theorem, we invoke Hall’s marriage theorem, which requires showing that for any
subset S of points in D*, the number of neighbors of S in Ds is at least |S].

Theorem 13. The graph G contains a perfect matching.

Proof. For simplicity, let T' =T, and g = ¢,. First, note that there is a one-to-one corre-
spondence ¥ : Fy \ T'— Dj between the set of non-tree edges in G5 (each of which contains
a unique maximum point of ¢g) and the set of points in Ds. In particular, from Observations
1 and 2, the birth-time of each point in Ds uniquely corresponds to a local maximum wu,
within a non-tree edge e of GGo. The assumption that v is generic implies that the local
maximum u, occurs within an edge and not at a vertex.

Fix an arbitrary subset S C D* with |S| = a. In order to apply Hall’s marriage
theorem, we must show that there are at least a neighbors of .S in G. We achieve this via
an iterative procedure which we now describe. The procedure begins at step k& = 0 and will
end after a iterations. Elements in S = {5;;,...,3;,} are processed in non-decreasing order
of their values, which also means that iy < is < --- < i4. At the start of the k-th iteration,
we will have processed the first & elements of S, denoted Sy = {5;, ..., 5, }, where for each
5:=3;, € Sj that we have processed (1 < h < k), we have maintained the following three
invariances:

Invariance 1: s is associated to a unique edge ez € Fy \ T containing a unique maximum
e, such that WU(esz) € Do is a neighbor of 5. We say that ez and u., are marked by s.

Invariance 2: : 5 is also associated to a cycle 45, = v;, +>_ ¢ (where the sum ranges over
all £ belonging to some index set Jy, C {1,...,i, — 1}), such that ez contains the point
in 7y, with the largest value of g.

Invariance 3: : height(7p,) < s;i,, where height(y) = meaxg(:n) - meing(:n) represents the
TEY TEY

height (i.e., the maximal difference in the g function values) of a given loop 7.

Set S = S\ Sk = {341+ -»5i,}, denoting the remaining elements from .S to be processed.
Our goal is to identify a new neighbor in Dy for element s;, " from S}, satisfying the three
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Figure 8: One shortest system of loops for this graph T' = {vy1,72,...,75} consists of
the following: =1 = v4V3V7V8V4, Yo = VoUIUsUTUSVGV2, Y3 = VVUIVV, Y4 = VU4V, and
v5 = wvuivsvyvgy. Their lengths are 7,9,10,10, and 11, respectively, generating points
51 = (0,3.5),52 = (0,4.5),53 = (0,5),517 = (0,5), and 55 = (0,5.5). Now, imagine we
have S = {51,52}. When we process s7, we consider the shortest loop =1 corresponding to
it, and edge es contains the maximum wu., of highest g function value among points in ;.
Since this edge is not yet marked, we set 71 = 71, and mark e; by 57. Next, we consider
S3. We start with the highest edge in the shortest loop 79, which is again e5. However, at
this point, e5 is already marked with s7, we thus instead take the combination of s with
the loop associated to es, that is, we set Y2 = vo + 731 = Y2 + Y1 = V1V5V7V3V4V8VgV2v1. The
edge containing the highest function value in this loop is e4 (assume we break the tie of ey4
and eg by using their indices). Since ey is not yet marked, we set 72 = 7, and mark e4 with
this.

invariances. Once we have done so, we will then set Spy1 = Sk U {s;,,,} and move on to
the next iteration in the procedure.

Note that ;| corresponds to an element ~;, ., of the shortest system of loops for
G. Let e be the edge in ;, ,, containing the maximum u. of highest g function value among
all edges in 7;,,. There are now two possible cases to consider, and we will demonstrate
how to obtain a new neighbor for 5;, | in either case.

In the first case, suppose u, is not yet marked by a previous element in S. In this
case, €5 = € and ¥;, ., = Yiy,,- We claim that the point (pe,g(uc)) in the persistence
diagram Dy corresponding to the maximum wu, is contained in the feasible region Fm.
In other words, s;,,, < g(ue) < pe + si,,,. Indeed, by Lemma 9, s;_, < g(ue), and by
Observation 3,

g(ue) — Sigpr S loweSt(%kJrl) < Pe,

where lowest(7;, ) := emin g(x). Thus, (pe,g(uc)) € D is a new neighbor for 55, € S
TEYip 41
since it is contained in Fg;—. Consequently, we mark e and u. by 5;_ | and continue with

. ) Sigq1
the next iteration.

In the second case, the maximum point u has already been marked by a previous
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element s; € Sy and been associated to a cycle 7. Observe that s;; < s; ., since our
procedure processes elements of S in non-decreasing order of their values (and thus j; <
ik+1). We must now identify an edge other than e for s;, ., satisfying the three invariance
properties. To this end, let 1 = ;,,, +7j,, and let e; be the edge containing the maximum
in 7; with largest function value. If e; is unmarked, we set sy = €1 Otherwise, if e;
is marked by some cycle v;,, we construct the loop Y2 = 41 + 7, = i, ., + Vj; + Vj» With
the purpose of erasing the already-marked edge e; from the loop and finding a new edge
es containing the maximum function value of 75. We continue this process until we find
g = Yigsr T Vi +Vjz + -+ + 7, such that the edge e, containing the point of maximum
function value of 7, is not marked. Once we arrive at this point, we set 7;,,, = 7, and
Csiy = Enp SO that the edge e; and corresponding maximum u., are marked by s;, . For
a concrete example of this procedure, see Figure 8 and its caption.

The reason that the procedure outlined above must indeed terminate is as follows.
Each time a new 7;, is added to a cycle 7;,_, (for v € {1,...,n}), it is because the edge
containing the maximum point of 7;,_, with largest function value is marked by 5;,. Note
that j, # jg for v # [ (as during the procedure, the edge e; containing the maximum
function value in the cycle #4; are all distinct), each j, < ix41, and 55, € S,. Furthermore,
Invariance 2 guarantees that 7, cannot be empty, as each cycle 7, can be written as a
linear combination of elements in the shortest system of loops with indices at most j,. As
Jv <'ip41, the cycle v = 75 +7;, + ... 4+ 7;, can be represented as a linear combination
of basis cycles with indices strictly smaller than ij,. In other words, 7;, , and 4/ must be
linearly independent, and thus 7, = ;,,, + ' cannot be empty. Again, j, # jg for v #
and each j, < ixy1, and thus it follows that after at most k iterations, we will obtain a cycle
whose highest valued maximum and corresponding edge are not yet marked.

Now, we must show that the three invariances are satisfied as a result of the process
described in this second case. To begin, we point out that Invariance 2 holds by construction.
Next, the following lemma establishes Invariance 3.

Lemma 14. For %, ., = Yy = Vi, + Vi1 + Vjo + -+ + 7}, as above, height(Vi, ;) < Siy, -

Proof. Set 3o = 7i,,,, and for v € {1,...,n}, set 3, = 7;,., +7j, +--- +7j,. Using
induction, we will show that height(7,) < s;_, for any v € {0,...,n}. The inequality
obviously holds for v = 0. Suppose it holds for all v < p < 7, and consider v = p + 1
where 7,11 = 7, +7,,,- The cycle 7;,,, is added as the edge e, of 4, containing the current
maximum point of highest value of g has already been marked by 5; 7 with j,41 <ipy1. By
Invariance 2, e, must also be the edge in 7;, , containing the point of maximum g function
value, which we denote by g(e,). Therefore, after the addition of 7, and ;. ,,

(i) highest(Vp+1) == max g(z) < gy(ep), and (4)
TEYp+1

(ii) lowest(7p+1) := min g(x) > min{ lowest(7),), lowest(V;,,,) }-
TEYp+1

By the induction hypothesis, height(7,) < s;,,,, while by Invariance 3, height(7;,,,) <

85,01 < Si4,- By (ii) of equation (4), it then follows that

lowest(Yp41) > min{g(e,) — height(7,), g(e,) — height(%nﬂ)} > g(ep) = Sipy,-
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Combining this with (i) of equation (4), we have that height(y,41) < s4,,,. The lemma
then follows by induction. O

Finally, we show that Invariance 1 also holds. Since ¥;, ., = 3, = ¥i,., + 7/, with
~" defined as above, by Lemma 9, we have that 9(Ue,) > Siy,,- Suppose u, is paired with
some graph node w so that p., = g(w). As the height of 7;, ., is at most s;, , (Lemma 14),
combined with Observation 3, we have that

g(te,) — si,,, < lowest(Fi,. ) < pe,-
This implies that the point (pe,, g(ue,)) € Fg; -, establishing Invariance 1.

We continue the process described above until £k = a. At each iteration, when we
process s;,, we add a new neighbor for elements in S. In the end, after processing all of
the a elements in S, we find a neighbors for S, and the total number of neighbors in G of
elements in S can only be larger. Since this holds for any subset S of D*, the condition for
Hall’s theorem is satisfied for the bipartite graph G. This implies that there exists a perfect
matching in G, completing the proof of Theorem 13. O

Theorem 11 now follows from Lemma 12 and equation (1). O

4.4 Proving the conjecture when both graphs are trees of loops

The techniques of Theorem 11 are specific to the case when one of the graphs is a bouquet
graph. However, we can prove Conjecture 1 in another setting, as well: the case when both
graphs are trees of loops.

Definition 15. A tree of loops is a metric graph constructed via wedge sums of cycles and
edges.

See Figure 9 for an example. The fact that the inequality holds when both graphs are trees
of loops follows from an application of the following lemma.

Figure 9: An example of a tree of loops.

Lemma 16. Let P and QQ be two persistence diagrams with finite numbers of off-diagonal
points. Let di and do be distances defined between points in P and points in @ such that
di(p,q) < da(p,q) for everyp € P,q € Q. Then dg(P,Q) under distance dy is less than or
equal to dp(P, Q) under distance ds.

JoCG 10(1), 477-499, 2019 494


http://jocg.org/

Journal of Computational Geometry jocg.org

Proof. The bottleneck distance under a particular distance d is given by
dB(P7 Q) = m;}n m}?‘X d(p7 /’L(p))7

where the minimum is taken over all matchings p: P — Q. If we consider a fixed matching
1, the relationship between d; and dy implies that

max d1(p, u(p)) < maxda(p, u(p)). (5)

Let u/ be the matching that achieves the minimum for distance dg. The inequality (5)
together with this minimum implies that

dp(P,Q) under d; = min max di(p, u(p)) < maxdi(p, ¢/ (p)) < maxds(p, i (p)) = dg(P, Q) under ds.
poop p p

O

Proposition 17. Let G1 and G2 be two finite metric graphs such that both are trees of loops.
Then

1
dic(G1,Ga) < §dPD(G1,G2)'

Proof. Let G and G2 be trees of loops of lengths 2t/,...,2t] and 2s1, ..., 2s,, respectively,

each set listed in non-decreasing order. Without loss of generality, suppose n > m. First, as

~ S; — t
in Corollary 6, the intrinsic Cech distance between G and G is d;c(G1, G2) = m%lx |51 — il
1=

ty — S
wherety = -+ =tp_m =0, tn_ms1 = t},...,and ¢, = t,,. Suppose dic(G1,G2) = M

for some k, 1 < k < n. Let f and g denote the geodesic distance functions on G and Ga,
respectively.

For trees of loops, the persistence diagrams take the form Dg(f,) = {(ps, pi+ti) }1<i<n
and Dg(gw) = {(qi, ¢ + si) hi<i<n for v € G1 and w € Gy. Here, p; (resp., ¢;) is the length
of a shortest path from v (resp., w) to the closest point on the corresponding loop of length
2t; (resp, 2s;). The proposition holds if, for any pair of persistence diagrams Dg(f,) and
Dg(g9w), dB(Dg(fv); Dg(gw)) = [tk — skl

We will prove this by applying Lemma 16. For any 4,5 € {1,...,n}, let di((pi, pi +
ti), (45,45 + s5)) = [ti — s3] and da((pi, pi + 1), (¢35, 45 + 55)) = ||(Pi, pi + i) — (g5, ¢5 + 55)][1-
It’s easy to show that d; < ds for every pair of points, so that the conditions of the lemma
are satisfied. Notice that distance d; is equivalent to the case where all p; = ¢; = 0, i.e.,
the points are along the y-axis. By Theorem 5, the bottleneck distance under d; equals
|tk — sk| = 2d;c(G1,G2). Therefore, the bottleneck distance between Dg(f,) and Dg(g.,)
under dy is at least |ty — sg|, as desired. O

5 Discussion and future work

In this paper, we compare the discriminative capabilities of the intrinsic Cech and persis-
tence distortion distances, which are based on topological signatures of metric graphs. The
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intrinsic Cech signature arises from the intrinsic Cech filtration of a metric graph, and the
persistence distortion signature is based on the set of persistence diagrams arising from
sublevel set filtrations of geodesic distance functions from all base points in a given metric
graph. A map from a metric graph to these topological signatures is “lossy” as it is not
injective: two different metric graphs may map to the same signature. However, topological
signatures capture structural information of graphs and understanding the relationship be-
tween the intrinsic Cech and persistence distortion distances enables us to better understand
the discriminative powers of such signatures.

We conjecture that the intrinsic Cech distance is less discriminative than the persis-
tence distortion distance for general metric graphs G; and Go, so that there exists a constant
¢ > 0 with d;c(G1,G2) < ¢-dpp(G1,G2). This statement is trivially true in the case when
both graphs are trees as the intrinsic Cech distance is 0 while the persistence distortion
distance is not. We prove a version of the conjectured inequality in the case when one of
the graphs is a bouquet graph and the other is arbitrary, as well as in the case when both
graphs are obtained via wedges of cycles and edges. The methods of proof in Theorem 11
and Proposition 17 rely on explicitly knowing the forms of the persistence diagrams for the
geodesic distance function in the case of a bouquet graph or a tree of loops. Therefore, these
methods do not readily carry over to the most general setting for arbitrary metric graphs.
Nevertheless, we believe that the relationship between the intrinsic Cech and persistence
distortion distances should hold for arbitrary finite metric graphs. Intuitively, the intrinsic
Cech signature only captures the sizes of the shortest loops in a metric graph, whereas the
persistence distortion signature takes into consideration the relative positions of such loops
and their interactions with one another. We believe that proving our conjecture in greater
generality is highly nontrivial and leave it as an open question.

As one example application relating the intrinsic Cech and persistence distortion sig-
natures, the work of Pirashvili et al. [22] considers how the topological structures of chemical
compounds relate to solubility in water, which is of fundamental importance in modern drug
discovery. Analysis with the topological tool mapper [24] reveals that compounds with a
smaller number of cycles are more soluble. The number of cycles, as well as cycle lengths,
is naturally encoded in the intrinsic Cech signature. In addition, these authors also use a
discrete persistence distortion signature — where only the graph nodes, i.e., the atoms, serve
as base points — to show that nearby compounds have similar levels of solubility. Although
we conjecture that the intrinsic Cech distance is less discriminative than the persistence
distortion distance, it might be sufficient in this particular analysis since solubility is highly
correlated with the number of cycles of a chemical compound, that is, with the intrinsic
Cech signature [16]. It would be interesting to investigate other applications of the intrinsic
Cech and persistence distortion signatures in the context of data modeled by metric graphs.

In addition, recall from the definition of the persistence distortion distance the map
¢ : |G| — SpDg, ®(v) = Dg(f,). The map ® is interesting in its own right. For instance,
what can be said about the set ®(|G]) in the space of persistence diagrams for a given G7
Given only the set ®(|G|) C SpDg, what information can one recover about the graph G7
Oudot and Solomon [21] show that there is a dense subset of metric graphs (in the Gromov—
Hausdorff topology, and indeed an open dense set in the so-called fibered topology) on which
their barcode transform via the map ® is globally injective up to isometry. They also prove
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its local injectivity on the space of metric graphs. Another question of interest is, how does
the map @ induce a stratification in the space of persistence diagrams? Finally, it would
also be worthwhile to compare the discriminative capacities of the persistence distortion and
intrinsic Cech distances to other graph distances, such as the interleaving and functional
distortion distances in the special case of Reeb graphs.
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