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A DISCUSSION ON OT-TYPE DISTANCES

We use an example in Fig. 1 to explain the intuition behind the
Wasserstein distance, GW distance, and FGW distance. We consider
two scalar fields shown on the left, with corresponding Morse graphs
shown on the right. To compute OT-type distances, we use the
geometric locations of nodes as attributes, and the shortest geodesics
between nodes to describe the network structures; see Sec. 4 for
details.
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Figure 1: Left: synthetic scalar fields, together with their corresponding
Morse graphs (in cyan). Right: Morse graphs of the scalar fields;
colormap shows structural correspondences under various OT-type
metrics.

We observe the behavior of three OT-type distances based on
the node color correspondences. The Wasserstein distance is 0
because the locations of matched nodes in the source and target are
identical. The GW distance is also 0 since it finds a coupling such
that the graph structure in the target is identical to the source. Such
a coupling rotates the node color correspondence by 90◦. However,
since the FGW distance takes both graph structures and geometric
locations into consideration, it becomes non-zero in this example.

B DETAILS ON DATASETS

The synthetic Sinusoidal dataset is formed by the sum of two sine
waves. The target field is generated with additional noise in compar-
ison with the source field.

The Wind dataset includes 15 wind velocity fields from the
IRI/LDEO Climate Data Library: pressure_level_wind is obtained
via the NCEP CFSv2 Ensemble [18] with forecasted and perturbed
parameters. It focuses on a spatial range of 150◦W-49.5◦W and
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90◦N-10◦S at a pressure level 200 hPA and a forecast hour 0 on
January 01, 2015.

The HeatedCylinder dataset [1] comes from a simulation via
the Gerris flow solver [15]. The simulation shows a 2D flow of a
heated cylinder using the Boussinesq approximation [9]. It describes
a time-varying turbulent plume containing multiple small vortices.
We select 100 time steps from the original dataset (800-899 from
2000 time steps) and compute the Morse graphs from the velocity
magnitude fields.

The NavierStokes dataset is a direct numerical Navier Stokes
simulation available from [12]. Camarri et al. [2] used a version of
the simulation that Tino Weinkauf had uniformly resampled, which
was used for smoke visualization by von Funck et al. [19]. The
dataset is a 3D time-varying fluid flow simulation around a square
cylinder placed symmetrically between two parallel walls. We select
time steps 60-66 and a 2D slice perpendicular to the z-axis (z = 24)
and compute Morse graphs from the velocity magnitude fields.

The RedSea dataset comes from the IEEE 2020 SciVis Con-
test [10] and shows an eddy simulation of the Red Sea. It uses
the MIT ocean general circulation model (MITgcm) and the Data
Research Testbed (DART) [11] to create an ensemble with varying
initial conditions. A 3D area with a resolution of 500×500×50 is
sampled across 60 time steps [16]. We use 10 ensemble members
from 2D slices perpendicular to the z-axis (z = 1) at time step 40.
We compute the Morse graphs from the velocity magnitude fields.

C PREPROCESSING AND PARAMETER SETTING

Persistence simplification. We apply persistence simplification to
each dataset before computing the Morse graphs. We normalize the
range of a given scalar field to be [0,1] and use ε ∈ [0,1] to denote
the simplification threshold. ε is chosen based on the persistence
graph [8], where the x-axis represents ε , the y-axis captures the
number of local maxima (in our setting), and a plateau implies
a stable range of scales to separate features from noise. An ε-
simplification means that the scalar field is simplified such that
critical points with persistence less than ε are removed.

For the Sinusoidal dataset, Fig. 2 (left) shows the simplifica-
tion threshold ε = 7% chosen at a plateau for both the source
field (blue) and the target field (orange). The parameter ε is cho-
sen to be 3%,10%,7%, and 1% for the Wind, HeatedCylinder,
NavierStokes, and RedSea datasets, respectively.
Parameter setting for FGW distance. In this paper, the attribute
space is set to be R2 endowed with a Euclidean distance, and the
attribute function assigns a node its location in the domain. We apply
normalization such that the Euclidean distance between a node in the
source Morse graph and a node in the target Morse graph falls within
[0,1]. We also rescale elements in each network function matrix W
such that they fall into the range [0,1]. With such a normalization,
we set α = 0.5 when computing the FGW and pFGW distances,
striking a balance between the Wasserstein component and the GW
component.
Node probability distribution. We assign a probability distribution
to all nodes in the Morse complexes when we model them as measure
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Figure 2: Parameter tuning for the Sinusoidal dataset. Left: persis-
tence simplification using a persistence graph, where ε = 7%. Right:
m = 0.8625 is the elbow point based on the maximum matched dis-
tances.

networks. Without any prior knowledge about the space, a uniform
probability distribution is a reasonable option for computing simi-
larities between spaces based on previous works (e.g. [5, 7, 13, 14]),
since it ensures that all nodes in the space have equal importance in
the distance.

Uniform Degree-based

Source Target

Figure 3: FGW distance for the Sinusoidal dataset with different node
probability distributions.

In this paper, we apply a probability distribution that is propor-
tional to the degree of nodes instead of the uniform distribution. If
we apply a uniform distribution, due to our node sampling strategy,
the number of nodes along each edge may be sensitive to minor
changes in the geometry of an edge, thus affecting the distribution.
Furthermore, newly appeared or disappeared edges along with their
sampled nodes may also affect the probability of existing nodes. By
applying a degree-based probability distribution, nodes with higher
degrees (typically critical points) serve as anchor points that are
considered more important than the (sampled) regular points; this
approach has also been prevalent in the graph OT literature, due to its
superior empirical performance for certain tasks (e.g., [6, 20]). For
example, in Fig. 3, the result using the FGW distance with uniform
distribution shows undesired matching as indicated by the orange
arrow. The degree-based distribution improves the coupling in the
same area, showing a smoother color trend.
Partial OT parameter tuning. We explain the parameter tuning
of partial OT via the Sinusoidal example in Fig. 4, following a
previous work [13]. As the parameter m decreases from 1.00 to
0.80, the number of hollow nodes in the target graph (e.g., nodes
that are ignored during the coupling) increases gradually. During
this process, nodes in the target graph on the noisy edges are ignored
first, as matching these nodes to any node in the source graph leads
to a large distance. This is desirable as we apply partial OT to ignore
noisy features.

However, when m reaches 0.80, important nodes (as indicated by
orange arrows) start to be ignored. We aim to keep the important
nodes in the coupling because they describe the main structure of the
target graph. Therefore, our high-level idea in tuning m is to strike
a balance between ignoring noise and preserving main features. In
other words, we would like to maintain as much mass as possible in
the coupling result while removing unreasonable matchings.

We assume that nodes are matched based on their Euclidean
proximity. That is, matching nodes that are far apart is undesir-

able. Using partial OT, nodes that are matched faraway from each
other are ignored first. By ignoring these nodes, the maximum Eu-
clidean distance between the matched nodes in the source and the
target drops drastically. Therefore, we plot the maximum Euclidean
distance between the matched points w.r.t. m, referred to as the
maximum matched distance. We use the “elbow” method to select
an m where the maximum matched distance is not too high. As
shown in Fig. 2 (right), for the Sinusoidal dataset, such a distance
grows significantly after the elbow point at m = 0.8625.

We understand that such a strategy comes with some limitations.
There may be multiple “elbows” in the plot, and a unified m may not
work well for all pairs of Morse graphs. Without prior knowledge
about the data, the choice of m may not be unique. Different m values
indicate different tolerance for noises, which may all be meaningful.

Source Target
m=0.80 m=0.84 m=0.88

m=0.92 m=0.96 m=1.00

Figure 4: pFGW distance for the Sinusoidal dataset with different m
values.

D RUNTIME ANALYSIS

We report the runtime in computing the OT-type distances between
the source Morse graph and the target Morse graph for all real-world
datasets in Tab. 1. All these distances are easy and efficient to
compute. Relatively speaking, for a fixed dataset, the GW distance
takes the most time. The runtime was collected on an Arch Linux
system with an Intel(R) Core(TM) i7-6700K 4.00 GHz CPU with
32 GB memory.

Dataset # of nodes W GW FGW pW pGW pFGW
Wind 99 0.081 0.348 0.118 0.079 0.129 0.098

Heated Cylinder 601 1.662 10.146 6.425 1.451 1.776 5.123
Navier-Stokes 130 0.184 0.278 0.130 0.118 0.146 0.178

Red Sea 171 0.183 0.531 0.250 0.166 0.283 0.286

Table 1: Runtime (in seconds) for OT-type distances between the
source and the target Morse graphs across all real-world datasets.

E COMPARISON WITH EUCLIDEAN METRICS

OT-type distances can be applied to various visualization tasks. In
this section, we use the HeatedCylinder dataset to demonstrate its
application in detecting topological (i.e., Morse complex) changes in
a time-varying scalar field. Since the topological variation between
adjacent time steps is quite small, we use scalar fields at time step
800, 809, 819, 829, 839, 849, 859, 869, 879, 889 and 899 in the
analysis.

There are few existing methods suitable for comparing Morse
complexes. We include two simple Euclidean metrics as baseline
methods for comparison. Suppose a scalar field f is uniformly
sampled on a regular grid and represented as a matrix. The first
metric is the Frobenius norm between the matrix representations
of scalar fields, referred to as the Euclidean scalar distance. For
the second metric, we map a Morse complex onto a binary matrix.
An entry (that corresponds to a grid cell) in the matrix is 1 if it
overlaps with the Morse graph; otherwise, it is 0. We then compute
the Frobenius norm between the binary matrix of Morse complexes
as the second metric, referred to as the Euclidean complex distance.
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Figure 5: Pairwise distance matrix for two Euclidean metrics and six OT-type distances. Labels for both axes of matrices are time steps.
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Figure 6: Scalar fields and Morse complexes in the HeatedCylinder
dataset at time step 859, 869, 879, and 889.

Fig. 5 shows the pairwise distance matrix of each distance. Two
matrices on the left are from the two Euclidean metrics. Not surpris-
ingly, we cannot detect topological changes using these Euclidean
metrics.

On there other hand, all OT-type distance matrices in Fig. 5
(right) show patterns indicating topological changes. Among the
three non-partial distances, both GW and FGW distances show clear
block structures (indicated by red arrows) in the matrix, indicating
similarity in topology.

We further explore the data within such a block structure. Fig. 6

shows the scalar fields along with Morse complexes from time step
859 → 889. Changes in Morse complex at 859 → 869 are high-
lighted by yellow arrows. The edge A at time step 859 disappears at
time step 869 (as indicated by A′). In the area indicated by B at time
step 859, an edge appears as B′ at time step 869. Similarly, C →C′

indicates the disappearance of a long edge, whereas D → D′ indi-
cates a new loop enclosed by a new edge. Such structural changes are
captured by the GW and FGW distances, resulting in high distances.
Similarly, significant structural changes (i.e., edge appearances and
disappearances) at 869 → 879 and at 879 → 889 are highlighted by
green and red arrows, respectively. We observe only one green arrow
at 869 → 879, whereas we see four yellow arrows at 859 → 869 and
three red arrows at 879 → 889. This observation is consistent with
the result of GW distance and FGW distance. In comparison, among
four time steps from 859 to 889, the Morse complexes between time
step 869 and 879 are relatively similar, whereas time step 889 is
more different, time step 859 the most different.

F DEFINITION OF PARTIAL OT-TYPE DISTANCES

Following Sec. 3, we provide the formal definition of partial OT-type
distances.
Partial Wasserstein distance [3]. Given m ∈ [0,1], the q-partial
Wasserstein distance (pW) is defined as

dpW
q,m(G1,G2)

q = min
C∈Cm

∑
i, j

dA(ai,b j)
qCi, j. (1)

Partial Gromov-Wasserstein distance [3]. The q-partial Gromov-
Wasserstein distance (pGW) is

dpGW
q,m (G1,G2)

q = min
C∈Cm

∑
i, j,k,l

|W1(i,k)−W2( j, l)|qCi, jCk,l . (2)

Partial Fused Gromov-Wasserstein distance [13]. For parame-
ters α,m ∈ [0,1], the q-partial Fused Gromov-Wasserstein distance
(pFGW) is

dpFGW
q,α,m (G1,G2)

q = min
C∈Cm

∑
i, j,k,l

[(1−α)dA(ai,b j)
q

+α|W1(i,k)−W2( j, l))|q]Ci, jCk,l . (3)



Choosing parameters appropriately, we see that all distances defined
previously can be seen as special cases of the pFGW distance.

G METRIC PROPERTIES OF OT-TYPE DISTANCES

The Wasserstein and GW distances are pseudometrics on the space
of A-attributed measure networks (i.e., they are symmetric, satisfy
the triangle inequality, and vanish when G1 = G2), see [4]. For
α ∈ (0,1), the FGW distance is a pseudometric when q = 1. It is
symmetric, satisfies dFGW

q (G,G) = 0, and meets a modified triangle
inequality when q ≥ 2:

dFGW
q (G1,G3)≤ 21− 1

q (dFGW
q (G1,G2)+dFGW

q (G2,G3)). (4)

Indeed, this follows from [17, Theorem 1] (this is proved assuming
that the W -functions are metrics, but the proof goes through without
this assumption). The partial versions of the distances, however,
fail to satisfy the triangle inequality (or any simple variant) when
m ̸= 1.
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