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ABSTRACT

AI systems are becoming omnipresent in our daily lives, but they
can sometimes be a source of bias for disadvantaged groups. Lack of
fairness in AI systems is not just an engineering issue that influences
public policy, it also has important implications for business ethics
and corporate social responsibility. To educate nontechnical students
at the business school, we have developed educational modules on
fairness in AI that convey the importance of making not just accurate
but also equitable business decisions. We introduce an educational
module with six interactive components that illustrate how to detect,
quantify, and mitigate biases in a logistic regression model. When
such a module was deployed in a “Fair Algorithms for Business”
course, it was shown to increase students’ engagement and under-
standing. We further conducted a user study with 413 participants
to examine whether adding visualizations and interactions (or not)
could lead to an increased understanding of fairness concepts.

Index Terms: Human-centered computing—Visualization—
Visualization design and evaluation methods; Social and professional
topics—Computing education.

1 INTRODUCTION

Artificial Intelligence (AI) systems are becoming increasingly ubiq-
uitous, deployed in various domains such as healthcare, market
pricing, and college admission. Despite the benefits they may bring,
these systems can also reflect, inject, or amplify societal biases into
decisions [35]. Some examples include hiring systems that tend to
favor applicants from certain demographic groups [3], and image
recognition systems that are weak in recognizing darker skins [52].

Substantial technical progress has been made to enhance fairness
in Machine Learning (ML), a subset of AI. These contributions pri-
marily focus on the mathematical definition and measurement of
fairness [14], prompting the development of various bias mitigation
methods [35], which further sparks the discussion of the trade-off be-
tween accuracy and fairness [33]. Meanwhile, a recent proliferation
in the development of fairness toolkits [2, 5, 16] makes these algo-
rithms more accessible, empowering users to audit potential biases
in ML models through libraries or visualization systems. Inspired
by these advances, computer science (CS) education increasingly
incorporates AI fairness into the curriculum [19,34], with the aim of
teaching students to design responsible and equitable technologies.

However, many curricula around fairness in AI mainly cater to
users with technical backgrounds (such as CS and engineering stu-
dents). Educating nontechnical students on AI fairness is equally
important. Passi and Vorvoreanu [40] showed that there is a risk
of overreliance on AI, particularly among individuals with limited
AI literacy; for instance, individuals may unquestioningly accept an
AI system’s recommended decision even when it gives consistently
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different predictions for different demographic groups. Such overre-
liance could not only jeopardize our own rights given the widespread
deployment of AI systems today, but also pose potential threats to
the benefits of others. For instance, students in business school
who are training to be managers may regularly employ AI systems
during critical decision-making, including hiring, admissions, and
loan approvals. Thus, they need to know that ML models should be
not only accurate in their predictions but also unbiased to all groups.
Furthermore, even if users are aware of AI systems’ bias, they may
develop a high reliance on fairness metrics and debiasing methods.
Although numerous fairness metrics exist, there is no consensus
about which one is the best to use, and some criteria about fairness
metrics are challenging to satisfy simultaneously [13]. Therefore,
users should be aware of the trade-off among fairness metrics and be
mindful in selecting appropriate metrics that best fit their decision
environment. Similarly, different bias mitigation methods come
with different assumptions and limitations [35]. Users should be
able to compare multiple debiasing methods and, more importantly,
understand the trade-off between fairness and accuracy [33].

Moreover, the impact of visualization on educating fairness in
AI concepts has not been widely explored. Despite pedagogical re-
search demonstrating that properly designed visuals could reinforce
students’ understanding of complex concepts [11, 45,47], existing
courses for AI fairness in CS education still fall short in taking
advantage of visualization [19]. A recent study by Mashhadi et
al. [34] explored the values of visualization in teaching CS students.
It examined six open-source fairness tools that enable students to
study algorithmic biases.

In light of these concerns, we aim to educate nontechnical stu-
dents in higher education—in particular, business school students—
about fairness in AI through visualization. We hypothesize that
the utilization of visualization could increase students’ learning
outcomes. Specifically, we developed an educational module that
features six types of interactive components in close collaboration
with two professors from the School of Business. These components
cover different aspects of fairness in AI, including ML pipeline
explanations via logistic regression, fairness metrics, and bias miti-
gation methods. Our visualization design has three objectives. First,
we enable users to perform what-if analysis by interactively chang-
ing model inputs to better understand the algorithms and the impacts
of bias mitigation. Second, our design supports direct comparisons
among multiple fairness metrics and mitigation methods, as well as
highlights the trade-off between accuracy and fairness. Third, we
seek to balance technical complexity and understandability for non-
technical users by hiding or simplifying algorithm details whenever
appropriate. The educational module has been incorporated into a
course—“Fair Algorithms for Business”— an elective available to
graduate and undergraduate business students.

We conducted a user study involving 413 participants to examine
how varying visualization formats impact education about fairness
in AI, focusing specifically on learning the fairness metric of dis-
parate impact. We developed learning materials using three degrees
of visualization support. First, texts and images utilize texts and
images of confusion matrices to explain the computation of fairness
metrics. Second, static visualization combines delicately designed
confusion matrices with a static visualization of fairness metrics.
Third, interactive visualization enables interactivity via linked views



between confusion matrices and fairness metrics, that is, users may
change the values of confusion matrices to observe their impacts on
fairness metric computation.

Our findings suggested that both static and interactive visualiza-
tion could significantly enhance accuracy gain on recall questions
compared to texts and images. We also found that static visualiza-
tion demonstrated the most significant improvement in accuracy
gain as reading time increased. Although participants provided posi-
tive feedback on interactive visualization, only a small percentage
(13%) of them actually interacted with the visualization compo-
nents. Participants with higher visual learning ability were more
likely to recommend learning materials with interactive visualiza-
tion, whereas those with lower visual learning ability were more
likely to recommend static visualization. In summary, our work has
explored the use of visualization for fairness in AI education, by
providing:

• A characterization of tasks, challenges, and guidelines for cre-
ating visualization tools to teach nontechnical students about
AI fairness concepts;

• An educational module that examines the use of visualization
in detecting, quantifying, and mitigating biases in ML models;

• A user study involving 413 participants to evaluate the effec-
tiveness of using varying visualization formats to teach fairness
concepts and distill lessons that may inform the research of
visualization in AI fairness education.

2 RELATED WORK

2.1 An Overview of Fairness in AI
Recent research on AI fairness has centered around fairness metrics
and bias mitigation; see [35, 42] for surveys.
Fairness metrics. Different statistical definitions of fairness have
been introduced to measure fairness in model predictions [14]. One
popular strategy is to first define subpopulations using attributes
like gender and race, often referred to as protected or sensitive at-
tributes, and then compare disparities of model performances among
these subpopulations. In this line of work, commonly used fairness
metrics include statistical parity difference [9], equal opportunity
difference [20], average odds difference [20], etc. However, it has
been mathematically proven that these metrics cannot be simultane-
ously satisfied except in certain highly constrained cases [13]. Thus,
the selection of a fairness metric relies on the decision context [35].
Bias mitigation. Numerous debiasing methods, mostly technical
in nature, have been proposed to mitigate biases during different
stages of an ML pipeline [35]. A pre-processing debiasing method
aims to reduce the bias in the dataset by either assigning proper
weights to data points [25] or transforming the representation of the
dataset to obfuscate protected attributes [7, 55]. An in-processing
debiasing method trains a model to maximize accuracy and reduce
discrimination in ways that weaken the reliance between protected
attributes and output [27, 56]. A post-processing debiasing method
modifies the prediction to make it fairer, such as by adjusting the
decision threshold [26]. The performance of these methods varies
across different cases [42] and could impact model accuracy [33].

In this work, we employ visualization to help nontechnical users,
in particular, business school students, understand commonly used
fairness metrics and bias mitigation methods, as well as perform
comparisons to comprehend fairness-accuracy trade-offs.

2.2 Visual Analytics for Fairness in AI
A number of visualization tools have been developed recently in
various domains to enhance the accessibility of fairness algorithms.
Many of these tools focus on identifying and quantifying biases
in ML model predictions before deployment. Aequitas [44] and
Google What-If Tool [51] calculate the fairness of model predictions

concerning a single protected attribute. Other tools support the ex-
ploration of intersectional bias, where groups are defined by multiple
protected attributes. For example, FairVis [6] and DiscriLens [49]
empower users to discover and compare biased intersectional groups
via either user-selected attributes or automated recommendations.
Silva [54] identifies potentially biased attributes through causal rela-
tionships. RMExplorer [29] measures fairness across various patient
subpopulations in disease risk models. FairRankVis [53] introduces
a framework for exploring the bias in ranking decisions at both group
and individual levels. Beyond bias measurement, some other tools
support bias mitigation. FairSight [2] aims to understand, measure,
diagnose, and mitigate biases across the entire pipeline of ML, in-
cluding data, model, and outcome. D-BIAS [16] audits and mitigates
biases of tabular data through causality networks and incorporates
humans in the loop.

Fairness tools also demonstrate utility in the fields of Natural
Language Processing and Computer Vision. For example, Shortcut-
Lens [24] helps domain experts uncover spurious biases in Natural
Language Understanding (NLU) benchmark datasets. VERB [43]
explains how various debiasing methods influence the geometric
structure of word embeddings. WordBias [15] identifies intersec-
tional biases in word embeddings using Parallel Coordinates Plots.
In Computer Vision, DASH [30] discovers and mitigates spurious
correlations in the training data of image classification via data aug-
mentation. SliceTeller [57] is used to detect biases in the outcome
of image classification models.

Nonetheless, these visualization tools are primarily intended for
research or commercial use, requiring users to have prior knowledge
in programming, ML, or specific domains. Besides, these tools
are specialized in distinct tasks that emphasize specific facets of
AI fairness, through developing powerful interactive systems but
typically with steep learning curves [32]. Our work aims to edu-
cate nontechnical users in higher education on various facets of AI
fairness through carefully crafted visualizations.

The interactive demo provided by AI Fairness 360 [5] is most
relevant to ours, which presents the bias measurement, mitigation,
and comparison to the public. However, the IBM’s tool conceals all
technical details and is perceived to be overly simplified by Lee and
Singh [32], ranking as the least effective by Mashhadi et al. [34].

2.3 Roles of Interactive Visualization in Education

The effectiveness of interactive visualization in pedagogy has been
studied for some time, as surveyed in [10]. The mainstream research
focuses on Algorithm Visualization (AV), which depicts the dynamic
process of algorithms through interaction, visualization, and anima-
tion [11, 12]. Some literature reports mixed results [23, 38, 39] on
evaluating the educational effectiveness of AV. Existing works also
demonstrate the benefits of using AV [47, 48], especially in increas-
ing the engagement level of learners [45,46]. Moreover, a large body
of work has studied the key features of educationally effective AV,
such as accompanying visualization with textual explanations [48]
and keeping visualization short and focused [46]. Drawing from
these lessons, we derive guidelines for designing interactive visual-
izations tailored for fairness in AI education (Sec. 4.1).

Mashhadi et al. [34] assessed the the efficacy of six open-source
fairness tools, including Aequitas, Dalex, FairLearn, Fairness 360,
Responsibly, and What-if-tool, in teaching algorithmic fairness to
CS students. They performed a qualitative comparison of these tools
via focus groups, in terms of transparency (i.e. showing the inner-
workings of bias mitigation techniques), dataset integration (i.e.,
flexibility with importing custom datasets), and interactivity (i.e.,
how student learning may be impacted by the tools’ visualization
styles and presentation of fairness criteria). Tools with options of
interactivity were briefly mentioned to be overall favored by the fo-
cus groups in their study. However, they did not investigate in detail
how interactive visualization impacts learning fairness concepts.



Similar to [34], our work is also motivated by the benefits, chal-
lenges, and opportunities of integrating visualization into fairness
in AI education. However, although Mashhadi et al. obtained qual-
itative feedback from a class of undergraduate CS students, their
obtained insights are not completely generalizable to nontechnical
users. More importantly, whereas Mashhadi et al. assessed the ped-
agogical values of various fairness tools, we examine how varying
visualization formats, i.e., adding visualizations and interactions (or
not), could impact the performance of learning AI fairness concepts
by nontechnical users.

3 TASK ANALYSIS AND DESIGN RATIONALE

Our goal is to design an educational module using visualization to
educate nontechnical users—in particular, undergraduates and MBA
students in the business school—about AI fairness concepts. We
assume that these users possess a basic understanding of statistics
but may lack knowledge in ML and programming.

To design our tool, we conducted weekly meetings with two
professors (referred to as P1 and P2 throughout the paper) from the
School of Business for approximately six months. They are our co-
authors and have rich experience in teaching ML classes to business
school students. Each meeting lasted an hour, and meeting notes
were shared among all participants. We also recorded meetings on
Zoom during in-depth discussions on the design requirements and
expert feedback.

3.1 Task Analysis

Our discussions first focused on the key concepts necessary for
a six-week introductory course on AI fairness, and identified the
challenges beginners might encounter in learning the course material.
We summarized three tasks (T1-T3) that our tool aims to support.

T1. Reveal the mechanism and biases of ML models. Users
need to understand how ML works before their introduction to fair-
ness concepts. The tool should assist in explaining ML models from
three aspects, including basic concepts, such as training and test data,
model training, and model evaluation (e.g., confusion matrix); typi-
cal ML workflows, in particular, training and evaluation processes;
and the influence of input data on the model prediction, for instance,
how the accuracy would change when modifying the training and
test data. With a basic understanding of ML mechanisms, users
may further understand and detect biases in model predictions based
on fairness-related concepts, such as protected attributes and priv-
ileged/unprivileged groups. The challenge is to help nontechnical
users learn numerous ML concepts in a short time frame.

T2. Illustrate different fairness metrics. Given the varied fairness
metrics, it is important for the user to understand which metric
best fits the task at hand rather than assume that any metric can be
used in any situation [35]. The visualization tool should help the
user understand how to choose a metric, how to compute fairness
of the model output using the metric, and then determine whether
the fairness score is within range (or not). Many existing fairness
tools choose to explain the values and computations using plain text,
which was shown to be overwhelming for nontechnical users [32].

T3. Understand bias mitigation and fairness-accuracy trade-off.
As described in Sec. 2, three categories of debiasing methods (pre-
processing, in-processing, and post-processing) have been proposed
to enhance the fairness of ML models. For each debiasing method,
the tool should help users understand which part of a ML pipeline it
works on, how biases are mitigated, and what impact it has on the
predictions. In addition, the tool should help users explore the trade-
offs between the fairness metrics and accuracy, as pursuing a higher
level of fairness often leads to the compromise of accuracy. As
there are numerous debiasing methods with different mechanisms,
it would be time-consuming and unscalable to design visualization

for each one of them. Therefore, the tool should focus on a few
representative methods.

3.2 Design Rationale
Next, we went through an iterative process to design the static and
interactive visualization components. We generated a number of
design alternatives for each visualization component using sketches,
prototypes, or existing fairness toolkits. These designs were then
reviewed by the entire project team. They were polished, refactored,
or discarded after discussion. Coupled with a literature review, we
distilled five design rationales (R1-R5) to enhance the teaching of
AI fairness concepts.
R1. Keep visualization simple and consistent. Although com-
plex visual designs may be inevitable in systems developed for
analyzing intricate data [49], in the context of education, P1 and P2
emphasized that visualizations and interactions should be simple and
intuitive, echoing prior research [46] that advocates for short and
focused interactive visualizations to enhance classroom effective-
ness. Since students’ attention span is limited during a class, they
should concentrate more on understanding the core concepts rather
than interpreting and learning the use of visualization. Additionally,
given the diverse fairness concepts, maintaining consistency in vi-
sual encodings and interactions wherever appropriate could alleviate
the burden of interpretation [50].
R2. Enable visual comparison. It is important for students to
recognize differences among various fairness metrics, bias mitiga-
tion algorithms, and the trade-offs between fairness and accuracy,
which could not only reduce the overreliance on fairness algorithms
but also provide guidance on their usage in specific circumstances.
Visualization proves to be an effective way to convey differences
by using comparison techniques, such as juxtaposition, superposi-
tion, and explicit encodings [17]. Thus, visual comparison of fair
algorithms should be provided for increased pedagogical value.
R3. Support what-if analysis. Previous research [48] showed
that allowing students to change the input data and observe its im-
pact on the results, commonly known as what-if analysis, promotes
active learning. Recent visualization systems [51] also embraced
this approach for probing models. Particularly, to facilitate compre-
hension of AI fairness concepts, interactive visualizations should
empower students to witness how alterations to input data can im-
pact model predictions, subsequently influencing fairness metrics,
as commented by P1 and P2.
R4. Visualize appropriate degrees of technical details. It is
challenging for nontechnical students to grasp intricate ML concepts.
Therefore, the visualization should abstract and simplify technical
details wherever necessary, such as model optimization, and focus
on simple and interpretable ML models, such as linear and logistic
regressions. Technical discussions on a complex or opaque model
would detract from the main purpose of learning about AI fairness.
R5. Integrate visualization with texts and images. P1 and P2
addressed the need that visualizations should be integrated with
learning materials, including text and images, to reinforce the com-
prehension of key fairness concepts and facilitate both in-class
demonstration and self-exploration. However, Lee and Singh [32]
found that user interface design could potentially overwhelm the
user with information. It would be important to understand how the
pedagogical efficacy of interactive visualization can be improved
by integrating the appropriate amount of textual content that ex-
plains the algorithms and interprets the visualization and interaction
without creating cognitive overload.

4 INTERACTIVE VISUALIZATION COMPONENTS

We developed our educational module as a mixture of texts, images,
and interactive visualizations, where texts and images are provided
by instructors P1 and P2 to assist in explaining fairness concepts



(R5). Specifically, we designed six types of interactive components
(C1-C6), with each focusing on one specific functionality (R1).
They are used independently or collectively to explain different
aspects of fairness in AI as outlined in T1-T3.

• C1 displays a ML workflow via a logistic regression model;
• C2 supports the customization of training and test data;
• C3 enables the training and the evaluation of an ML model;
• C4 explains and compares different fairness metrics;
• C5 visualizes the results of pre-processing debiasing methods;
• C6 visualizes the results of post-processing debiasing methods.

We use a loan example (Sec. 4.1) and a German Credit dataset [8]
(Sec. 4.2-Sec. 4.4), to explain how these interactive components
are used to educate nontechnical users on fairness in AI and how
our design considerations align with the design rationales (R1-R5).
We highlight key functionalities of these components and discuss
additional features in the supplementary material.

4.1 Making Predictions Using ML Models
For nontechnical users, a good beginning for learning AI fairness is
to understand how ML models make predictions. We design C1 to
illustrate a basic ML workflow using logistic regression, due to its
simplicity and extensive use in practice. Here, a logistic regression is
used to predict a binary variable (valued 0 or 1) via a logistic function.
It assigns each data point a probability and makes a prediction of 1
when the probability is above a threshold (e.g., 0.5).

Figure 1: C1 visualizes the workflow of a logistic regression.

We first visualize logistic regression applied to a toy dataset con-
sisting of 30 data points, as illustrated in Fig. 1. Each data point
represents a borrower and contains a feature called the credit score
and a binary label loan decision that indicates whether the loan
application was approved (1) or denied (0). We fit a logistic regres-
sion with a predictor variable (credit score) and a predicted variable
(loan decision). We describe the overall design of C1, its training
and evaluation processes, and the influence of input data on the
prediction, addressing the three facets of learning in T1.
Overall design. The interface of C1 visualizes the process of train-
ing and evaluating a logistic regression model (Fig. 1). It consists
of four panels: training data panel (a), test data panel (b), model
panel (c), and prediction panel (d). Arrows between panels highlight
the ML workflow. In each panel, a node represents a data point (a
borrower), colored by its loan decision label, approval (1) in orange
and denial (0) in blue. In panels (a), (b), and (d), the x-axis repre-
sents the input (predictor) variable (credit score), whereas the y-axis
represents the output (predicted) variable (loan decision). Panel (c)
depicts the learned relationship between the input and the output,
where the x-axis represents the input variable, and the y-axis encodes
the predicted probabilities of the logistic function. The background
is colored by the probabilities.

For the training and test data in panels (a) and (b), respectively,
nodes are placed based on their ground truth label (top row: orange
nodes, bottom row: blue nodes). In the prediction panel (d), nodes
are placed based on the model predictions.
ML workflow. For nontechnical students, we simplify the expla-
nation of a ML pipeline by focusing on its training and evaluation

processes. To start the training process, users click the “Train Model”
button, and then the fitted curve of probabilities will be displayed
in the model panel (c); see Fig. 1. To start the evaluation process,
users click the “Evaluate Model” button, and then the predicted
probabilities and the predicted labels are displayed in the model
(c) and prediction panels (d), respectively. In the prediction panel
(d), blue nodes on the top row and orange nodes on the bottom row
indicate incorrect predictions. Various visual designs are introduced
to help users better understand the process, such as highlighting the
active panel that is being updated and displaying a text reminder to
guide users toward the next step in the workflow.
What-if analysis. We also design interactions for answering the
following what-if question: how would a model prediction change if
we modify the training or test data? Three types of interactions are
provided in panels (a)-(b) to support modifications of the training/test
data: dragging a node horizontally will change its input variable
value; dragging a node away from a row will delete it; and double
clicking any empty space on a row will add a new data point to the
training/test data. Once the training/test data is modified, users can
click on the buttons to retrain/reevaluate the model.
Design considerations. We aim to reduce visual and technical com-
plexities by considering a single input variable, adopting easy-to-use
interactions for what-if analysis such as drag-and-drop and clicking,
and intentionally omitting certain technical details such as model
validation (R1, R4). An alternative design for the model view is to
show the training process by animating the curve. However, this
design requires the introduction of iterative optimization that may
overwhelm the students, where the main goal is for students to un-
derstand that training a model is essentially learning a mathematical
relationship between the input and output variables.

4.2 Biases in Model Predictions
After explaining a logistic regression, we explain biases in model
predictions (T1). We use a sample of the German Credit dataset [8]
that contains 400 borrowers. Each borrower data point contains a
binary label (loan decision) and five additional features: gender,
age, employment status (employed/unemployed), the number of
dependents the borrower has, and the amount of loan requested.

Biases arise when the input data is divided into several subgroups
by a protected attribute, such as race and gender, and the model
predicts differently for different subgroups. Given a protected at-
tribute, we identify two subgroups, the privileged group and the
unprivileged group, in which the privileged group receives a more
favorable outcome than the unprivileged group. Our goal is to help
users identify and explore biases in model predictions via interactive
visualization. We thus introduce interactive components C2 and C3.

Figure 2: C2 supports the customization of training and test data.

Customize the training and test data. We present C2 to enable
the customization of training and test data; see Fig. 2. In the control
panel (a), users can select a subset of features as input variables,
choose a protected attribute (e.g. gender) to define privileged and
unprivileged groups, and specify the ratio for splitting the training



and test data. When users click the “Generate Training/Test Data”
button, the distribution of training and test data is displayed in the
bar chart panel (b) based on the splitting. In Fig. 2, approval (orange)
and denial (blue) labels are grouped by the protected attribute. Male
and female borrowers are identified as privileged and unprivileged
groups, respectively, based on the protected attribute gender.

Figure 3: C3 enables the training and evaluation of a ML model.

Visualize model performance on subgroups. After generating
input data with C2, users could explore the model performance on
different subgroups with C3. Similar to C1, C3 demonstrates a ML
workflow, but emphasizes the input data and the model prediction
of subgroups defined by a protected attribute. As shown in Fig. 3,
the input panel (a) visualizes the training and test data grouped
by the protected attribute, and is consistent with the output of C2
(Fig. 2b). The prediction panel (b) shows the confusion matrix for
each subgroup and displays the prediction accuracy. We simplify
the model panel (c) to a text box and hide its inner working. Similar
to C1, C3 highlights the active panels during the training/evaluation
process and displays a text reminder when applicable.
Design considerations. For simplicity, we consider only binary
protected attributes and treat the model as a black box, assuming that
students have already obtained an overview of the ML pipeline from
C1. We use grouped bar charts to visualize the input data due to their
effectiveness in displaying and comparing data distributions [22].
These bar charts highlight the sources of bias, such as the inherent
bias or the over-/under-representation in the training data. Addition-
ally, we choose the confusion matrix to display predictions because
it is a core concept in ML that forms the basis for computing various
fairness metrics, and facilitates detailed subgroup comparisons.

4.3 Fairness Metrics
After users have identified the biases in model predictions by com-
paring confusion matrices of subgroups, we explain and compare
four popular fairness metrics using C4: statistical parity difference
(SPD), disparate impact (DI), equal opportunity differences (EOD),
and average odds difference (AOD) (addressing T2). These metrics
are also featured in AEquitas [44] and AI Fairness 360 [5].

C4 contains three panels (Fig. 4): confusion matrix panel (a),
calculation panel (b), and fairness metrics panel (c). Panel (a) dis-
plays the predictions grouped by the protected attribute, which is
consistent with the output panel of C3. Panel (c) visualizes the
four fairness metrics calculated from the confusion matrices. For
each metric, solid vertical lines indicate its current value and dotted
vertical lines represent its fair/baseline value. Values that are biased
against the unprivileged group are shown in gray. The distance
between the current and the baseline value indicates the bias level
of the model predictions. When users select a fairness metric, its
mathematical formula will be displayed in the calculation panel (b).
The example in Fig. 4 calculates the SPD metric, which measures
the disparity in the rate of positive outcomes between female and
male groups.

Under the static visualization setting, users can view only panels
(a), (b), and (c). Under the interactive visualization setting, users
can modify the values within the confusion matrices, and the fair-

Figure 4: C4 explains/compares fairness metrics. Updating values
in confusion matrices will update the fairness metrics accordingly.

ness metrics get updated accordingly. As shown in Fig. 4, when
users update the number of True Positive points in the female group
(indicated by a black arrow) from 24 to 40, the values of all four
fairness metrics move closer to the baseline. In particular, the SPD
value increases from −0.14 to −0.10.
Design considerations. An alternative design we explored for dis-
playing the metric values is the bar charts used in the demo of AI
Fairness 360 [5], where each bar originates from 0. However, we
rejected this approach due to its potential for visual bias. For exam-
ple, the bar length fails to reflect fairness degrees for the disparate
impact metric, which has a baseline value of 1. Besides, we placed
each metric in a separate panel and arranged different metrics in a
juxtaposition [17] for effective comparison (R3).

4.4 Bias Mitigation
Finally, we introduce various methods suggested by P1 and P2
to mitigate the biases observed in model predictions (T3). We
support three pre-processing methods [7, 25, 55], two in-processing
methods [27, 56], and one post-processing method [26].

Given these diverse debiasing methods, it is impractical and un-
scalable to design visualizations for each method. Instead, we design
a uniform visualization for each category, and we visualize only the
input and output of a debiasing method and hide their inner workings
from nontechnical users (addressing R4). This design choice also
increases the scalability of our interactive components.

Figure 5: C5 visualizes pre-processing debiasing methods.

Pre-processing methods aim to mitigate biases by modifying the
input data, such as assigning appropriate weights to individuals, or
transforming the input data to reduce discrimination. We present C5
for users to explore the pre-processing methods. As shown in Fig. 5,
its interface consists of two panels: the input (a) and the output pan-
els (b) visualize the training data grouped by the protected attribute,
before and after applying a pre-processing method. In this example,
we use the reweighing method, which assigns different weights to
individuals from different subgroups such that all subgroups have
a similar proportion of positive data points. When users click the
“Reweighing” button, the modified data together with the weights
applied to each subgroup will be displayed in the panel (b).



Figure 6: C6 visualizes post-processing debiasing methods.
In-processing methods use ML models that take fairness into ac-
count, typically by adding a fairness term when optimizing the
model. We utilize C3 to visualize these methods by changing the
model in the backend. See the supplementary material for details.
Post-processing methods improve the fairness of predictions by
directly changing the predicted results, for example, by modifying
the decision threshold. We propose C6 (Fig. 6) to visualize post-
processing methods. Similar to C5, C6 consists of an input panel
(a) and an output panel (b). Model predictions are grouped by the
protected attribute before and after applying the debiasing method.
In this example, we apply the reject option classification (ROC)
method, and consequently the outcome for 16 males changes from
being approved to being denied. However, the accuracy for the
debiased prediction decreases by 3%.

Furthermore, these debiasing components can be integrated with
C3 to display changes in fairness metrics before and after debiasing.
Simultaneously, the output panel of C4 and the prediction panel
of C6 showcase changes in accuracy in the debiased model predic-
tions. Users can gain insights into fairness-accuracy trade-offs by
comparing these changes (T3, R2).
Design considerations. We drew upon prior design choices for
visualizing bias mitigation, such as the grouped bar charts in C5
and confusion matrices in C6. These choices not only ensures
consistency that reduces the interpretation burden (R1), but also
makes it clear where the technique is applied (T3). In addition, we
adopted visual strategies of juxtaposition and explicit encodings [17]
to enhance the comparison of debiasing effects (R2). For instance,
in C5 and C6, we positioned panels showing outcomes before and
after debiasing side by side, and used arrows in the prediction panel
to indicate changes in model performance.

5 IN-CLASS QUALITATIVE EVALUATION

We integrated the six types of interactive components into an edu-
cational module for a six-week summer 2022 course (1.5 credits)
taught by professors P1 and P2 in the School of Business, Fair Al-
gorithms for Business. We examined the effectiveness of teaching
fairness in AI using visualization. Course topics included Machine
Learning and Fairness (M1), Fairness Metrics and Sources of Bias
(M2), Debiasing Methods (M3), Bias in Texts and Images (M4),
and Final Project (M5). We embedded interactive components in
web documents with texts and images provided by the instructors
as the course material. We used examples described in Sec. 4 for
the first three topics (M1-M3). and a sample of the Bank Marketing
dataset [36] for the assignment (M5). Six graduate and undergrad-
uate students from the School of Business attended this elective
course. By manipulating these interactive components, the students
explored the trade-off between fairness metrics and accuracy, and
learned about pre-processing, in-processing, and post-processing
debiasing methods. At the conclusion of the course, we collected
feedback from the instructors and students, through interviews and
surveys, respectively, to understand the effectiveness of using visual-

ization in learning about fairness in AI.
Instructor Feedback. Instructors P1 and P2 served dual roles in
this project. As part of a project team, they went through an iterative
process in providing design requirements for the visualization com-
ponents. As instructors, they provided feedback on the effectiveness
of these modules during deployment based on instructor-student
interactions in class. P1 and P2 commented that the tool was able
to handle web traffic from multiple students simultaneously. The
material was organized in a proper sequence that went from under-
standing a ML model, to detecting bias in the model prediction, and
then to applying debiasing methods. In particular, the interactive
component C4 was highly valued by the instructors as it allowed
students to alter input and receive output on the fly that could be
assessed for accuracy and bias. This feature increased student en-
gagement since it gave them the freedom to try different values and
understand the consequences. On the other hand, instructors noted
that certain concepts were missing from the educational module,
which may be necessary for students to comprehend the debiasing
methods, such as mutual information and gradient descent. They
suggested designing additional visualizations to explain these con-
cepts. To avoid bias in instructor feedback, it would be useful to
obtain feedback from independent instructors using our educational
modules, which is intended for future work.
Student Survey. Three students (S1-S3) anonymously shared their
user experiences and improvement suggestions for each component,
through free-text responses in an online survey. Overall, they found
the interactive components to be beneficial for their learning. S2
commented that “(the interactive components) help a lot. Intuitive
visual is a really very great method for understanding.” Additionally,
our design allowed students to perform what-if analyses by altering
the model input, which received positive feedback from S1: “It
is a good simulator, you can see that things change as you make
adjustments.” In particular, the fairness metric visualization (C4)
received high praise from S1 and S2, and it was considered to be
“very intuitive” and “highly successful”. On the other hand, S1
initially found the use of the confusion matrix in C3 and C6 to be
confusing, but “once they are placed in the larger simulator in the
final project, they make more sense.” S1 expressed a desire for more
details on the logistic regression: “the math is being done behind the
scenes, and so I did not understand what was happening there.” S3
suggested to “provide code separately if we want a more in-depth
look at the model.”

6 USER STUDY DESIGN

A user study was conducted outside the classroom with a large
sample size of 413 participants. Using three different visualization
formats, we examined whether adding visualization leads to an
increased understanding of fairness concepts.

Past studies have suggested mixed results about the effect of
visualization in education [39, 47]. In particular, Hundhausen et
al. [23] found that how students use Algorithm Visualization (AV)
technology has a greater impact on the effectiveness than what AV
shows them. Grissom et al. [18] identified a taxonomy encompassing
six forms of learner engagement with visualization. Among them,
“no viewing” refers to instruction without any form of accompanying
AV; “viewing” refers to a passive form of engagement where users
watch different visual representations of the algorithm being studied;
and “changing” entails modifying the visualization.

Utilizing past findings, our user study followed a one-factor, three-
level, between-participant experimental design. This design uses
three visualization formats: texts with images of confusion matrices,
static visualization, and interactive visualization. These formats fall
under the categories of “no viewing”, “viewing”, and “changing”,
respectively, according to the taxonomy [38]. In particular, inter-
active visualization aligns well with the “changing” category as it
allows users to change input data, thus modifying the visualization.



6.1 Experimental Conditions
We utilized the fairness metric of disparate impact as the learn-
ing objective in the user study due to its simplicity and popularity.
Moreover, our in-class evaluation indicated that the fairness met-
ric view was especially favored by instructors and students when
demonstrated in class. Although how a visualization is used can be
more important than what is shown [23], we investigated whether a
favorably-reviewed visualization could benefit learning.

We designed the learning material of the user study together with
P1 and P2 following a similar workflow in the course. We first intro-
duced the background on bias in ML and the confusion matrix. We
then explained the concept of disparate impact and its computation
with a loan example. The three experimental conditions provided
the same information on fairness, with only the visualization formats
being varied:

• Texts and Images (TextImg) condition utilizes texts and im-
ages of confusion matrices to explain the computation.

• Static Visualization (StaticVis) condition uses the static C4 to
explain computations, with the fairness metrics panel display-
ing only disparate impact (c.f., Fig. 4).

• Interactive Visualization (InterVis) condition uses the inter-
active C4 and allows participants to change the values of con-
fusion matrices to observe the change of metric values.

6.2 Participants
413 student participants from the School of Business participant pool
took part in the study for partial course credit. They were randomly
assigned to one of the three between-participant conditions: TextImg,
StaticVis, or InterVis. Of all the participants, we excluded in our
analysis 31 participants who reported completing a major or minor in
Computer Science, since we focused on how visualization affected
learning for nontechnical users. The remaining 382 participants
consisted of 378 undergraduates, 3 master’s students, and 1 doctoral
student (based on participants’ self-reports). The sample sizes for
TextImg, StaticVis, and InterVis are 134, 126, and 122, respectively.

6.3 Procedure
The user study was deployed on a customized survey website that
could render the visualization as well as collect user data such as
response time. Participants were initially shown a welcome screen
followed by an informed consent document. The study began after
obtaining the informed consent of the participants.

Participants first completed a background questionnaire regarding
their degree (bachelor’s, master’s, and doctoral) and major (eco-
nomics, social sciences, humanities and arts, policy, natural science,
and engineering). Then they took a pre-test that evaluated their
ability to understand whether the decision of a ML model was bi-
ased or not, and their awareness of the concept of disparate impact.
The average accuracy across all participants was 16.76%, indicating
limited exposure to ML and fairness concepts.

Participants were then provided reading material that introduced
a loan approval case followed by the fairness metric of disparate
impact. Specifically, we explained the interpretation of the visual-
ization and/or the utilization of interaction in the reading material
of StaticVis and InterVis conditions. Participants were randomly
assigned to one of the three visualization conditions that vary by
learning formats. They were allowed as much time as they needed
to review the learning material.

Subsequently, participants were directed to questions in a post-
test, which included two sets of questions designed based on the
Bloom’s taxonomy [28]. Bloom’s taxonomy structures a learner’s
depth of understanding into six levels of objectives (remember, un-
derstand, apply, analyze, evaluate, and create), and the two sets of
questions fall into the first two levels remember and understand,
referred to as recall and comprehension in our study. The first set

of recall questions was the same as those in the pre-test. The aim
was to examine whether different visualization conditions improved
their understanding of bias in an ML model. The second set of com-
prehension questions was designed to further examine how well the
participants understood the concepts under different visualization
conditions. The questions were more nuanced and in-depth. For
the InterVis group, interaction operations were disabled when an-
swering comprehension questions because participants could simply
enter the values and the interactive components would provide the
answers.

Finally, to examine how participants’ experience differed across
the three conditions, we asked them three impression questions about
their impression of the learning material on a 5-point Likert scale.
They were also provided with an open-ended question to collect
their subjective feedback about the learning experience. The study
concluded with a validated visual learning style questionnaire that
consists of 22 questions on a 6-point Likert scale [1]. All questions
can be found in the supplemental material.

7 USER STUDY RESULTS

Via the backend of the survey website, the user study collected par-
ticipants’ responses to pre-test and post-test questions, time spent on
each webpage, whether participants referred to the learning material
while answering the post-test questions, open-ended responses, and
responses to the impression questions and learning style questions.

The user study utilized a one-factor, three-level, between-
participant experimental design. We used the analysis of variance
(ANOVA) and linear regression to analyze the data. The three
conditions—TextImg, StaticVis, and InterVis—served as the inde-
pendent variables. The dependent variables included accuracy in the
recall test, accuracy in the comprehension test, and responses to the
impression questions.

We first examined the influence of the three conditions on each
dependent variable by performing a one-way ANOVA, and then
conducted the pairwise comparison using Tukey’s HSD Test if sig-
nificant differences were found. Second, we tested whether the time
spent on the learning material moderated the influence of the three
conditions and each dependent variable using regression analysis.
Third, we tested how the visual learning style moderated the rela-
tionship between the three conditions and each independent variable.
The visual learning score was calculated based on 11 visual-related
questions in the visual learning style questionnaire. The reported sta-
tistical results were validated using StatCheck [21]. For qualitative
analysis, we summarized the subjective feedback of users in Sec. 7.4.
Notably, we found that only 16 of 122 participants in the InterVis
group used interaction, which is similar to a phenomenon observed
by Mosca et al. [37]. We then analyzed their subjective feedback in
detail. We also analyzed the time that participants spent answering
questions and revisiting material without significant findings (see
the supplemental material for completeness).

7.1 Recall Questions

Accuracy gain. The recall questions were designed to measure
whether reviewing the learning material improved participants’ ac-
curacy in answering the same set of pre-test questions. Accuracy
gain—the difference in accuracy before versus after reviewing the
material—was used as the dependent variable; see Fig. 7 (a). A
one-way ANOVA test revealed a significant difference across the
three conditions, with an F-value F(2,379) = 4.134 and a p-value
p = 0.017.

To further examine the difference, we used the Tukey’s HSD
test for multiple comparisons and found that the StaticVis condition
had a significantly higher mean accuracy gain than the TextImg
condition, with p = 0.033, and a 95% confidence interval CI =
[0.008,0.251]. The InterVis condition had a significantly higher
mean accuracy gain than TextImg with p = 0.040 and a 95%CI =



[0.004,0.249]. However, there was no significant difference in the
mean accuracy gain between the StaticVis and InterVis conditions
(p = 0.900, 95%CI = [−0.122,0.127]).

Figure 7: (a) Accuracy gain of recall test and (b) reading time before
and during recall test. Error bars show 95% confidence intervals. *
indicates a significant difference between conditions (p < 0.05).

Influence of reading time. We then investigated whether the read-
ing time influenced the relationship between the three conditions and
accuracy gain. The reading time was calculated as the time partici-
pants spent in reading the learning material, before and during the
recall test. We noticed that several participants had a very long read-
ing time, possibly due to their temporary absence during the study.
To reduce data bias, we removed seven significant outliers using the
Mahalanobis distance (p < 0.001). The results are shown in Fig. 7
(b). While InterVis participants showed the longest average reading
time, the one-way ANOVA result (F(2,372) = 1.259, p = 0.285)
indicates no significant difference across three conditions.

Next, we tested the influence of reading time on the accuracy gain
across the three conditions. We ran a linear regression using TextImg
and StaticVis as the reference condition, respectively, to enable all
pairwise comparisons. The analysis revealed a significant interaction
between TextImg × StaticVis and reading time (p = 0.0498), and be-
tween InterVis × StaticVis and reading time (p = 0.014). This result
implies that StaticVis achieved a significantly higher accuracy gain
than TextImg and InterVis when participants spent longer reading
time. See the supplementary material for additional details.
Influence of visual learning ability. Finally, we examined whether
visual learning ability would affect the relationship between three
conditions and accuracy gain by employing linear regression (twice)
with reference conditions being TextImg and StaticVis, respectively.
The p-values of condition pairs were TextImg × StaticVis: 0.282;
TextImg × InterVis: 0.976; InterVis × StaticVis: 0.304. In short, our
result revealed no significant interactions between visual learning
ability and conditions.
Highlighted results. Overall, our findings suggested that our static
and interactive visualization design could significantly enhance accu-
racy gain on recall questions compared to texts and images. We also
found that reading time did not differ significantly across three con-
ditions, but static visualization demonstrated the most significant im-
provement in accuracy gain as reading time increased. Furthermore,
visual learning ability did not significantly impact the relationship
between the three conditions and accuracy gain.

7.2 Comprehension Questions
The comprehension questions were intended to evaluate participants’
comprehension of the learning material, which required a deeper
understanding than the recall questions. We calculated the accuracy
of the comprehension test as the performance metric. A one-way
ANOVA indicated that there was no significant difference in the
mean accuracy across the three conditions (F(2,379) = 0.660, p =
0.518). We also analyzed the influence of reading time and visual
learning ability on accuracy but found no significant results. Details
of the analysis are provided in the supplementary material.

7.3 Impression Questions
We collected participants’ ratings of the learning material based on
three impression questions using a 5-point Likert scale (1 = strongly

disagree, 5 = strongly agree). The questions focused on whether the
visualizations were effective (Q1), engaging (Q2), and recommended
(Q3). We provide a detailed analysis in the supplementary mate-
rial. In short, we observed no significant differences in participants’
ratings of each impression question among three conditions, and
reading time did not significantly impact the relationship between
conditions and ratings.
Highlighted results. However, regarding the recommendation ques-
tion (Q3), we noted a significant interaction between visual learning
ability and the StaticVis or InterVis condition (p = 0.027). This
finding suggests that although visual learning ability did not sig-
nificantly impact the accuracy in the post-tests as demonstrated in
Sec. 7.1 and Sec. 7.2, participants with higher (resp., lower) visual
learning ability are more likely to recommend learning material with
interactive visualization (resp., static visualization).

7.4 Subjective Feedback

All participants provided subjective feedback about the learning
material by answering the following open-ended question:

How has the information shown on the screen changed your
understanding of the topic? In the space provided please let us
know your thoughts in as much detail as possible. Please list the
new concepts that you learned and which aspects of the learning
environment helped you understand the concepts the most.

To analyze the subjective feedback, we conducted a semantic
analysis using the open-source library pysentimiento [41] to cat-
egorize each response as positive, neutral, or negative. Positive
(resp., negative) responses describe how the learning material aids
(resp., obstructs) their understanding of the concepts, whereas neu-
tral responses either simply state what they have learned from the
material or mention both positive and negative aspects of it. Table 1
shows the percentages of these three categories under each condition.
The three conditions share similar percentages of negative responses,
whereas the StaticVis condition exhibits a smaller amount of positive
feedback than the other two conditions. Guided by the sentiment
analysis, we carefully examined all responses and summarized key
factors that either promote or impede the learning process.

Condition Positive Neutral Negative
TextImg 32.8% 29.1% 38.1%
StaticVis 23.0% 38.9% 38.1%
InterVis 32.8% 33.6% 33.6%

Table 1: Semantic analysis of subjective feedback.
Visualization improves concept understanding. Under the Stat-
icVis and InterVis conditions, we obtained 16 and 23 positive com-
ments, respectively, in which participants explicitly stated that the
visualization helped them understand the material better. One Stat-
icVis participant said, “The graphics helped me learn the most.”
Another InterVis participant said, “I really enjoyed the visuals as
I am a visual learner, and it helped me grasp the concepts being
displayed.” Even though we showed only a simple image of the
confusion matrix under the TextImg condition, 18 participants ex-
pressed a preference for it. One participant noted, “I thought that the
simplified relationships relating to the quadrants of the confusion
matrix were useful for identifying what each one meant.” However,
we observed three responses under each condition that considered
the visualizations confusing or unclear. Overall, visualization could
serve as an effective way to improve the learning experience.
Interaction facilitates metric comprehension. We further ana-
lyzed feedback from 16 InterVis participants who interacted with the
visualization based on our log data. Among them, seven participants
explicitly expressed strong preferences toward the interaction design,
which helped them better understand the mathematical definition
of disparate impact. One participant noted, “What helped me learn



the most had to be the interactable table which let me change the
numbers around, and it really helped me understand which number’s
increasing or decreasing affect the disparate impact.” Another partic-
ipant commented, “The graphs helped, and I really liked the idea of
the interactive graph that shows you how the calculation changes as
you change the inputs.” However, we also found a participant who
disliked the visualization due to an unmatched learning style, who
stated, “It was difficult since my brain does not do well with graphs.”
Whereas the use of interaction cannot be ensured, those who engage
with visual interaction appear to benefit from the interactive features.
Factors hindering learning experience. We identified two factors
from negative and neutral responses that hindered participants’ learn-
ing experience. First, the lack of knowledge in ML or data science
made it challenging to comprehend the material (e.g., mathematical
formulas or technical concepts), reported by 7, 7, and 9 participants
from the three respective conditions. A TextImg participant said,
“The paragraphs were bulky and technical, which was not an effective
mode of communication for someone with no previous knowledge
of the topic.” Second, the presentation of excessive information
made the material less appealing to participants, reported by 11, 9,
and 5 participants from the three respective conditions. An InterVis
participant stated, “I found it challenging to want to read the informa-
tion. There was a lot of information in large paragraphs.” Although
explaining ML concepts like model predictions is inevitable before
fairness metrics, the introduced cognitive overload may degrade the
use of visualization. Therefore, further experiments are needed to
investigate how the participants’ cognitive overload may influence
the use of visualization.

8 LIMITATIONS AND FUTURE WORK

Supporting diverse fairness tasks. In addition to group fairness
in classification, it would be useful to extend our visualization to
incorporate individual fairness and intersectional fairness into other
ML tasks (e.g., regression and clustering).
Adjusting level-of-details of ML models. We visualized a sim-
ple logistic regression model and treated bias mitigation models as
black boxes, to avoid overwhelming the nontechnical users. How-
ever, some students expressed a desire to dive deeper into the inner
workings of ML models (Sec. 5). Instructor P1 further expressed
that “even if we use a simple linear regression example, a student
should be able to understand optimization.” It would be useful to
incorporate concepts that can be adapted for students requiring finer
levels of details, such as loss functions, gradient descent, and mutual
information. Following recent advances on explainable AI [4, 31],
it would be interesting to introduce advanced models (e.g., neural
networks and large language models) to nontechnical students.
Improving user study. Our user study also has limitations. First,
as the user study was conducted outside the classroom without time
and location restrictions, the uncontrolled study environment may
lead to biased data collection, caused by distracting environments,
users’ temporary absences, and varied study times. Second, we
observed that the comprehension question accuracy was low across
three the conditions, which may have been caused by the excess of
text presented in the learning material that might have overwhelmed
participants. Such overload would lower learning interests and re-
duce the willingness to interpret the visualization and interactions,
consequently affecting learning performances. Whereas previous
research [48] has shown the benefits of combining text with visual-
ization, our findings suggest that excessive text may lead to cognitive
overload, a phenomenon also noted by Lee et al. [32]. It would be
interesting to investigate how the ratio between visualization and
text could influence user performance. Third, our study revealed
that both static and interactive visualization improved student’s per-
formance in recall questions within a short time frame. It would
be useful to assess an educational module’s potential in enhancing

long-term knowledge retention by conducting a subsequent study
after a specified period.

Another limitation in our study is the limited use of interaction
(13%), in line with prior research by Mosca et al. [37]. Although we
analyzed the relevant feedback in detail, a quantitative assessment of
the value of interactions requires further investigation, where partici-
pants are exclusively exposed to the InterVis condition and explicitly
directed to utilize interactive features. The reason behind the low
usage of the interaction cannot be inferred from the users’ subjective
feedback and remains unclear. More research is required to identify
influencing factors, such as user omissions, lack of motivation, tech-
nical barriers, or inappropriate interaction design. Finally, our study
focused only on visualizing the fairness metrics and a single type of
interaction that modifies the input data. Future studies are needed
to investigate the influence of different types of visualization and
interaction on learning performance.
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