Comparing Mapper Graphs of Artificial Neuron Activations

Youjia Zhou, Helen Jenne, Davis Brown, Madelyn Shapiro, Brett Jefferson,
Cliff Joslyn, Gregory Henselman-Petrusek, Brenda Praggastis, Emilie Purvine, Bei Wang

Abstract— The mapper graph is a popular tool from topological data analysis that provides a graphical summary of point cloud data.
It has been used to study data from cancer research, sports analytics, neurosciences, and machine learning. In particular, mapper
graphs have been used recently to visualize the topology of high-dimensional artificial neural activations from convolutional neural
networks and large language models. However, a key question that arises from using mapper graphs across applications is how to
compare mapper graphs to study their structural differences. In this paper, we introduce a distance between mapper graphs using tools
from optimal transport. We demonstrate the utility of such a distance by studying the topological changes of neural activations across
convolutional layers in deep learning, as well as by capturing the loss of structural information for a multiscale mapper.

Index Terms—Mapper graphs, hypergraphs, neuron activations, deep learning, optimal transport

1 INTRODUCTION

The mapper graph is a popular tool from topological data analysis
that provides a graphical summary of point cloud data. First intro-
duced by Singh et al. [67], it has been used to study data from cancer
research [53], sports analytics [45], neuroscience [63], and machine
learning [55, 58]. In particular, mapper graphs have been used re-
cently to visualize the topology of high-dimensional artificial neural
activations (i.e., outputs of neurons) from convolutional neural net-
works (CNNs) [55] and large language models (such as BERT and
RoBERTa) [58].

However, a key question that arises from using mapper graphs across
applications is how to compare these mapper graphs to study their
structural differences. In this paper, we aim to address such a question.
Our contributions include:

* We introduce distances between mapper graphs using existing
tools from optimal transport. We consider these distances to be
well suited to compare mapper graphs of neuron activations, as
they are both easily computable and interpretable (Section 4).

* We demonstrate the utility of such a distance by studying the
topological changes of neural activations across convolutional
layers of CNNs (Section 5).

* We show that such distances are additionally applicable for cap-
turing the loss of structural information for a sequence of mapper
graphs that arise from a multiscale mapper [25] (Section 6).

We expect our framework to be applicable beyond deep learning when-
ever sequences of mapper graphs arise from data, such as shape analysis
and scientific visualization in material sciences.

2 RELATED WORK

Mapper in data analysis and visualization. The mapper graph is the
I-dimensional skeleton of the classic mapper construction designed
to summarize high-dimensional data [67]. It is a data analysis and
visualization tool by design, and has seen widespread applications.

e Y. Zhou and B. Wang are with the University of Utah. E-mails:
zhouyj96180@ gmail.com, beiwang @sci.utah.com

e H. Jenne, D. Brown, M. Shapiro, B. Jefferson, C. Joslyn, G.
Henselman-Petrusek, B. Praggastis, and E. Purvine are with the Pacific
Northwest National Laboratory. Emails: {helen.jenne, davis.brown,
madelyn.shapiro, brett.jefferson, Cliff.Joslyn,
gregory.roek,brenda.praggastis, Emilie. Purvine} @pnnl.gov

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

A key strength of the mapper graph is that it is coordinate and de-
formation invariant [16], making it suitable for examining data across
participants or subgroups [64]. In neuroscience and biomedicine, the
mapper graph has been used to study genetic data from breast can-
cer [53], imaging and behavior data from patients diagnosed with
fragile X syndrome (FXS) [62], and motor features in Parkinson’s dis-
ease [46]. It recently has shown promise in generating insights from
fMRI data [33], in particular, in “distilling complex brain dynamics
into interactive and behaviorally relevant representations” [64]. In
biophysics, the mapper graph has been used to study biomolecular
folding pathways [74]. Outside of science and engineering, it has
also been used to characterize NBA basketball players’ performance
statistics and to study voting data from the United States House of
Representatives [45].

A number of open-source software packages are available for mapper
computation and visualization, including general purpose tools Mapper
Interactive [77], KeplerMapper [72], giotta-tda [69], Gudhi [70], and
Python Mapper [49]. In application domains, Pheno-Mapper [78]
and Hyppo-X [39] explore phenomics datasets. DyNeuSR is designed
to explore topological properties and neurophysiological correlates
of mapper graphs from neuroimaging datasets [33], and NeuMapper
implements a neuroimaging-focused (e.g., fMRI) mapper pipeline.
Distances between mapper graphs. The mapper graph may be con-
sidered as a discrete approximation [13,51] of a topological descrip-
tor called the Reeb graph. A number of distances have been devel-
oped for Reeb graphs and their variants, including interleaving dis-
tance [14,20,21, 24,48, 50], functional distortion distance [5, 7], func-
tional contortion distance [3], edit distance [4, 6, 26, 68], Gromov-
Hausdorff distance [17,71], and more [8, 15,65]. A major drawback
of some of the above distances is that they are hard to compute. For
instance, it is NP-hard to approximate the interleaving distance for
merge trees (i.e., special cases of Reeb graphs) [48] within a factor of 3.
The O-interleaving distance between Reeb graphs is graph isomorphism
complete [10,24]. Even the more general graph edit distance is NP-hard
to compute exactly [76]. See [11, 73] for surveys.

In comparison with previous work, an important distinction is that
we are not comparing mapper graphs as graphs, but as hypergraphs.
Our framework models mapper graphs as hypergraphs and explicitly
takes into consideration the matching between vertices and hyperedges
during the comparative analysis. Whereas most existing distances are
hard to compute (with a few exceptions), we introduce distances based
on optimal transport that are easily computable via gradient descent
(e.g., [54]) and the Python Optimal Transport library [30]. Furthermore,
our distances are also interpretable in the sense that they offer proba-
bilistic matchings between vertices and hyperedges (see Section 4).
Topology and deep learning. For simplicity, we use “(neuron) activa-
tions” to refer to the high-dimensional vector representations produced
by outputs of neurons from a particular layer of a neural network and
“activation space” to refer to the space of these vectors.

Topology-based methods, such as persistent homology [27] and

mapper graphs, have been utilized in machine learning, in particular,
deep learning, in recent years. Following a recent survey [36], extrinsic
topological features have been defined as the transformations of topo-
logical descriptors from data into feature vectors to be used as input
to machine learning models, whereas intrinsic topological features are
used to influence machine learning models themselves via architecture
choices or regularization. From an intrinsic perspective, quantifiers
based on persistent homology were developed to quantify the learnabil-
ity or complexity of neural networks, such as topological capacity [34]
and neural persistence [61]. Gebhart et al. [32] studied the topology of
neural network activations using persistent homology. They introduced
the activation graph, which is a sequence of bipartite graphs between
neurons of adjacent layers whose edge weights capture how much an
input “activates” the connections between the neurons. Lacombe et
al. [42] monitored trained neural networks based on the topological
properties of their activation graphs. Using mapper graphs, Gabrielsson
et al. [31] showed that the weights of convolutional layers (referred
to as weight spaces in contrast to our activation spaces) learn simple
global structures, and such structures change across training.

Several previous works are most relevant to ours. Rathore et al. [57]
introduced TopoAct, which uses mapper graphs to interactively visu-
alize and explore neuron activations from image classifiers. Zhou et
al. [79] visualized the topology of neuron activations in deep adversar-
ial training. Rathore et al. [58] presented TopoBERT, a visual analytics
system based on mapper graphs for exploring the fine-tuning process
of transformer-based models, across multiple fine-tuning batch updates,
subsequent layers of the model, and different natural language pro-
cessing (NLP) tasks. Purvine et al. [55] modeled neuron activations
as high-dimensional point clouds and applied persistent homology to
quantify meaningful differences between layers. They also studied how
mapper graphs of neuron activations evolve visually across layers and
provide semantic insight into how deep models organize hierarchical
class knowledge.

This work could be considered as a natural extension of previous

work [55,57] in studying the topology of neuron activations. However,
the focus of this work is to develop distances useful for comparing
mapper graphs that arise from CNNs, which may be applicable to
comparing mapper graphs derived from other deep learning models and
tasks such as weight spaces [31].
Visualization of neuron activations. An explosion of research in
recent years has aimed to explain deep learning models by visualizing
neuron activations; see [37] for a survey. Examples include salience
maps [66], activation maximization [28], DeepVis [75], multifaceted
feature visualization [52], TCAV (Testing with Concept Activation
Vectors) [40], activation atlas [18], SUMMIT [38], and visual analytics
of neuron vulnerability [44].

This work builds on previous research that constructs and visualizes
mapper graphs of neuron activations [55, 57, 58]. However, instead
of focusing on interactive exploration of neuron activations, this work
addresses a key challenge in using mapper graphs in practice, that is,
how to compare mapper graphs in an intuitive and computationally
efficient way.

3 BACKGROUND ON ACTIVATIONS AND MAPPER GRAPHS

Neuron Activations. The input to a CNN is an image, and the output
is a probability vector communicating the likelihood the input image
belongs to each class. The intermediate outputs of neurons from each
convolutional layer are referred to as the activation tensors, which may
be sliced vertically into spatial activations. In a nutshell, a spatial
activation is a high-dimensional vector formed by neuron outputs of an
image patch at a fixed layer, as visualized in Figure 1. The dimension of
a spatial activation (referred to as an activation or an activation vector)
is the number of neurons/channels at a fixed layer.

For each training image from the CIFAR-10 dataset, we experiment
with two types of spatial activations: the random activations and the
foreground activations.

For random activations, we randomly sample a single spatial activa-
tion from a number of image patches at a fixed convolutional layer.

= airplane
automobile

Spatial width = bird ° ®® °
~ . cat
§ 3 deer @@ ®®® @® @
£ g mmdg oo @ e® 00 o
2 I e .® @ 8¢ o
&, (&) ship O®® @@ ® e
[2) truck@ @@ e® @ o ® e O ®
)
@@ ®o e g ®®@®® ® o
@ ‘99 g @ ® [CH NG
@®@® o _ ® ee” ©°°
®®®@ e e §® 0o®e_ © e
®
® e© x 0y ©°
00®® g00® Ty b4 Pg
@ ® @ ®
e ¢ 00000 g
@@GB @ P @ ®
® @ Q@ OOO
e o ©

Fig. 1. Left: a spatial activation within an activation tensor for a CIFAR-10
image. Right: a mapper graph of random activations from CIFAR-10.

For foreground activations, we are interested in studying how fore-
ground information of an input image manifests in the activation space
following [55]. Each spatial activation corresponds to a subset of the
foreground or background pixels in its effective receptive field, which
is the region of the input image that the network has “seen” via contri-
butions from previous layers [55]. To generate foreground activations,
we first use cv2.grabCut from the OpenCV library [12] to perform
image segmentation and identify the foreground pixels of an input im-
age. We then choose a spatial activation with the largest percentage
of foreground pixels in the effective receptive field, referred to as the
foreground activation.

Using a ResNet-18 CNN model with 50K CIFAR-10 training images,
for each type of activation, each layer gives rise to a high-dimensional
point cloud with 50K points. Since ResNet-18 contains 16 convolu-
tional layers, it gives rise to 16 point clouds with varying dimensions.

Af
Vi 1

Fig. 2. A point cloud in R? and its mapper graph.

Mapper graphs. Given a point cloud of neuron activations, we capture
its topology via a graphical representation called the mapper graph [67]
that represents clusters from the point cloud as mapper nodes and
preserves cluster relations as mapper edges. We review its definition
for a generic high-dimensional point cloud.

Let X be a d-dimensional point cloud (e.g., d would be the number
of neurons at a fixed layer for a high-dimensional spatial activation).
A cover of X is a set of open sets in R U = {U; }:ic1 such that
X C U;erU;. We construct the 1-dimensional nerve of I/, denoted as
N1 (U), as follows: each node i in N7 (U) represents a cover element
U;, and there is an edge between nodes ¢ and 7 if U; N U; is nonempty.
As shown in Figure 2, given a 2-dimensional point cloud X, the colored
rectangles on the left are open sets in R? that form a cover U of X; the
1-dimensional nerve of I/ is shown on the right.

In the mapper construction introduced by Singh et al. [67], a cover
of X is obtained by a scalar function defined on X, referred to as a filter
function. In our setting, we define a mapper graph with a single filter
function f : X — R. A uniform cover V = {Vi.};_; of f(X) C R
is obtained using partially overlapping intervals of uniform lengths
such that f(X) C U V. The cover U of X is obtained by considering
the clusters, obtained from a chosen clustering algorithm, induced by
points in f (V%) as cover elements (for each V},). The 1-dimensional
nerve of U is the mapper graph of (X, f).

We give Figure 2 as an example. A 2-dimensional point cloud
X is sampled from the silhouette of a steaming pork bun (left). We
use a height function f : X — R as its filter function. A cover
Y ={V,---,Vs}of f(X) is formed by six uniform intervals (middle).
For each k € [1,6], f~*(V4) induces a number of clusters that are
subsets of X. These clusters are enclosed by rectangles and form the
elements of a cover U/ of X (left). The mapper graph of X is shown
on the right. For instance, f~*(V4) induces three cover elements in
orange (including Us), whereas f~* (V%) induces three cover elements
in blue (including Uz). Uy and Uz become nodes 1 and 2 in the mapper
graph, and since Uy N Uz # (), there is an edge connecting node 1 and
node 2 in the mapper graph.

A number of parameters are needed to construct a mapper graph,
including the filter function f, the number of cover elements n, and
their percentage of overlap p, the metric dx on X which is necessary
for computing distances between points in the clustering step, and the
clustering method. As shown in Fig. 2, n = 6, p = 30%, dx is the
Euclidean distance, and the clustering method is the density-based
DBSCAN [29] that contains two additional parameters (min Pts: the
minimum number of points required to form a dense region; e: and the
size of a neighborhood). With an appropriate choice of parameters, the
mapper graph captures the shape of the input data; see [19,77] for a
discussion on parameter tuning.

Applying the above algorithm to a point cloud of neuron activations,
we obtain a mapper graph that captures its topology, that is, the organi-
zational principle behind neuron activations. As illustrated in Figure 1
(right), we give an example of a mapper graph obtained by random
activations of CIFAR-10 training images at layer 16 of a ResNet-18
model. Since there are 512 neurons/channels at layer 16, each image
gives rise to an activation vector in 512 dimensions. The filter function
f is chosen to be the ¢2-norm of an activation vector, which reflects how
strongly the neural network “reacts” to a given image. We set n = 40
and p = 20%. For parameters associated with DBSCAN, € = 8.71,
minPts = 5. As observed previously [77], the mapper graph not
only clusters images from each class into a separate branch, but also
highlights the hierarchical relationship among the different classes.
Specifically, we see a clear, slightly delayed bifurcation between the
automobile images (contained in the orange mapper nodes) and truck
images (contained in the sky blue mapper nodes), since these images
are more similar to each other than to images from other classes.

Vg &7
‘ 0%
/‘\ | o09®e® |
S L
® @ .. [)
!g [] [\ o® ..
o SR
8o P J ‘ v 8o
g ®e 0 ,0%
® oo ® oo

Fig. 3. Two mapper graphs at different scales. Points are sampled from a
2-dimensional annulus. Covers V and V'’ contain six and three intervals
respectively.

Multiscale mapper. The basic idea behind the multiscale mapper [25]
is that as the cover V varies, we obtain mapper graphs at different
scales, as illustrated in Figure 3.

The multiscale mapper was developed to relate mapper graphs con-
structed at different scales. A key idea necessary to relate mapper
graphs constructed at different scales is that of a map of covers. Let
V = {Vitier and V' = {V]}c s be two covers of a topological space,
then aset map ¢ : I — J is amap of covers if V; C Vﬂ;(i) forallz € I.
The multiscale mapper utilizes the observation that a map of covers
induces a map between mapper graphs at different scales. For example,
there is a map of covers between the two covers in Figure 3, which
induces a map between the mapper graphs across two scales.

Given a collection of finite covers Vi, Vs, ..., Vm of f(X) such
that there are well-behaved maps between them, we call it a rower of
covers (across m scales) [25]. More generally, the well-behaved maps

of covers are defined such that for any 1 < 4,7,k < m, the maps
@i 1 Vi = Vjsatisfy ¢y s = id, and ¢;, 1 = ¢j x © @i 55 see [25] for
technical details.

4 METHOD

To compare a pair of mapper graphs that arise from deep learning, we
introduce a distance between them using existing tools from optimal
transport. In our context, a mapper graph is a hypergraph in which each
data point is a vertex in the hypergraph and a cluster of data points from
the mapper algorithm forms a hyperedge. We treat each hypergraph as a
measure hypernetwork using existing tools from optimal transport [22].

41

Formally, a measure hypernetwork is a tuple H = (X, u,Y,v,w),
where X and Y are well-behaved topological spaces (i.e., Polish
spaces), p and v are probability measures on X and Y, respectively,
andw : X X Y — Ris a well-behaved (e.g. measurable and bounded)
weight function that captures relations between elements in X and
elements in Y [22].

Modeling Mapper Graphs as Measure Networks

(

(N (

()
()

o oy

Fig. 4. An example of modeling a hypergraph (left) as a measure hyper-
network where w (right) captures incidence relations between vertices
and hyperedges. Black nodes represent vertices, whereas colored nodes
and colored convex hulls both represent hyperedges.

In our context, we treat a mapper graph (specifically, the cover in-
duced by the mapper graph) as a finite hypergraph H = (X,Y"), where
X is a set of vertices, and Y is a set of hyperedges. Such a hypergraph
may be modeled as a measure hypernetwork H = (X, i, Y, v,w) by
introducing probability measures p and v on its vertices and hyper-
edges, respectively based on the hypergraph structure, and the weight
function w based on the node-hyperedge relations.

For example, we may choose p and v to be the uniform measures
on vertices and hyperedges, respectively, i.e., u(x) = 1/|X| for any
z € X and v(y) = 1/|Y| for any y € Y. The weight function w may
encode the incidence relation, that is,

1, ifxey;
w(x,m:{ Y

w =

OO O = =
O = = O =
= O = O
O == OO

&)

0, otherwise.

The above formulation means that w(z,y) = 1 if anode z € X
belongs to a hyperedge y € Y. Figure 4 gives a simple example of
modeling a hypergraph as a measure hypernetwork. Here, we have a
vertex set X = {1,2,3,4,5} and p(z) = 1/5 foreach z € X. We
have a set of hyperedges Y = {a, b, ¢, d}, where p(y) = 1/4 for each
y € Y. wisa|X| x |Y]| matrix capturing the incidence relation, e.g.,
w(2,1) = 1 means that vertex 2 belongs to hyperedge a.

Alternatively, to capture richer relations between vertices and hyper-
edges, w may encode a (weighted) shortest path relation. To define w,
we need to first introduce the notion of a line graph. The line graph
L(H) of a hypergraph H is a graph whose node set is the set of the
hyperedges of H, where two vertices in L(H) are connected by an
edge when their corresponding hyperedges in H have a nonempty
intersection, see Figure 5 for an example.

Edges in a line graph L(H) may be weighted, where a larger weight
indicates a larger distance between a pair of vertices. For a pair of
vertices v, v’ € L(H), their assigned weight w(v, v") may be inversely
proportional to the intersection size of their corresponding hyperedges y
andy’ in H. Thatis, w(v,v’) = 1/|yNy’|. Alternatively, w(v,v") may
be the Jaccard distance (one minus the Jaccard index) that measures the

dissimilarity between y and ¢, w(v,v’) = 1 — Izgz/} . As illustrated

v

Fig. 5. An example of a hypergraph H (left) with its corresponding line
graph L(H) (right). Left: black nodes represent vertices in a hypergraph,
whereas colored nodes and colored convex hulls both represent hyper-
edges. Right: colored nodes represent vertices of L(H) that correspond
to hyperedges in H. An edge in L(H) is weighted by the Jaccard index
between a pair of hyperedges in H that correspond to its end points.

in Figure 5 (right), edge thickness in the line graph scales with the
Jaccard index between hyperedges. For example, hyperedges y and 3’
has a Jaccard index of 2/3, then w(v,v") =1 —2/3 =1/3.

Aksoy et al. [2] introduced the notion of s-walk between hyperedges
y and 3/’ in a hypergraph H, which is a sequence of hyperedges, y =
Yo, Y1, -, Yo = Y, where y;1 # yj and |y;—1 Ny;| > s, for 1 <
7 < k. In our context, we set s = 1 and work with 1-walks without
repeated hyperedges (referred to as paths). By construction, a (shortest)
path between hyperedges y and v’ in H corresponds to a (shortest) path
between vertices v and v in L(H).

We are now ready to introduce the shortest path relation between
vertices and hyperedges in H. That is, we define w(z,y) between
a vertex + € X and a hyperedge y € Y to be the length of the
shortest path from any hyperedge 3’ containing z to hyperedge y in H.
Formally, we have

oo~ {0 ifeey;
Y= ming cy,zey d(y,y’), otherwise.

@3

Here, d(y, y') is the shortest path distance between hyperedges y and
,
y in H.

4.2 Comparing Mapper Graphs Using Optimal Transport

Given two hypernetworks H = (X,u,Y,v,w) and H =
(X', 1/, Y’ V', w") modeling mapper graphs, the Gromov-Wasserstein
(GW) distance between them is defined as [22]:

daw (H,H')* =

>

zeX,yeY,x’ €X',y €Y’

min
mEC(n,p'),E€EC(v,v")

(w(xv y) - w/(iljl, y,))27r(xv x')f(y, y/)
(3)

Here, 7 is a coupling of X and X', that is, a joint probability measure
on X x X' such that its marginals agree with u and y’, respectively.
C(p, 1) is a set of couplings between j and p'. Similarly, £ is a
coupling of Y and Y’, and C(v, V') is a set of couplings between v and
. Following [22], computing dgw requires optimizing the couplings
between vertices and hyperedges at the same time using co-optimal
transport [59].

We give an example in Figure 6 with a pair of hypernetworks, H =
(X, p,Y,v,w) (left) and H' = (X', 1/, Y,/ ,w’) (right). For both
hypernetworks, we set 1, v (and ', ") to be proportional to the degrees
of vertices and hyperedges, respectively, and w, w’ to be the weighted
shortest path based on Jaccard distance. For normalized vertex degree,
we set pu(z) := deg(x)/> /¢ x deg(z’). For normalized “hyperedge
degree”, we use the normalized sum of vertex degree, that is, v(y) :=
U(Y)/ > yey P(Y'), where D(y) := 37, deg(z). See Appendix B
for other parameter details.

We perform 20 instances in optimizing the GW distance between
H and H' with random initialization. The best (and smallest) GW

!/
H @5 p H @5 p
@c Jc
3 ®b < b
3
[e O
d
< / ¢ /
02 a— @) 02— 4—gep
H o5 H M98
4
N B \4
®c ot
<) ®b ®b
.\3 o8
ed
- / v
@2 (e O 02 ®a WB

Fig. 6. An example of GW-based coupling of hyperedges and vertices
based on the best GW matching.

distance (valued at 0.1079) gives rise to a hyperedge coupling matrix
m and a vertex coupling matrix £, which are, respectively,

0.2395 0.0504 0.0630
o 0 0.2353 0
£= 0 0 0.2941
0.1176 0 0
0.1944 0 0 0.0278 0
0.0556 0.1250 0.0417 0 0
™= 0 0 0.2083 0 0.0139
0 0 0 0.2222 0
0 0 0 0 0.1111

& and 7 are visualized in Figure 6 using a color transfer. Fix a cate-
gorical colormap for rows of & (i.e., hyperedges in ‘H), we encode the
columns of £ (i.e., hyperedges in H’) using a pie chart. For example,
the 1st column of € encodes the probabilistic matching between hyper-
edges a and d in H and the 1st hyperedge a in H'. Intuitively speaking,
a € Y’ (double filled arrow) is matched to a € Y (single filled arrow)
with twice the probability as a € Y’ being matched to d € Y (single
hollow arrow); this gives rise to a pie chart at @ € Y’ with 2/3 orange
and 1/3 purple. 7 is visualized similarly using a color transfer, with
diagonal entries with the highest probability.

@2 a @1 02 da @1

H .5) H us
= Oy
®c ®c
3 @b f,

@3 g\{ ®b
od

~ / ‘/

O (Tam O] 02 oa—¢9N

Fig. 7. Another example of GW-based coupling of hyperedges and
vertices based on the second best GW matching.

We further investigate the second best GW matching with a GW dis-

tance valued at 0.1372, the coupling matrices £ and 7 are, respectively,

0.1218 0.1681 0.063
~ 1 0.2353 0 0
£= 0 0 0.2941
0 0.1176 0
0.1806 0 0 0.0417 0
0.0694 0.125 0.0278 0 0
™= 0 0 0.2222 0 0
0 0 0 0.2083 0.0139
0 0 0 0 0.1111

& and are visualized in Figure 7 using a color transfer. Comparing
with the best GW matching in Figure 6, the second best GW distance
matches b € Y’ (double filled arrow) to a,d € Y (single filled arrow
and single hollow arrow). This is possible due to near symmetric
structure between a and b in H'.

However, if the vertex sets between the two hypernetworks are
identical, m becomes an identity matrix (scaled by a constant). Then,
we can compute the Wasserstein distance instead, which focuses only
on optimizing the coupling between hyperedges, that is,

>

yeY,y' ey’

dw(H,H')? = cost(y,y)é(y,), @)

min
£eC(v,v’)

where cost(y,y') = Y cx arex Wz, y) — w'(2',y)? is a cost
function between y and 7/’.

Using the same pair of hypernetworks H and H’ of Figure 6, we
perform 20 instances in optimizing their Wasserstein distance. The
best Wasserstein distance (valued at 0.0303) gives rise to a hyperedge
coupling &,

0.2395 0.0504 0.0630
0 0.2353 0

&= 0 0 0.2941
0.1176 0 0

This hyperedge coupling matrix happens to be the same as the best
hyperedge coupling matrix in the GW setting. This is not too surprising
as H and H' share very similar vertex degree distributions and optimiz-
ing the Wasserstein distance obtains the same local optimal as the GW
setting.

Implementation details. Following [22], we use the Python3 imple-
mentation of CO-Optimal Transport (COOT) due to Redko et al. [59],
which contains an efficient algorithm for approximating the solution to
the optimization problems involving the GW distance and Wasserstein
distance. With a slight abuse of notations, the computational complex-
ity is O(min((n + n')dd' 4+ n"*n, (d + d')nn’ + d"*d)) [59], where
n=|X|,n =|X’'|,d=|Y]|and d = |Y’|. The COOT implementa-
tion uses Numpy, Matplotlib, and Python Optimal Transport (POT) [30]
library.

To compute an optimal transport distance, we would need to ini-
tialize the coupling matrices £ and m. We use random initialization as
follow. First, we randomly generate the elements in the matrix £ from a
gamma distribution. Then we apply a Sinkhorn optimization to ensure
that the marginal distributions of the coupling are consistent with the
distributions of hyperedges v and v/’. 7 is initialized similarly. See [23]
for details on the Sinkhorn algorithm.

5 COMPARING MAPPER GRAPHS OF NEURON ACTIVATIONS

Our primary objective is to study the evolution of neuron activations
across the (convolutional) layers of CNNs. To do so, given a set of input
images, a mapper graph is constructed from the neuron activations from
each layer, and we compare mapper graphs across layers to study the
topological changes in the activation space, even though the underlying
activation spaces are of different dimensions between layers.
Experimental setup. We experiment with CIFAR-10 [41] training
images on a ResNet-18 [35] model (see Section 3). We construct
mapper graphs on both the random activations and the foreground
activations.

To quantify the changes in mapper graphs across layers, for each

type of activations, we compute optimal transport distances between
each convolutional layer (e.g. layers 1 to 16) and the last convolutional
layer (i.e., layer 16). Given that the activations at each layer correspond
to the same set of input images, the vertex sets remain the same across
layers. Therefore, we compute the Wasserstein distances between the
mapper graphs.
Experimental details. To compute the Wasserstein distances, we first
convert each mapper graph to its corresponding hypergraph H. Each
mapper graph node becomes a hyperedge in H, and each activation
vector (data point in the mapper graph) becomes a vertex in H. Fig-
ure 8 and Figure 9 show the mapper graphs and their corresponding
hypergraphs from random and foreground activations, respectively.
For all mapper graphs, we set n = 40, p = 25%. For DBSCAN,
minPts = 5, and the size of the neighborhood ¢ is determined us-
ing the elbow method for each layer; see [77] for details on the elbow
method. We model each hypergraph as a hypernetwork by setting p and
v to be proportional to vertex and hyperedge degrees, respectively. For
w, we experiment with all three configurations, with w being incidence
relation, weighted shortest path relation based on Jaccard distance, and
the inverse of intersection size, respectively.

For each type of activation, we plot the Wasserstein distances be-
tween the mapper graph from the last convolutional layer (layer 16)
and the mapper graphs from earlier layers (e.g., layers 4, 8, 12, 13, 14,
15, and 16).

For each pair of hypergraphs modeled as hypernetworks, we start

with randomly initialized coupling matrices and repeat the optimization
process (during optimal transport) 10 times. At each layer, we plot
the box plot of the 10 obtained Wasserstein distances, and we also
plot the minimum distance at each layer as a line. Figure 10 shows
the Wasserstein distances between various layers (4, 8, 12, 13, 14,
15, 16) and layer 16 with w chosen among three configurations, for
mapper graphs generated using random and foreground activations,
respectively.
Structural correspondence via color transfer. We use a color trans-
fer to highlight the structural correspondences between mapper graphs
across layers. Since a hyperedge coupling matrix £ provides a proba-
bilistic matching between hyperedges, we can obtain a structural corre-
spondence from H to H'. To perform a color transfer in the simplest
form, we declare that a hyperedge x in H is matched to a hyperedge
yinH', if y = argmax,&(z, y'). In other words, x is matched with a
hyperedge with the highest probability.

Given a pair of mapper graphs obtained at two different layers,
we could study their structural correspondence via a color transfer.
In Fig. 11 (top), we construct mapper graphs of random activations at
layer 15 and layer 16, respectively. We color each mapper node by the
category of its associated images (considered to be the ground truth
label). A mapper node that comprises images from a single category
is considered to be pure and marked by a single color; otherwise, it
is visualized by a pie chart. In Fig. 11 (bottom), we study the color
transfer from pure nodes at layer 15 to nodes at layer 16. We observe
that a significant number of nodes at layer 16 (bottom right) have colors
that align with their ground truth labels (top right). Such an alignment
suggests that the nodes from layer 15 are mapped to the appropriate
branches at layer 16 via optimal transport. Notably, the pink branch
(pointed by a single arrow) from layer 15 (bottom left) is mapped to
the pink branch from layer 16 (bottom right), which in turn, matches
exactly to the pink branch with the ground truth label (top right). We
observe a similar behavior involving the purple branch (pointed by a
double arrow).

By observing how node color transfers from one layer to another,
we obtain an explicit structural correspondence that helps us better
understand how the mapper graphs evolve across layers. It would be
interesting to explore further how the images within the mapper nodes
are transported across layers, potentially yielding additional insights
into the evolution of activation spaces.

Takeaway. Based on qualitative observations from Figure 8 and Fig-
ure 9, the mapper graphs of both random and foreground activations
show more noticeable branching structures that indicate class separa-

° @

® 000

Layer 4 Layer 12

Layer 13

Layer 14 Layer 15 Layer 16

Fig. 8. Mapper graphs (top) and their corresponding hypergraphs (bottom) from random activations using CIFAR-10 training images and ResNet-18.
For mapper graphs, mapper nodes are colored using the same categorical colormap from Figure 1.

Layer 4 Layer 8 Layer 12

Layer 13

Layer 14 Layer 15 Layer 16

Fig. 9. Mapper graphs (top) and their corresponding hypergraphs (bottom) from foreground activations using CIFAR-10 training images and
ResNet-18. For mapper graphs, mapper nodes are colored using the same categorical colormap from Figure 1.

Incidence|, Jaccard Intersection
Relation Distance| | Size
0020 / 20
..., Random Activations) .
| Incidence| Jaccard | | Intersection,
Relation Distance Size
o020 { * —_—
... Foreground Activations . .

Fig. 10. Wasserstein distances between earlier layers (4, 8, 12, 13, 14, 15) and layer 16 with different configurations of w for mapper graphs generated
using random (top) and foreground activations (bottom), respectively. From left to right, w is based on the incidence relation, Jaccard-distance-based

shortest paths, and intersection-size-based shortest paths, respectively.

tions as we go deeper in the layers. Our hypothesis is that the distance
between intermediate layers and the last layer decreases as they become
closer to the last layer, as the model is getting better at differentiating
classes. As shown in Figure 10, when w is set to encode the incidence
relation, the distance plots generally agree with our hypothesis, pro-
viding quantitative evidence that the topological structures of neuron
activations are improving in later layers.

However, when w is set to use the intersection size or Jaccard-
distance-based shortest path relation, there is a sharp rise in distances
at layer 14, which deserves further study. We argue that the incidence
relation is a better choice for w than the other two configurations,

since the incidence relation (e.g., does the hyperedge 3’ containing x
intersect with the hyperedge y?) matters more than the (normalized)
size of intersection (e.g., what is the size of intersection between y’
and y if they intersect?) In other words, the incidence relation plays
a crucial role in determining the connectivity of a mapper graph, and
thus is useful in capturing the topological similarities between pairs of
mapper graphs.

Layer 15 Mapper Graph
Colored by Ground Truth Class Label

@
0®® Heo
®® ®® @ ®®
@ ®® ® @ @@ ®
®
e @ ® & @
009 o o0
@@ ®@®®@ ®®@®
® ®_ ©
o® @S@@ ep o ®"e
@0 o ®
0 @ ® ®O@ @@@ @
® e ® 7o e ®
e @ P [ce)

Q@ s o® © .0
® g % OO (CXC)
e0® o @ c)

(c¥C)

Layer 15 Mapper Graph
With Colored Pure Nodes
@

0°® He o
e ® g

Layer 16 Mapper Graph
Colored by Ground Truth Class Label

e o
©060% 0

®e

® e

® g ©0
e®¢ oo ® @
® 00 ®e® ©0e
0p ©®0°

Layer 16 Mapper Graph

With Color Transfer from Pure Nodes in Layer 15

)
® @ 0 @
®e 00e

Fig. 11. Structural correspondence via Wasserstein distance between mapper graphs generated from random activations at adjacent layers. Top:
mapper graphs at layer 15 and layer 16 colored by the ground truth class label (using a categorical colormap). Bottom: a color transfer from the pure
nodes in layer 15 to nodes in layer 16 that highlights structural correspondences.

Scale 0 Scale 1 Scale 2 Scale 3

Scale 0 Scale 1 Scale 2 Scale 3

Fig. 12. The original graphs converted from the mesh of Armadillo (left) and Stanford Bunny (right), respectively, together with the mapper graphs
across four scales. From left to right: mapper graphs from the finest to the coarsest scales. Top: mapper graphs before computing Wasserstein
distances. Bottom: color transfer between the mapper graph at scale 0 and the mapper graphs at scales 1, 2, and 3, respectively, based on coupling

matrices from Wasserstein distance computations.

6 COMPARING MAPPER GRAPHS ACROSS SCALES

Our framework may be used to compare mapper graphs that arise in
other scenarios beyond deep learning. As demonstrated in this section,
our framework may be used to compare a sequence of mapper graphs
that arise from multiscale mapper [25].

Generating mapper graphs across scales. We obtained two meshes
from the Stanford 3D scanning repository [1] called Armadillo and
Stanford Bunny. Starting from the Armadillo mesh, we first convert it
into an original graph G using the mesh vertices and edges, see Fig-
ure 12 (left).

We then compute a sequence of mapper graphs across scales fol-
lowing the approach in [22]. Given an original graph G = (V, E), we
first use a heat kernel based method to generate an overlapping cover
Up of the vertex set V, and compute its 1-dimensional nerve graph
G (this is the mapper graph at scale 0). We repeat such a process
on the new nerve graph, generating coarser nerve graphs at each step
of the iteration, G'1, G2, G'3, and so on; see Appendix A for details.
We choose heat kernels as they are known to capture shape signatures
(e.g, [47,60]). The size of the mapper graphs across scales are shown
in Table 1.

For example, Figure 12 (left) shows mapper graphs of Armadillo

Armadillo Stanford Bunny
VI 1Bl [V] 1]
Mesh (G) | 17483 | 52443 | 34834 | 104288
Go 506 3632 423 3047
G 147 731 114 502
Go 54 224 44 183
G 23 76 22 85

Table 1. Size of mapper graphs across scales. G is the original graph
from the mesh.

0.25 A

Armadillo
0.20 1
0.15 4
0.10 A
0.05 1
0.00 4
0 1 2 3

0.30
Stanford Bunny
0.25
0.20 1
0.15 4
0.10 4

0.05

0.00 4

w4

T T T
0 1 2

Fig. 13. Wasserstein distances between the mapper graphs of Armadillo
(top) and Stanford Bunny (bottom) at coarser scales (1, 2, and 3) and
the mapper graph at the finest scale (0).

across four scales. By construction, each node in a coarser mapper
graph contains a subset of nodes in a finer mapper graph, and therefore
corresponds to a subset of nodes in the original graph. The mapper
graphs of Stanford Bunny across four scales are constructed similarly,
shown in Figure 12 (right).

For each mapper graph, we construct its corresponding hypergraph
by mapping each mapper node as a hyperedge, and each vertex in
the original graph as a vertex in the hypergraph. Therefore, all map-
per graphs share the same set of vertices, and we can compute the
Wasserstein distances between them.

For each mesh, we compute the Wasserstein distances between the
mapper graphs at increasingly coarser scales (scales 1, 2 and 3) and
the mapper graph at the finest scale (scale 0). Figure 13 displays the
Wasserstein distances for Armadillo and Stanford Bunny, respectively.
Takeaway. A key takeaway is that the Wasserstein distances faithfully
capture the increasing structural changes from the finest to the coarsest
scales. In other words, an increasing distance captures the loss of struc-
tural information for mapper graphs at coarser scales. Furthermore, the
color transfer from Gy to G1 (and respectively, G2 and G'3) highlights
the structural correspondences between mapper graphs across scales.

To connect the mapper graph convergence across scales with the
convergence across convolutional layers, we observe that in the archi-
tecture of ResNet-18 (and indeed most convolutional neural networks)
the size of the activation layers decreases as we go deeper in the model.
In a way, the convolutions are performing a scale coarsening operation
(albeit with weights and activation functions). Our observations of
distances converging through convolutional layers in Section 5, and
across scale refinement in this section can be seen as complementary.

7 CONCLUSION AND DISCUSSION

Mapper graphs have been used recently to visualize the topology of
artificial neural activations from CNNs and large language models.
This work addresses a key question on how to perform mapper graph

comparisons. We show that distances based on optimal transport are
well suited to compare mapper graphs (treated as hypergraphs) across
convolutional layers (in deep learning) and across scales (in a multiscale
mapper).

Purvine et al. [55] demonstrated that the mapper graph branching
structures are present in a number of model-data pairs, such as Ima-
geNet studied using ResNet-18, InceptionV1/V3, and AlexNet. For
future work, we are interested in generalizing our experiments to other
models and datasets. We would also like to extend our work to study the
evolution of mapper graphs that arise from large language models, for
instance, to study the mapper graphs during the fine-turning process of
transformer-based models across multiple batch updates, following the
work of Rathore et al. [58]. Understanding the convergence of mapper
graphs would shed light on the behavior of the underlying model, and
possibly serve as an indicator for developing early stopping or early
exiting strategy during model inference [43].

Given the popularity of mapper graphs in data analysis and visual-
ization [73], we expect our framework for comparing mapper graphs
would have wide applicability beyond deep learning, such as shape
analysis [9] and scientific visualization in material sciences.

Furthermore, multiresolution Reeb spaces were used recently to
study multifield data (i.e., multiple scalar fields defined on the same
domain) from computational physics and computational chemistry [56].
Since multiresolution Reeb spaces could be considered as variants of
mapper graphs in higher dimensions, it would be interesting to explore
extensions of our framework in studying multifield data.

ACKNOWLEDGMENTS

BW and YZ were partially supported by grants from NSF IIS 1910733,
DMS 2134223, and IIS 2205418.

A GENERATING MAPPER GRAPHS USING HEAT KERNELS

For completeness, we review the approach in [22] that generates a
mapper graph at a fixed scale using heat kernels. The key idea is to
generate a partially overlapping cover of a given graph.

Fix a graph G = (V, E) with a vertex set V. Let L denote the
normalized graph Laplacian of G. Initialize a set of visited vertices
P = (andacover Q = 0.

First, starting with a fixed vertex x € V \ P, we compute the
eigendecomposition of L as L = ®A®”. For a given t > 0, we
compute the graph heat kernel K* := exp(—tL) = ® exp(—tA)dT.
For a vertex € V \ P and a Dirac delta vector 6, on x, v := K'J,
encodes the diffusion of a unit mass of heat out from = within time
t [22]. We mark the set {v > max(v)/2} as visited, and set P <+
P U {v > max(v)/2}. By setting Q < Q U {v > max(v)/4}, we
have produced a cover element of V' centered at xz. We then select
another vertex x € V' \ P and iterate the procedure until P = V.
Following previous work [22], setting ¢ := log,,(|V'|) produces good
results, we therefore use ¢ = 5 (see Table 1). Such a procedure
produces covers that are not too dense but that have overlaps between
cover elements. Its 1-dimensional nerve gives rise to a mapper graph.

B EXAMPLES ON COUPLINGS FROM OPTIMAL TRANSPORT

For examples shown in Figure 6, we configure the parameters
associated with hypernetworks H = (X, p,Y,v,w) and H' =

(X', 01, Y V' w') as follows:

= [0.2222,0.2222, 0.2222,0.2222, 0.1111]

v = [0.3529,0.2353,0.2941, 0.1176)

" =[0.25,0.125,0.25,0.25, 0.125]
[0.3571,0.2857,0.3571]

0 0
0 0.75

I

/
v

0.75 0.6667

0.8 0
w = 0 07 0 0.6667
0.7 0 0

1.4167
0.8 075 0 1.4667
0 0.75

0.75 0.8
0.7 0

0 0
0.7 0

X cn

REFERENCES

[1

—

[2]

[3]

[9]

[10]

(11]
[12]

[13]

[14]

[15]

[16]

[17]

Stanford 3D Scanning Repository. http://graphics.stanford.edu/
data/3Dscanrep/.

S. G. Aksoy, C. Joslyn, C. O. Marrero, B. Praggastis, and E. Purvine.
Hypernetwork science via high-order hypergraph walks. EPJ Data Science,
9(1):16, 2020.

U. Bauer, H. B. Bjerkevik, and B. Fluhr. Quasi-universality of Reeb
graph distances. In 38th International Symposium on Computational
Geometry (SoCG 2022), volume 224 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 14:1-14:18, Dagstuhl, Germany, 2022.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.

U. Bauer, B. Di Fabio, and C. Landi. An edit distance for Reeb graphs.
In A. Ferreira, A. Giachetti, and D. Giorgi, editors, Eurographics Work-
shop on 3D Object Retrieval, Eindhoven, The Netherlands, 2016. The
Eurographics Association.

U. Bauer, X. Ge, and Y. Wang. Measuring distance between Reeb graphs.
In 30th International Symposium on Computational Geometry (SoCG
2014), pages 464-474, 2014.

U. Bauer, C. Landi, and F. Memoli. The Reeb graph edit distance is
universal. Foundations of Computational Mathematics, 21(5):1441-1464,
2020.

U. Bauer, E. Munch, and Y. Wang. Strong equivalence of the interleaving
and functional distortion metrics for Reeb graphs. In 3/st International
Symposium on Computational Geometry (SoCG 2015), volume 34, pages
461-475, 2015.

K. Beketayev, D. Yeliussizov, D. Morozov, G. Weber, and B. Hamann.
Measuring the distance between merge trees. Topological Methods in
Data Analysis and Visualization 111, pages 151-165, 2014.

S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno. Reeb graphs for
shape analysis and applications. Theoretical Computer Science, 392:5-22,
2008.

H. Bjerkevik and M. Botnan. Computational complexity of the interleav-
ing distance. In B. Speckmann and C. D. Téth, editors, 34th International
Symposium on Computational Geometry (SoCG 2018), pages 13:1-13:15,
Dagstuhl, Germany, 2018. Schloss Dagstuhl - Leibniz-Zentrum fiir Infor-
matik.

B. Bollen, E. Chambers, J. A. Levine, and E. Munch. Reeb graph metrics
from the ground up. arXiv preprint arXiv:2110.05631, 2022.

G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools,
2000.

A. Brown, O. Bobrowski, E. Munch, and B. Wang. Probabilistic conver-
gence and stability of random mapper graphs. Journal of Applied and
Computational Topology, 2020.

P. Bubenik, V. de Silva, and J. Scott. Interleaving and Gromov-Hausdorff
distance. arXiv preprint arXiv:1707.06288, 2018.

G. Cardona, A. Mir, F. Rosselld, L. Rotger, and D. Sanchez. Cophenetic
metrics for phylogenetic trees, after Sokal and Rohlf. BMC Bioinformatics,
14(1), 2013.

G. Carlsson. Topology and data. Bulletin of the American Mathematical
Society, 46(2):255-308, 2009.

M. Carriere and S. Oudot. Local equivalence and intrinsic metrics between
Reeb graphs. In 33rd International Symposium on Computational Geome-

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[35]

[36]

(371

[38]

[39]

[40]

try (SoCG 2017), volume 77, pages 25:1-25:15, Dagstuhl, Germany, 2017.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

S. Carter, Z. Armstrong, L. Schubert, I. Johnson, and C. Olah. Activation
Atlas. Distill, 4(3):el5, 2019.

N. Chalapathi, Y. Zhou, and B. Wang. Adaptive covers for mapper graphs
using information criteria. /EEE International Conference on Big Data
(IEEE BigData), 2021.

E. W. Chambers, E. Munch, and T. Ophelders. A family of metrics from
the truncated smoothing of Reeb graphs. 37th International Symposium
on Computational Geometry (SoCG 2021), 189:22:1-22:17, 2021.

F. Chazal, D. Cohen-Steiner, M. Glisse, L. J. Guibas, and S. Y. Oudot.
Proximity of persistence modules and their diagrams. In 25th Annual
Symposium on Computational Geometry (SoCG 2009), pages 237-246,
New York, NY, USA, 2009. Association for Computing Machinery.

S. Chowdhury, T. Needham, E. Semrad, B. Wang, and Y. Zhou. Hy-
pergraph co-optimal transport: Metric and categorical properties. arXiv
preprint arXiv:2112.03904, 2021.

M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal trans-
port. In C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Wein-
berger, editors, Advances in Neural Information Processing Systems, vol-
ume 26. Curran Associates, Inc., 2013.

V. De Silva, E. Munch, and A. Patel. Categorified Reeb graphs. Discrete
& Computational Geometry, 55(4):854-906, 2016.

T. K. Dey, F. Mémoli, and Y. Wang. Multiscale mapper: Topological
summarization via codomain covers. In Proceedings of the 27th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 997-1013, 2016.
B. Di Fabio and C. Landi. The edit distance for Reeb graphs of surfaces.
Discrete & Computational Geometry, 55(2):423-461, 2016.

H. Edelsbrunner and J. Harer. Persistent homology - a survey. In Surveys
on Discrete and Computational Geometry: Twenty Years Later. American
Mathematical Society, 2007.

D. Erhan, Y. Bengio, A. Courville, and P. Vincent. Visualizing higher-
layer features of a deep network. Technical report, Univeristy of Montreal,
2009.

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. International
Conference on Knowledge Discovery and Data Mining, pages 226231,
1996.

R. Flamary and N. Courty. POT: Python Optimal Transport library. https:
//github.com/rflamary/POT, 2017.

R. B. Gabrielsson and G. Carlsson. Exposition and interpretation of the
topology of neural networks. In Proceedings of 18th IEEE International
Conference On Machine Learning And Applications (ICMLA), pages 1069—
1076, 2019.

T. Gebhart, P. Schrater, and A. Hylton. Characterizing the shape of
activation space in deep neural networks. Proceedings of the 18th IEEE In-
ternational Conference On Machine Learning And Applications (ICMLA),
pages 1537-1542, 2019.

C. Geniesse, O. Sporns, G. Petri, and M. Saggar. Generating dynamical
neuroimaging spatiotemporal representations (DyNeuSR) using topologi-
cal data analysis. Network Neuroscience, 3(3):763-778, 2019.

W. H. Guss and R. Salakhutdinov. On characterizing the capacity of neural
networks using algebraic topology. arXiv preprint arXiv:1802.04443,
2018.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 770-778, 2016.

F. Hensel, M. Moor, and B. Rieck. A survey of topological machine
learning methods. Frontiers in Artificial Intelligence, 4, 2021.

F. Hohman, M. Kahng, R. Pienta, and D. H. Chau. Visual analytics in deep
learning: An interrogative survey for the next frontiers. IEEE Transactions
on Visualization and Computer Graphics (TVCG), 2018.

F. Hohman, H. Park, C. Robinson, and D. H. P. Chau. Summit: Scaling
deep learning interpretability by visualizing activation and attribution sum-
marizations. IEEE Transactions on Visualization and Computer Graphics,
26(1):1096-1106, 2020.

M. Kamruzzaman, A. Kalyanaraman, B. Krishnamoorthy, S. Hey, and
P. Schnable. Hyppo-X: A scalable exploratory framework for analyzing
complex phenomics data. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 2019.

B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Viegas, and
R. Sayres. Interpretability beyond feature attribution: Quantitative testing
with concept activation vectors (TCAV). International Conference on

http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
https://github.com/rflamary/POT
https://github.com/rflamary/POT

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Machine Learning, 2018.

A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from
tiny images. Technical Report TR-2009, University of Toronto, 2009.

T. Lacombe, Y. Ike, and Y. Umeda. Topological uncertainty: Monitor-
ing trained neural networks through persistence of activation graphs. In
Proceedings of the 30th International Joint Conference on Artificial Intel-
ligence, pages 2666-2672, 2021.

S. Laskaridis, A. Kouris, and N. D. Lane. Adaptive inference through
early-exit networks: Design, challenges and directions. Proceedings of
the 5th International Workshop on Embedded and Mobile Deep Learning
(EMDL), pages 1-6, 2021.

Y. Li, J. Wang, T. Fujiwara, and K.-L. Ma. Visual analytics of neuron
vulnerability to adversarial atacks on convolutional neural networks. ACM
Transactions on Interactive Intelligent Systems: Special Issue on Human-
Centered Explainable Al, 2023.

P. Y. Lum, G. Singh, A. Lehman, T. Ishkanov, M. Vejdemo-Johansson,
M. Alagappan, J. Carlsson, and G. Carlsson. Extracting insights from the
shape of complex data using topology. Scientific Reports, 3, 2013.

L.-Y. Ma, T. Feng, C. He, M. Li, K. Ren, and J. Tu. A progression analysis
of motor features in Parkinson’s disease based on the mapper algorithm.
Frontiers in Aging Neuroscience, 15, 2023.

F. Mémoli. A spectral notion of Gromov—Wasserstein distance and related
methods. Applied and Computational Harmonic Analysis, 30(3):363—401,
2011.

D. Morozov, K. Beketayev, and G. Weber. Interleaving distance between
merge trees. Proceedings of Topology-Based Methods in Visualization
(TopoInVis), 2013.

D. Miillner and A. Babu. Python Mapper: An open-source toolchain for
data exploration, analysis and visualization. http://danifold.net/mapper,
2013.

E. Munch and A. Stefanou. The £°°-cophenetic metric for phylogenetic
trees as an interleaving distance, volume 17 of Association for Women in
Mathematics Series, pages 109-127. Springer International Publishing,
Cham, 2019.

E. Munch and B. Wang. Convergence between categorical representations
of Reeb space and mapper. International Symposium on Computational
Geometry, 2016.

A. Nguyen, J. Yosinski, and J. Clune. Multifaceted feature visualization:
Uncovering the different types of features learned by each neuron in deep
neural networks. arXiv:1602.03616, 2016.

M. Nicolau, A. J. Levine, and G. Carlsson. Topology based data analysis
identifies a subgroup of breast cancers with a unique mutational profile
and excellent survival. Proceedings of the National Acadeny of Sciences,
108(17):7265-7270, 2011.

G. Peyré, M. Cuturi, and J. Solomon. Gromov-Wasserstein averaging of
kernel and distance matrices. In International Conference on Machine
Learning, pages 2664-2672, 2016.

E. Purvine, D. Brown, B. Jefferson, C. Joslyn, B. Praggastis, A. Rathore,
M. Shapiro, B. Wang, and Y. Zhou. Experimental observations of the
topology of convolutional neural network activations. Proceedings of the
37th AAAI Conference on Artificial Intelligence (AAAI), 2023.

Y. Ramarmurthi, T. Agarwal, and A. Chattopadhyay. A topological similar-
ity measure between multi-field data using multi-resolution Reeb spaces.
IEEE Transactions on Visualization and Computer Graphics (TVCG),
28:4360-4374, 2022.

A. Rathore, N. Chalapathi, S. Palande, and B. Wang. TopoAct: Visually
exploring the shape of activations in deep learning. Computer Graphics
Forum (CGF), 40(1):382-397, 2021.

A. Rathore, Y. Zhou, V. Srikumar, and B. Wang. TopoBERT: Exploring
the topology of fine-tuned word representations. Information Visualization,
2023.

I. Redko, T. Vayer, R. Flamary, and N. Courty. Co-optimal transport. In
Advances in Neural Information Processing Systems, volume 33, pages
17559-17570, 2020.

M. Reuter, F.-E. Wolter, and N. Peinecke. Laplace—Beltrami spectra as
‘Shape-DNA’ of surfaces and solids. Computer-Aided Design, 38(4):342—
366, 2006.

B. A. Rieck, M. Togninalli, C. Bock, M. Moor, M. Horn, T. Gumbsch,
and K. Borgwardt. Neural persistence: A complexity measure for deep
neural networks using algebraic topology. In International Conference on
Learning Representations (ICLR 2019), 2019.

D. Romano, M. Nicolau, E.-M. Quintin, P. K. Mazaika, A. A. Lightbody,
H. C. Hazlett, J. Piven, G. Carlsson, and A. L. Reiss. Topological meth-

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(711

[72]

(73]

[74]

[75]

[76]

(77]

[78]

[79]

ods reveal high and low functioning neuro-phenotypes within fragile X
syndrome. Human Brain Mapping, 35(9):4904-15, 2014.

M. Saggar, J. M. Shine, R. Liégeois, N. U. F. Dosenbach, and D. Fair.
Precision dynamical mapping using topological data analysis reveals a
hub-like transition state at rest. Nature Communications, 13(4791), 2022.
M. Saggar, O. Sporns, J. Gonzalez-Castillo, P. A. Bandettini, G. Carlsson,
G. Glover, and A. L. Reiss. Towards a new approach to reveal dynam-
ical organization of the brain using topological data analysis. Nature
Communications, 9(1399), 2018.

H. Saikia, H. P. Seidel, and T. Weinkauf. Extended branch decomposition
graphs: Structural comparison of scalar data. Computer Graphics Forum
(CGF), 33(3):41-50, 2014.

K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps.
Workshop at International Conference on Learning Representations,, 2014.
G. Singh, F. Mémoli, and G. Carlsson. Topological methods for the
analysis of high dimensional data sets and 3D object recognition. In
Eurographics Symposium on Point-Based Graphics, pages 91-100, 2007.
R. Sridharamurthy, T. B. Masood, A. Kamakshidasan, and V. Natarajan.
Edit distance between merge trees. IEEE Transactions on Visualization
and Computer Graphics (TVCG), 26(3):1518-1531, 2020.

G. Tauzin, U. Lupo, L. Tunstall, J. B. Pérez, M. Caorsi, A. Medina-
Mardones, A. Dassatti, and K. Hess. giotto-tda: A topological data
analysis toolkit for machine learning and data exploration. Journal of
Machine Learning Research, 22:1-6, 2020.

The GUDHI Project. GUDHI User and Reference Manual.
https://gudhi.inria.fr/doc/3.3.0/, 2020.

E. F. Touli and Y. Wang. FPT-algorithms for computing Gromov-
Hausdorff and interleaving distances between trees. Proceedings of the
27th Annual European Symposium on Algorithms, pages 83:1-83:14,2019.
H.J. van Veen, N. Saul, D. Eargle, and S. W. Mangham. Kepler Mapper:
A flexible python implementation of themapper algorithm. Journal of
Open Source Software, 4(42):1315, 2019.

L. Yan, T. B. Masood, R. Sridharamurthy, F. Rasheed, V. Natarajan, I. Hotz,
and B. Wang. Scalar field comparison with topological descriptors: Prop-
erties and applications for scientific visualization. Computer Graphics
Forum (CGF), 40(3):599-633, 2021.

Y. Yao, J. Sun, X. Huang, G. R. Bowman, G. Singh, M. Lesnick, L. J.
Guibas, V. S. Pande, and G. Carlsson. Topological methods for exploring
low-density states in biomolecular folding pathways. Journal of Chemical
Physics, 130(14):144115, 2009.

J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Understanding
neural networks through deep visualization. Deep Learning Workshop at
the 31st International Conference on Machine Learning, 2015.

Z.Zeng, A. K. Tung, J. Wang, J. Feng, and L. Zhou. Comparing stars: On
approximating graph edit distance. Proceedings of the VLDB Endowment,
2(1):25-36, 20009.

Y. Zhou, N. Chalapathi, A. Rathore, Y. Zhao, and B. Wang. Mapper
Interactive: A scalable, extendable, and interactive toolbox for the visual
exploration of high-dimensional data. Proceedings of IEEE 14th Pacific
Visualization Symposium (PacificVis), 2021.

Y. Zhou, M. Kamruzzaman, P. Schnable, B. Krishnamoorthy, A. Kalya-
naraman, and B. Wang. Pheno-Mapper: an interactive toolbox for the
visual exploration of phenomics data. Proceedings of the 12th ACM Con-
ference on Bioinformatics, Computational Biology, and Health Informatics
(ACM-BCB), pages 1-10, 2021.

Y. Zhou, Y. Zhou, J. Ding, and B. Wang. Visualizing and analyzing the
topology of neuron activations in deep adversarial training. Topology,
Algebra, and Geometry in Machine Learning (TAGML) Workshop at the
40th International Conference on Machine Learning, 2023.

	Introduction
	Related Work
	Background on Activations and Mapper Graphs
	Method
	Modeling Mapper Graphs as Measure Networks
	Comparing Mapper Graphs Using Optimal Transport

	Comparing Mapper Graphs of Neuron Activations
	Comparing Mapper Graphs Across Scales
	Conclusion and Discussion
	Generating Mapper Graphs Using Heat Kernels
	Examples on Couplings from Optimal Transport

