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Fig. 1. Given point cloud data in high-dimensional space, we detect and visualize branching structures in a neighborhood surrounding
a given point of interest. Here we give two simple examples with point clouds sampled from surfaces embedded in 3-dimensional
space. In (a), given a genus-3 surface, we analyze the branching structure around one of its corners, x. We apply color-mapping
transfer functions to local circle-valued coordinate functions to visualize the structure. Specifically, the color scale indicates the
“direction” of the branches. As illustrated in (b), there is a local two-way branching around x, where the coordinate function of each
branch is visualized in (c) and (d), respectively. In (e), given a genus-4 surface, we detect a seven-way branching around x (f), where
three of the coordinate functions are shown in (g), (h) and (i), respectively.

Abstract—Large observations and simulations in scientific research give rise to high-dimensional data sets that present many chal-
lenges and opportunities in data analysis and visualization. Researchers in application domains such as engineering, computational
biology, climate study, imaging and motion capture are faced with the problem of how to discover compact representations of high-
dimensional data while preserving their intrinsic structure. In many applications, the original data is projected onto low-dimensional
space via dimensionality reduction techniques prior to modeling. One problem with this approach is that the projection step in the
process can fail to preserve structure in the data that is only apparent in high dimensions. Conversely, such techniques may create
structural illusions in the projection, implying structure not present in the original high-dimensional data. Our solution is to utilize
topological techniques to recover important structures in high-dimensional data that contains non-trivial topology. Specifically, we are
interested in high-dimensional branching structures. We construct local circle-valued coordinate functions to represent such features.
Subsequently, we perform dimensionality reduction on the data while ensuring such structures are visually preserved. Additionally,
we study the effects of global circular structures on visualizations. Our results reveal never-before-seen structures on real-world data

sets from a variety of applications.

Index Terms—Dimensionality reduction, circular coordinates, visualization, topological analysis.
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1 INTRODUCTION

Many scientific investigations depend on exploratory datalysis
and visualization of high-dimensional data sets that igrecomplex
phenomena. Given a collection of high-dimensional datatpoidi-
mensionality reduction techniques are typically appliednio mod-
eling and feature detection. These techniques find a lovedsional
representation of the data with simple guarantees, by asgutimat
real-valued low-dimensional coordinates are sufficientapture its
underlying intrinsic structure.

In mathematical terms, given a collection of high-dimensaiaata
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points X € RY, dimensionality reduction techniques obtain an em-
bedding that maps a point = (X3,%,...,Xq) € X to a pointy =
(Y1,¥2,---,¥Ym), Wherem < d, through a set of real-valued coordinate
functionsg = (@, @, ...@m) : X — R, wherey; = @(x), with the as-
sumption that the data typically has the topological stmecbf a con-
vex domain [15]. However, if the underlying space in high éirsion
contains nontrivial topology, either globally or locallimensionality
reduction alone is no longer sufficient to preserve the ol

In [15], the authors challenge the convex domain assumption
dimensionality reduction through topological analysishey¥ give a
method for computing global circular coordinates and mteting the
results, and illustrate their methods on data sets contiaircular
structures, such as a circle, an annulus and a torus. Irciplarti
the authors describe a topological procedure that enlatgeslass
of coordinate functions for dimensionality reduction talirde global
circle-valued functions, mapping the point cloud to a ctbsécle:
0:X —sL

We extend this work by introducinigcal circular coordinateshy
computingpersistent local cohomologyAs a local coordinate, we
give a procedure usingelative cohomologyto compute a function
8y : U — St from a (small) neighborhood in the point cloud to the
closed circle. We observe that these local coordinatesupmod natu-



ral interpretation as encoding branching behaviors. Tlogiaed co-
ordinates are visualized by applying a color map transfection. In
this paper, we will describe this extension, and also givengdes
from a number of datasets of both global and local circulardie
nates, with interpretations of these coordinates in bathgtbbal and
local realm. Even though [15] produced some examples of lifteag
circular coordinate structures, our emphasis will be os katificial
datasets and on the interpretation of the resulting coatelin

There are two advantages to using topologically motivatedec
valued coordinate functions. First, they enrich data regméations by
revealing branching and circular features in the data. S&doy re-
flecting topological properties in the high-dimensionabeaiding do-
main, they help differentiate intrinsic structure in theéadftom struc-
tural illusions.

For example, for a point cloud sampled from a torus embedded
2D as shown in Figure 2 (a) and (b), dimensionality techrscplene
can always visualize one of its essential loops (generatotise ho-
mology groups) represented By, while the same techniques fail to
showcase the other essential loop as reveale@hbyithout tearing
or cutting. In Figure 2 (c), (d) and (e), we can see that glarale-
valued coordinate functions differentiate a trefoil krmatrhi two linked
circles based upon seemingly similar projections. Whiig differen-
tiation could arguably be performed with clustering teciues, the
cohomological approach is more robust to knotting and lieéeing
of the data sets than a pure clustering technique would hese. b

On the other hand, local circle-valued coordinate functicgveal
topological features within a sub-region of the point cload shown
in Figure 3. It is able to capture the three-way branchingcstire
surrounding the crossing point in figure eight (Figure 3 (8)and
(9)), while detecting structural illusion of a figure eighieated by
projecting a circle in a certain direction (Figure 3 (b) any.(

Our main contributions are as follows.

e We introduce local circle-valued coordinate functiond flaail-

itate local structural analysis, especially the deteatibioranch-

ing features in data. We construct these functions in a loc,

neighborhood through topological analysis of 1-dimenzsi@o-
homology. That is, we choose a subset of poihtthat are with
close proximity of a given point, and construct coordinatect

tions@, :U — SL.
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Fig. 2. Visualized global circular coordinate functions. (a) and (b): two
global circle-valued coordinate functions for a point cloud sampled from
a torus. (a): 6;. (b): B2. (c), projection of a trefoil knot; (d) and (e),
projection of two linked circles. Figures are reproductions from [15].
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Ptg. 3. Visualized local circle-valued coordinate function. (a): local
circle-valued coordinate function for a point cloud sampled from a torus.
(b) and (c): projection of a circle (b) on 2D (c) that gives an illusion of a
figure eight, local circle-valued coordinate function indicates there is no
local branching structure. (e), (f) and (g): projection of a figure eight on
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On the technical level, we develop a local version of the pepp, three circle-valued coordinate functions are visualized to describe

sistent cohomology machinery through local cohomology €onhe [ocal branching structures.

puted on point cloud data. Persistence enables the detaiftio
significant local features and separates features frone mathin
the data. That is, we obtain a parametrizatiotJatrough co-
ordinate function®;, 6,, ..., 6, : U — S1, wheren indicates the
number of significant local features.

We present the first technique that approximates topolbgica
cular and branching structures in high-dimensional spaced
visualization in the low-dimensional projection.

We present empirical evidence demonstrating that bothotte |
and global circle-valued coordinate functions, for thet fiime,

by sampling on the point cloudGabriel graph[31], compute its join
tree, generate thepological landscapg48] from the join tree, and
finally argument the landscape by placing the original datatp at
chosen locations [40]. The technique has been extendedpgutiech
successfully in topology-based projection and visualirabf high

dimensional document point clouds [41]. [45] focuses orsgre-

ing topological transitions of level-sets, and [41] stsdike structure
of data in terms of dense regions, while our work emphasiaesl |
branching and global circular structure detection in higheahsions

permit more precise analysis on real-world data sets. This €hat are not necessarily captured by the above techniqnggarticu-
tends the more artificial experiments in [15], where emphasi@; OUr work introduces new localized mapping of high-dnsienal

was on proof-of-concept using simulated data sets.

2 RELATED WORK

A variety of nonlinear dimensionality reduction techniguenostly
spectral approaches, have been proposed in recent yease $pec-
tral methods typically construct an adjacency graph from pibint
cloud data and compute a pair-wise distance matrix from fvigen-
vectors are extracted to represent the data in a low dimesisspace
[36]. Some of the popular methods include Isomap [46], lgdadear
embedding [43], Laplacian eigenmaps [4], and kernel PCA [44
Several nonlinear dimensionality reduction techniquesehzeen
presented in recent years to analyze and visualize var@padgi-
cal features in high dimensions. Takahashi et al. extrgmteaqmate
contour trees and Reeb graphs from high-dimensional paimpes
by introducing new distance metrics to manifold learninghtéques
such as Isomap [45]. They use thaearest neighbor grapio approx-
imate point-wise proximity. Oesterling et al. visualize tiopological
structure of point clouds indirectly by visualizing the tdpgy of their
density distribution [40]. They first approximate the dénsinction

point cloud data for the analysis of branching structures.

Various algorithms have been proposed to compute loops BN su

faces, or homology generators that satisfy certain gedcragitimality
[29, 12,51, 26]. [29] computes shortest set of homology petnes for
2-manifolds. [19] uses topological persistence [25] to patas topo-
logically correct loops on surfaces, that wrap around ttendles”
and “tunnels”. Given a weighted simplicial complex and atnigial
cycle, [18] computes its homologous cycle with minimal weig20]
approximates a shortest basis of the one dimensional hgyngi@up
of a manifold inRY from its point sample. Algorithms have also been
developed to compute shortest cycles, minimum cuts, or rmaxi
flow related to graphs embedded on surfaces [30, 28, 27].

In terms of revealing circular structures or essential fowjithin
data, several approaches have been taken to find alterrgpressenta-
tions. [21] studies cylindrical manifolds, data whose gatiege model
includes a cyclic and a linear parameter, and tries to findeeialing
functions that map them onto a cylindgt x R. [37] projects data
with non-trivial topology by destroying essential loopa w#aring and
cutting. [42] maps data to a pre-chosen non-flat target sjgach as a



cylinder or a sphere, using multidimensional scaling. of some 2-chairt, that is,d(c) = a. Let kerd; denote the set of all

In [15], the authors present a frameworkpefrsistent cohomology 1-cycles and ind, denote the set of all 1-boundaries. Since the 1-
and demonstrates how a correspondence from homotopy tleeery boundaries are always 1-cycles,dmnC kerd;. The Thomologyof K
ables the construction of circle-valued coordinate fuoretifrom co- is the quotient groupH; = H1(K;Z) = kerd;/imd,. For example,
homology classes. In this work, persistence aids the agct&gin by a; (bold red) is a 1-cycle sincé(a;) =0. ap = eg+ej0+ €11+ €12
providing a quality measure for the cohomology classes lnsl@lso (bold cyan) is a 1-boundary since it is the boundary of thé&irce, .
for the corresponding circle-valued coordinates. Frora fitimework a; is a 1-cycle, but not a 1-boundary, which makag a non-trivial
emerges coordinate functions for dimensionality redudtiat respect element ofH;. Thereforea; can be used as a representative of the
and reflect the original topology of the high-dimensionabedding, homology class that generates the first homology grouf. diwo el-
while highlighting such structures in the data that can binoously ementsa, & € C; are homologous ifa—a = d(c), for some 2-chain
mapped onto the circle. ¢, denoted as ~ @. In this casda] = [a/]. Herea; (bold red)~ a3

Recent work in [8] defines a modified version of topological-pe (bold orange).
sistence (level persistence) for 1-cocycles, and showsstineh 1-
cocycles can be interpreted as a circle valued map. Whille [d&]
and [8] discuss circle-valued functions, we notice thatghpers dif-
fer fundamentally in approach and in the notion of persistamsed.

Algorithms that focus on cohomology computation, espéciagr-
sistent cohomology, have been proposed in recent year8]152]
designs efficient algorithm to compute cohomology basi$] Hd-
dresses duality in persistent homology and cohomology coatipn,
while [13] compares efficiencies of these algorithms. Lgeakistent
homology has been used in stratification learning [5, 7].

Compared to these bodies of previous work, our paper is tee fir
that constructs local circle-valued coordinates on highetisional
data sets using persistent local cohomology, and is thedidiserve
the connections to branching structures. We discover asuhiize
topological structures such as circles and branches on dataesets
that have never been realized before.

Fig. 4. The triangulation of an annulus. The 1-chaina; =e; +e+...+€g
3 TECHNICAL BACKGROUND (bold red) is a generator of Hj.

Our algorithm has key ingredients from both algebra, toggland al- - consider the torus, in the triangulati#hin Figure 6 top left, the
gorithmics. We review necessary background on the topeédgon-  1_homology group is generated by the 1-chaipgred) anda; (blue),
cepts for non-specialists, providing intuitive and ilkaive examples. that isa; = [a, b]+ [b, ¢ + [c, a] anda, = [a,d]+ [d, €] + [e,a]. We can
Using this, we describlcal cohomologyand how it connects to the yerify that botha; anda, are 1-cycles, ag(a;) = d(ay) = 0. They
analysis of branching structures. For a readable matheahatitro-  are not 1-boundaries since neithib) = a1 nor d(b) = a, admit a
duction to algebraic topology, and algorithm details fompuiting ho- - solutionb € C,. In addition,a; anda, are not homologous.

mology and cohomology groups, see [39, 34]. For an intradndd  Cohomology. Now we associate t& another sequence of groups
persistent homology and its related algorithms, see [2B, 24 called cohomology groupswhose origins lie in algebra rather than
3.1 Homology and cohomology geometry [39]. In many ways, they are considered “dual” tmblogy
oups, and are important in practice.

Consider our example in Figure 4, cohomology deals withtions
on 0-, 1- and 2-chain groups. By abuse of notation, each @nd-2-
dimensional simplex il corresponds to aelementary cochaiof the
same dimension. For example, the 1-simm@émas a corresponding el-
ementary 1-cochaig*, which is a function on 1-chain whose value is

. : ; . 1 oneand O on all other edges. In other words,: C; — Z, where
triangulation of an annulus. The 0-, 1- and 2-simplexekK iare the e'(e) — 1 ande*(¢) = 0 for all € € KL, &  e. Similarly, we have

. . . 1_
vertices, edges and triangles, denoted by theicRis {vi}, K= ={a} elementary 0-cochains; associated with the O-simplicesand ele-

andK? = {4} respectively. We assume all simplices are oriented. WRentary 2-cochainA* associated with the 2-simplicés 0-, 1- and
define the 0-chains, 1-chains and 2-chains as formal sums bf@nd  2.cochains can be considered as sums of elementary cogctiginis,
2-simplexes with integer coefficients, respectively,

= CUAKZ)={B:Co—Z,B=3 aV |g €Z},

= K;Z)={b= iVi | Qi € Z}
Co CotGZ)={b=3 v |a €2} cl = CKiZ)={a:Ci~Za=ge |g ez,

G = GKZ)={a=}gealg e}, o2 2.2 o o ;
C, = Cz(K;Z)Z{szgiAi|gi€Z}. = KzZ)={y:Ca—~ :Y—zgl i |0 €L}

Homology. Homology deals with topological features such as “holes?"
or “cycles” ; 0-, 1- and 2- dimensional homology groups cepend
to components, tunnels and voids in a topological spacee,her dis-
cuss its simplest and most concrete definition, at the |éhahaplicial
homology.

Consider the simplicial complek pictured in Figure 4, which is a

. . . The boundary maps from homology give us an accessible way to
By abuse of notation, each 0-, 1- and 2-simpleKinorresponds to an p,jjiq higher-dimensional cochains from lower-dimensiaomes. In

elementary chaiof the same dimension. Then 0-, 1- and 2-chains Cal}der to find a value of a new-cochain on &-simplex o we could

be considered as sums of elementary chains. Here, the 08h&  :ompute the values of a knowk — 1)-cochain on the boundago
V1+Vo+V3 (SO“d green), the 1'Cham|_ IS el+ez+e:3+e4+e;')+e6+ and accumulate these values.

& + €g (bold red), and the 2-chain is Aq + A (bold pink). We now g syggests a definition, dual to the boundary map, thatalte ¢
defineboundary mapsd. : C, — C; andd; : C; — Cy. Representing the coboundary mapd : cO ¢l & :cl 2

an orientedp-simplex by its verticegvo, ..., vp], we have,
A(Vo,vi,Vo]) = [V1,Va] — [Vo,Va] + [Vo, va). (5OB)([V07V1]) = B(al([vmvl]) = B(v1) — B(vo),
(Vo)) = vi—Vo. (810)([Vo, V1, V2]) = a(d2([vo, v1, V2])) =
, , , = a([v1,V2]) — a([vo,V2]) + a([vo, va]).
It is easy to verify thatd o = 0. For instance,d o (A1) =
0(0([va,Vs,Ve])) = 0([V5,Ve] — [Va,Ve] + [Va,V5]) = I([V5,Ve]) — These notations are convenient in computing coboundéfimsex-
0([Va,Ve])+0([Va,V5]) =Ve —V5— (Vg —V4) +V5— V4 =0. Letac C,. ample, Ifa = 5 gi&', thend(a) = 5 gi(d€"). To computede* for
ais a kcycleif d(a) = 0. Itis a Eboundaryif it is the boundary each oriented simplex we havede* = zejA]-*, where the summation



extends over albj havinge as a face, andj = +1 is the coefficient
with which e appears in the expression @A;. A similar rule applies
to computingdv*.

In analogy to the treatment of homology above, for a cocloain
Cl, we calla a J-cocycleif & (a) = 0. We calla a J-coboundary
if there exists a cochai € C° such thatdy(8) = 0. It is easy to

verify thatd o d = 0. 1-coboundaries are always 1-cocycles, we hay

im (&) C ker(d1). We define the rohomologyof K to be the quotient
group,H! = HY(K;Z) = ker(&;) /im (&). Two 1-cocyclesr anda’
arecohomologousf o — a’ is a coboundary.

Fig. 5. Left: simple examples of cochains. Right: in this triangulation of
aq annulus, the 1-cochain a1 = € + €; + €5 + € + €] is a generator of
H*.

In Figure 5 (left), assuming all triangles are oriented d¢erniock-
wise, we computedel. € :Cy — Z has value 1 ores and 0 on
other edges.d€; has value-1 onA; and 1 onA, becausess ap-
pears indA; and 0A; with signs+1 and —1, respectively. There-
fore, oe5 = A5 — A7. A similar remark shows thadv; = € — e} and
0v; = €;—€5—€;. The 1-cochaim = €] +€; — €5 is a 1-cocycle since
8(a) = 5(e}) +8(e5) — 8(e3) = (8]) + (83— B) — (&3) = 0. Mean-
while, a is also a 1-coboundary sinee= &(—v; —v3). In terms of
generators, in Figure 5 (right), the 1-chain= ef + €} + €5 + €5+ €],
is a 1-cocycle, sincé(ay) = 6(€f) +.. + 0(ejg) = AF+ (&) — A3) +

(A% — D)) + (A — AF) — Ag = 0. It is not a 1-coboundary. Therefore,
[a1] € HY, anda; can be used as the representative of the 1st coho-

mology class.a; (bold red) is cohomologous @, (bold orange), as
we can checlay — ap = 3(Vj + Vi +V§).

Consider the torus example in Figure 6 bottom, its 1-cohogol
group is generated by the 1-cochams(red) anda, (blue). We can

a b c
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d
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e /

o;
a b c
O\V
O//
Fig. 6. The triangulation of a torus. Top: a; = [a,b] + [b,c] + [c,a] (bold
red) and a; = [a,d] + [d,€] + [e @] (bold blue) are the generators of Hj.

Bottom: 1-cochains a; (bold red) and a» (bold blue) are generators of
HL.
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In the discretized setting of simplicial complexes, theseal coho-
mology groups are approximated in Section 5.

To put the above formal definition into context, see Figuréeft)(
The spaceX is an annulus. Given a pointe X and a radius, we
draw a ball of radiug aroundx. The space that is inside the ball is
XN By (x) (pink shaded region), and the space that is on the boundary
is XN @B (x) (black). This allows us to computd! (XN B (x),XN
0B (X)).

Fig. 7. A simple example of local homology and cohomology. Left:
computing local (co)homology through the coning operation. Right: il-
lustration of the coning operation.

check that botlr; anda- are 1-cocycles, not 1-coboundaries, and ard-3 Homotopy theory

not cohomologous. It is important to note the duality betweeho-
mology and homology generators, which is slightly couriéuitive.
Here,a € H! (bold red) is dual t@; € Hy (bold red), whilea, € H1
(bold blue) is dual t@, € Hq (bold blue).

3.2 Local cohomology

The notatiorH!(X,Y) is commonly referred to a®lative cohomol-
ogy, which is closely connected to the computation of the coHogyo
groups of the quotient spacg/Y. Intuitively, when gluing all points
in Y to a formally introduced dummy vertex, any non-trivial topol-
ogy within Y is destroyed, ensuring that' (X,Y) only cares about
topological features that are ¥ and not inY.

Suppose we have a topological spa€e We may define the-1
dimensional local homology grouy X at a pointx € X asH1 (X, X —
x) [39]. In analogy, the dimensional local cohomology grougd X
is a corresponding relative cohomology gradb(X,X — x). Fixing

As in [15], we rely on the following principle from homotopkeory,
which relates circular coordinates with cohomology. R&iS?] be the
set of equivalence classes of continuous maps from spao&! un-
der the homotopy relation. For topological spaces with thadtopy
type of a cell complex, there is an isomorphi$th(X;Z) = [X,S]
[34]. This implies thatif X has a non-trivial1-dimensional coho-
mology clasga] € H(X;Z), we can construct a continuous function
0 : X — S from a representativer (see [17] for a formal proof).

We shall assume that we can represent point cloud Xaby a
simplicial complexK containing vertices, edges and triangles.
dimensional cohomology classes consist of integer-vafuadtions
on the edges of this complex. By the isomorphism above, rvialt
global 1-cohomology classes correspond to circular oricgicbtruc-
tures while local 1-cohomology classes correspond to wiagcstruc-
ture in the data underlying the point cloud.

1-

some sufficiently small radius using the axiom of excision, we cang  OVERVIEW

define the above local homology grouptsX N By (X), XN JBr (X)),
whereB; (x) denotes the ball of radiuscentered arouns, anddBy (x)

With the technical tools described early, we now give an \deer

denotes its boundary. With the same analogy, we may defin&-theof our algorithm. We detect branching structures by conmgutocal

dimensional local cohomology group to H&(XN By (x), XN 3B (X)).
This local cohomology group computes topological featureX
within a local neighborhoo; (x), hence the ternfocal cohomology

circular coordinates. Given a point cloxiand a point of interest
x € X, we choose a subsetC X c RY in the neighborhood of, and
output local circular coordinate functiors: U — S1, that give the



simplicial complexeK’ andL’. K’ consists of all simpliceg of K

such that either some vertices @fare contained B, (x), or o is a
face of such a simplex.’ consists of all simplices of K’ such that
no vertices are contained By (x).

We note that ifK is in fact a parametrized family of complexes
K(g), then we defin&’(g) andL’(¢) correspondingly: by picking out
appropriate simplices iK(g) for the definitions ofK’(¢) andL’(¢)
respectively.

For a simplicial compleX and a formally introduced dummy point
w, we define thecone on K with vertex wdenotedCK, to be the
simplicial complex whose simplices are of the fofmvy, ..., vp| or
[Vo, - ..,Vp| for each (possibly empty) simpléxo,...,vp] of K FSS].
We callK thebaseof the cone.

Relative cohomology groups can be interpreted as the aiesoiu
homology groups of an associated simplicial complex [33].uBing
the excision theorem, it follows that!(K’, L") = H(K’ UCL'). This
complexK’ UCL' represents the local structure arovnd

Consider the annulus, as triangulated in Figure 8 top righton-
tains all the blue vertices and edgé§. contains all the light shaded
triangles, bold edges and solid vertices. The local stracanoundx
can be represented by the simplicial comptéxJCL’ as indicated in
the figure. Similarly, a more involved example is shown inuf&g8
bottom, with a triangulation of a figure eight.

Sequences of simplicial complexe$iven a collection of data points
X with some distance metric, such as the Hamming or Edit dis-
tances, there are a number of popular ways to represent theetzas
a simplicial complex. We can extract a representation cdllotfor-
mation in each of these cases, by construdihg CL’ from K’ andL’
induced from an appropriate simplicial representation.

While there are ways to generate a single simplicial compdex
represent a point cloud, the more useful approach has begento-
ate a nested family of simplicial complexes [14]. In our wosle use
the Vietoris-Rips complex Rig¥, €), which includes g-simplex for
every finite set ofp+ 1 points inX with diameter at most. Since
we are only interested inll, we can restrict our attention to the 2-
skeleton of Rip$X, €). For a sequence < & < --- < gy, we obtain

Fig. 8. Top: local cohomology computation in a simplicial setting for the
annulus indicating an absence of branching. Bottom: local cohomology
computation in a simplicial setting for the figure eight indicating 3-way
branching.

values for points in the neighborhood xf Our overall pipeline is as
follows:
1. Compute a simplicial complex from the point cloud datX in
the local neighborhood of
2. Use our local persistent cohomology to detect a significaino-
mology clasgap] in the datajap] € HY(K,Fp), whereF, is the
field of integers modulo a fixed prime
3. Lift [ap] to [a] € HY(K,Z), smootha to a € C}(K,R), and in-

tegrateato a circle-valued functio® : U — S*. a nested family of simplicial complexes Rip§ 1) C Rips(X, &) C
4. Approximate topological circular and branching strueturep- ... C Rips(X, &n). For larger data sets, theitness complegonstruc-

resented irr € C1(K,R) in high dimension to aid visualization tion may be more appropriate, as it tends to be smaller [14].

in a projection. Naively we can now comput&’(g) UCL/(g) induced from

5. Encode each local circular coordinates with a color mapstr Rips(X, &) by the conditions stated above. However, it is enough to
fer function to highlight true structures and rule out staual compute Rip$X N By (X), &) instead, since all simplices &f (&)U
illusions. CL/(g) are contained in &+ & neighborhood of. The resulting

Here, step 1 adapts and build upon previous work, and step@ris K(&) = K'(&) UCL/(&) is a nested family of simplicial complexes
own development. Step 3 uses well-established proceduféSjiand that reflects local behavior aroumd

step 4 introduces approximations of circular and brancbktngctures ; P ;

to help visualization. We find it useful in practice as dentted in 5.2 Persistence conomology in its local version
Section 6. At step 2 of the algorithm, we are given a nested family of diond
Branching behaviors. Branching is a phenomenon we observe igomplexes that represent the local structure at differardmeter val-
structures that are locally approximately 1-dimensionste define a uese. We introduce the notion m‘caleforllearnlng thl§ local structure
branching pointo be a point at which any path leading in along som#rough the concept gfersistence Persistence studies the evolution
locally 1-dimensional structure has some number of diffeygaths Of vectors in a sequence of vector spaces [11]. One main dgashp
leading out again. Consider the example illustrated in i@ The such a sequence comes from relating the cohomologies ofisiatip
pink regions above and below both decompose into approgiynat compllex.e.s reflecting different scales. With persistencecare rank
dimensional components. However, in the top figure, theoalisone the significance of cohomology classes, and gain robustnesar
such component leading out, and in the bottom, there are.thre proposed methods.

We call a point &-way branching poinif it is the point wherek+ 1 Formally, lettingK; = K(¢&) as constructed above, we are given

such 1-dimensional components merge. The fundamentahaitiem a nested family of simplicial complexes connected by iriols,
in this paper is that we can detdetvay branching by observing alocal # : Ky — Ko — ... = Kn. For & < gj, the inclusion of spaces C K;
cohomology group of rank, and that the resulting local circle-valuedinduces a map between cohomology groups,Hl(Kj) N Hl(Ki),
goordlhnates I]orm %bq5|srorthe spaﬂce spﬁnner(]j by thle dlﬁp?smlle and we consider the sequenté:(Ky) + H1(Kp) ¢ ... « HL(Kp).
ranches. These basis elements often, though not alwaydrately A classa € H1(Ky) is born at the timea if it appears for the first

correspond to the distinct branches in the data set. . . . 1
time as a cohomology class, and such a cliss enteringH*(Kp)
5 ALGORITHM DETAILS when it disappears as a cohomology class. Wesgall &5 the persis-
. . . tenceof a. We consider classes with high persistence as representing
5.1 Data points to simplicial complexes significant topological structure. It is important to noteré that we
We describe step 1 of our algorithm in deta&lloning operation. Re- computeHl(Kl) = Hl(Kl;IFp) with coefficients inFp. As observed in
call from Section 3.2, to compute local cohomology of a sgé@ a  [50], persistence as a characterization of topologicalifea relies on
point x, we computeH!(X N By (x),XN 3B, (x)) for some appropriate the coefficients being a field. Computing over a finite figjdallows
fixed radiugr. To approximate this situation simplicially, we introducefor fast arithmetic, and anfree cohomology classes ové&r will still
— for a simplicial complexX representing the point cloud — two newbe classes ovefp. As described in [15], if the computation detects



Fig. 9. The circular structure on the left has high persistence while the
circular structure on the right is considered topological noise [15].

classes that do not correspond to free classes Byéne smoothing
step will fail to converge. In this case, [15] recommend that user
re-run the computation with a different prime. Any clasdes bccur
over both primes are guaranteed to be free.

Intuitively, persistence separates topological feattn@s noise by
measuring, in a sense, their size. An illustrative examplshiown
in Figure 9 where the global circle-valued coordinate fiorcon the
left corresponds to a persistent, or significant circularcstire, while
the circle-valued coordinate function on the right mightbesidered
noise. We give topological methods to detect branching i@ubir
structures in point clouds, and use persistence to deteictsiynifi-
cance.

The algorithm that computes persistent cohomology of aesscpi
of simplicial complexes is a modified version of the persisteomol-
ogy algorithm [25, 10], which in turn is a variation of the etic Smith
normal form algorithm [39]. In a nutshell, it involves a sf&corder-
ing of matrix reduction steps on the coboundary matriceb®fiested
simplicial complexes. After reducing the matrix we obtaicodlection
of cocycles, each of which is represented as a set of edgethtog
with their function values. For a detailed treatment andwlsion of
the persistent conomology algorithm, see [16].

5.3 Lifting, smoothing and integration

For step 3 of our algorithm, we are given a collection of céeyob-
tained from step 2. Each cocycle is represented as a colteatiedges

with coefficients inF,. We then lift the coefficients first to the integers
(Z) and then to the real®R]. Once the cocycle is a real cochain, wi

can smooth the corresponding function, and then integogteaduce
a function from vertices compatible with the given valueseniyes.
These steps are detailed in [15]. Here we shall review sontlenf
key ideas, for easier reference.

Lifting. Given ap, we lift ap to a, from Fy coefficient to integer
coefficient. We liftap = Y nig to a = 5 gi€’, whereg; is the unique
integer in[—(p—1)/2,(p—1)/2] congruent tay.

Smoothing. Givena, we find the “smoothest” cocycle € C1(K;R)
that is cohomologous tar. By smoothness we mean thathas a
small total variation defined d$a||2 = Seck:|a(€)[?. a anda are
cohomologous if there existsfac C°(K;R) such thatad — a = &f.
Therefore, we obtaimr by solving the following minimization prob-
lem: a = argming {||a]|? | @ —a = &f,3f € CO(K;R)}.

Integration. We can integrate brute force, by picking a point on
each component (typically including the cone point) to hewerdi-
nate value O, and then settifgh) = 6(a) + a([a, b]) to update a ver-
texb based on the value of a vertaand an edgéa, b]. This defines a

function 6 on the vertices. Alternatively, as pointed out in [17], sach

function8 comes out of the smoothing step above asfth@nimizing
a, moduloZ.

5.4 Generator approximations

To aid visualization, we provide two methods to give a fagragima-
tion to a, the cocycle generator cohomologousatoDue to the high-
dimensionality and complexity of the data, often many daiats may

of parametrized values, where points lie in a common binefrttis-
tance (difference in value) is less than a predeterminedevaBins
are ordered according to their values with respe&ltoBetween two
neighboring bins, we assumes a complete graph where alinser
edges across bins are possible, with edge weights reflealog dif-
ferences at their end nodes. Our problem reduces to congpatimn-
imum weight cycle across all bins. We demonstrate in Seditmat
even this simple approximation reveals much informatiotherstruc-
ture of the parametrization.
On the other hand, we know thatmust operate on edges of the un-

derlying Vietoris-Rips complex. Therefore we can augmastrini-
mum weight cycle approximation to enforce this constraint.

5.5 Algorithm summary

The algorithm described above detects local 1-cocyclels thig fol-
lowing highlights. First, computing local cohomology gpsucan be
approximated by coning operations on Vietoris-Rips coxgse Sec-
ond, persistent cohomology detects significant features fnoise.
Third, the above procedure leads to a local circular panazagibn
that emphasizes branching structure. Last but not leasigrgeor
approximations correspond to approximating circular arahthing
structures in high dimensions to aid visualization. It igportant to
note that these branching and circular structures are teeltéa the
high dimensional space via cohomology computation. We osly
dimensionality reduction techniques overlaying colompped coordi-
nate functions to visualize them in their low dimensionajections.
Furthermore, we can construct circle-valued coordinatetfans lo-
cally even if topology is trivial globally.

6 RESULTS
6.1 Software and data sets

The present results are obtained by our implementation aafl loo-
homology computation on top of the C++ library Dionysus [3Bbr
classic dimension reduction techniques such as Isomap a@plddian
eigenmaps, we use a toolbox from [47].
We construct local and global circle-valued coordinatefioms for

a variety of synthetic data and real-world examples. Thindhgse ex-
periments, we demonstrate that both the global and localleir co-
ordinates provide a detailed analysis on the intrinsiccstine and are

eneficial for many applications. Persistence parameterstosen

ased on heuristics presented in [15]. Timing informati®adllected
using Intel Xeon 2.67 GHz with 8GB memory.

6.2 Surfaces embedded in R3

We test our methods on several synthetic data sets with kboanth-
ing structures. The first data set is a point clotgampled from a
genus-3 surface as shown in Figure 1 (a). We focus on a pairnX
from one of its four corners and construct local circle-eacoordi-
nates in its neighborhood. Its two-way branching structar#lus-
trated in 1 (b). We construct their corresponding circlesgd coordi-
nate functions from the point cloud, both of which are showRigure
1 (c) and (d).

The second data set is sampled from a genus-4 surface ineFigur
1 (e), where seven-way branching exists in the neighborlododas
indicated in Figure 1 (f). We construct seven correspondiingje-
valued coordinate functions, three of which are shown inféd., the
rest are shown in Figure 10.

Fig. 10. Genus-4 surface data set, where four of its seven local circle-

map to the same value @, or close in parametrization by a smallvalued coordinate functions are shown.

€. Therefore tracing out all edges with non-zero coefficienrican
lead to a messy visualization when projected onto a loweedsional
space.

One fast and simple approximation of computes a minimum

6.3 Virus outbreak

We use the VAST 2010 mini challenge data set involving Drafasv
genetic sequences. 58 mutated genetic sequences formeaticoll

weight cycle which spans bins of values. Here we assume anlginnof outbreak sequences rooted at the ancestor sequence Nageeid



Fig. 11. Local structures among virus genetic sequences. Points are
overlaid with a phylogenetic tree. The red arrow points to the ancestor
sequence.

B (based on prior knowledge). Each genetic sequence corit@4ts
nucleotides, and corresponds to a point in 1045 dimensigpate.
We focus on studying the local structure surroundingNigeria B,
using circle-valued coordinates and Hamming distance icetVe
then embedded all 58 sequences into 3D space, with Multitiioaal
Scaling. As shown in Figure 11, local circle-valued cooatiés reveal
the branching structures surroundixnglo aid the visualization of the
color-coded circle-valued coordinate function, we owetlae points
with the phylogenetic tree among these sequences. Thisdocygcle
took 0.08 seconds to compute (0.08 for Rips calculatiorsigiemce
calculation timing is negligible).

6.4 Motion capture data

For this example, we construct both global and local circatordi-
nates on a couple of motion capture data sets freely distdban-
line. Motion capture data is the recorded movement of a litera
over time. In the following we show that there are interegfeatures
captured by our methods that are worth further investigatior our
testing, we have analyzed motion capture data saved in thesigin
BVH format. BVH is a hierarchical set of relative joint anglmoted
at a node that is traditionally centered at the hips of the &etor.
All translational motion of the actor in world space is alszeded at
this node, to give a complete representation of the motionceShe
space for translational motion is small, finding circulausture due
to this motion should not be difficult. A much more interegtjrob-
lem is finding structure and correlation in the joint angli®refore
the translational motion is ignored in our testing.

Local illusions: walk, hop and walk. The first data set from OSU
Motion Capture Lab data repository [35] involves a femateawalk-
ing, hopping over an obstacle and then walking again. ltaiost189
frames with 66 joint angles per frame. For our tests, eacmdris
considered a point in 66 dimensional space with a@istance metric.
Figure 12 shows this point set embedded onto 3D Euclideasess
ing Laplacian eigenmaps. This 3D embedding appears tolrevese
branching structure, denoted in the top image of this fig@antrary
to this, the local circle-valued coordinate functions caoieg in high
dimension indicate that it is a visual illusion, shown in tieet of im-
ages. This example emphasizes the fact that traditionadmiionality
reduction can introduce structure where none is presertallarcle-
valued coordinates do not suffer from this flaw and therefare help
uncouple illusions from actual structure in visualizagorThis local
cocycle took 0.08 seconds to compute (0.08 for Rips calculaper-
sistence calculation timing is negligible).

Fig. 12. Motion capture sequences from a female actor walking, hop-
ping over an obstacle and then walking again. (a): Laplacian eigenmaps
appears to reveal a branching structure in the local neighborhood of a
point, marked in red. (b) and (c): when we visualize local-circle valued
coordinate functions in the same neighborhood, we obtain two indepen-
dent parametrizations. This indicates that no branching structures exist
in that local neighborhood. We approximate the generators associated
with the local cohomology classes to aid visualization of the circular
structure. The approximated generator travels along a given branch
where the color indicates its direction. Notice that there are extra edges
pointed by arrows that are artifacts from the approximation. The red ar-
row in (c) shows that our sample point no longer has a distinct value in
the parametrization.

Fig. 14. 1995 voting data for the Democratic party affiliated members
of the House of Representatives. We visualize the top global circle-
valued coordinate function through a transfer function and with an ap-
proximated cocycle. The circled points indicate representatives who
switched parties or resigned.

parametrization. The bins highlighted in blue in this figgtare a
common parametrization and, as the frames show, have veilasi
arm movement. Finally, Figure 13 bottom left shows the Leipla
eigenmaps and isomap projection of the joint angles on 3Didaan
space, left and right respectively. This example emphadize fact
that without the circular-coordinate parametrizationydtuld be im-

ossible to infer this cycle from the embedded points aloféis

Ballet dancer. The Ballet dancer data set, obtained from [1], involvegycIe took 417.38 seconds to compute (363.67 for Rips caticul

a ballet dancer performing a traditional stretch. The ddtesntains
471 frames of 54 joint angles.
compilation of the frames is shown in Figure 13 top. In thisifeg
time flows in row-major order first from left to right then top bot-
tom by rows. We construct global circle-valued coordinatections
on the data. The parameterized value bins for the secondshaig
cocycle in terms of persistence is drawn over the framesgirgi1l3
top. As this shows, the cycles coincide with the points ofrfwtion
data where there is hesitation or pauses before a point efctich
in the arm movement, see Figure 13 bottom right. Additignadhie
global-circular coordinates give a binning of similar neois in this

A sub-sampled (every 2nd fjam

30.47 for persistence calculation).

6.5 Voting

Consider the House of Representatives of the US Congresa In

given session, a number of votes are being cast on propoBgdnbi

the House, and a simple numeric scheme can be used to askign va
ues+1,—1,0 to votes of Yea, votes of Nay and absence of a vote.

This yields a point cloud of representatives in a vector spzfaoll-
calls. We study vote records extracted fromuse. gov that cover
the voting behaviors of Democrats in the House of Repreteasa
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Fig. 13. Motion capture sequences from a Ballet dancer where global circle-valued coordinates reveal moments of hesitation or pauses before a

point of inflection in the arm movement.

Fig. 15. Data from a combustion simulation. (a): 3D Isomap embedding
of the circular structure with the highest persistence. We aid the visual-
ization using an approximated cocycle generator. (b): 3D rotated view
with approximated generator to guide visualization. This circular struc-
ture can be used to discover correlations between parameters. Two
points are linked between each view to aid visualization.

during the year 1995. In this period, 205 congressmen vate88s
different issues. Using a Hamming distance metric, we cootd
global circle-valued coordinates with respect to signifta@on-trivial
1-cocycles. We then embedded all 205 points into 3D usingitiul
mensional Scaling.

In Figure 14, we see that the most significant circular stmect
is formed using representatives Deal (D-GA), Laughlin (R};Tand
Reynolds (D-IL), who switched political affiliation or resied during
the year (marked with red arrows in the figure), as well as @is t
from the core of the point cloud. This circular structureelikindi-
cates that in addition to resignation or party switchegetlage several
modes in which a representative can differ from the maiastref
their party. Beyond not agreeing with their own party, repreatives
can seem absent through having heavy political duties ogtesent
from their work for other reasons. This cycle took 94.27 seisoto
compute (92.15 for Rips calculation, 1.76 for persisterateutation).

Fig. 16. Climate data: the second most significant circle-valued coordi-
nate function (a) overlaid with approximated cocycle generator (b). Two
points are linked between each view to aid visualization.

6.6 Combustion and climate simulations

Advanced modeling and simulation tools have been used tigden
reduce the need for large, expensive integrated physichchami-
cal experiments. As these simulations become more sogatisti and
accurate, it becomes crucial to estimate the likelihood gizan pre-
diction and quantify its uncertainty. Topological toolssedeen help-
ful in handling parameter choices and an analysis of thenpetier
spaces related to a simulation [32]. We believe that topobgools

in general, and the analysis of global circular structuneggarticular,
are helpful as feedback for domain scientists that providaénfor-

mation useful for uncertainty quantification and sengitidnalysis.
We demonstrate here that within simulation data from botinlugs-

tion simulations and climate simulations, there are sigaiftly large
circular structures present.

Combustion simulation. We use a subset of points from a combustion

simulation and analyze its output parameter space. Padiateeated
on a 16 by 16 grid with 4 simulation time steps. Each point issod-
ered 16 dimensional, including parameters such as mixtaion,



dissipation rate, heat release rate and temperature. Wedsiath the
points into 3D using Isomap and visualized the significamidar fea-
tures in the data. This is shown in Figure 15. This cycle todl04
seconds to compute (11.66 for Rips calculation, 2.96 fosipemce
calculation).
Climate simulation. We are also interested in finding features in th
output parameter space of a climate simulation. This datase-
prises 1612 simulation points, each with 8 output pararagteclud-
ing total cloud percentage, precipitation rate, sea-lpvessure, sur-
face stress and temperature . We construct global cirdieegtaoordi-
nate functions and visualize them in Landmark Isomap 3Degt@n.
This is shown in Figure 16, where the significant circulausture is
concentrated at the basin of the projection. This cycle th0R sec-
onds to compute (0.05 for Rips calculation, 0.02 for peesisé calcu-
lation). For this particular cycle, its birth time is low cpared to the
range of function values. Therefore, the calculation is/\aficient
due to needing only a small Rips complex to fully capture theycle.
These global circle-valued coordinates indicate potenta-local
correlations among simulation parameters since they atelicigh di-
mensional path along which they may be changed in differaysvto
achieve the same conditions. This type of non-local caticela are
challenging to find and provide insight to the scientists lo& ¢com-
plexities of their simulations. We will work with domain scitists to
validate the consequences that the emergence of such aygss.

6.7 Feasibility, performance and limitations

We shall discuss the runtime complexities of each step inatyw-
rithm:

e Step 1: computing the 2-skeleton of the Vietoris-Rips caxpl
For & = «, the complex ha®©(v?) simplices (by choosing all

global structures of data interact with one another? Howloaal
analysis infer global structure? There are various opestares, and
we address a few here.

Shortest local cocycle.Many algorithms exist to compute 1-cycles
with geometric constraints, such as shortest by length ofnmuim
&y weight. Are these algorithm extendable to compute thetsbio
(local) 1-cocycles? The smoothing step described earlains a
1-cocycle with minimum total variance. While persistentriabogy
computes representative homology-generating cyclesettyeles can
fluctuate drastically due to changes in the filtration or m$implicial
complex. Work in [9] tracks these cycles so that the changetoaal
with temporal coherence. We believe this line of work canmtiereded
to (local) persistence cohomology computations.

Extending local parametrization. Using our algorithm, a point
setU C X in the r-neighborhood ofx € X is parameterized by a
circle-valued coordinate functiofi: U — S'. We can extend such a
parametrization by gradually increasingntil non-trivial topological
changes take place. That is, we can extént) — S1to 6’ :U’ — St
whereU C U’. We can also obtain a partial ordering of all points
in X by concatenating multiple local parametrizations. Thagigen
two circle-valued function®; : U; — St and 6, : U, — S, where
U1 NU, £ 0, it might be possible to construct a gluiagU; UU, — St

in a coherent manner. The notion of 1-cocycle is not only irtgyd in
our context of circular coordinates, but also shows up ia dahking
and discrete vector fields [8]. Does a total partial ordegb¢pined
from “gluing” local 1-cocycles play a role in data ranking?
Computation efficiency. To guarantee theoretical correctness in com-
puting local (co)homology, we need to use the Delaunay cexat
detailed in [5, 7]. However it is impractical to compute Dglay com-
plexes in high dimensions. We believe that using Vietoriggskor wit-

possible triangles), whereis the number of vertices. Generatingness complexes to compute local cohomology in high dimessi®

the complex takes time worst ca®¢v®)
practice [49]. Usuallyg is chosen with prior knowledge of the
problem domain to be just large enough to detect the topolo

This decreases the above bound to an expected linear or e
constant behavior. When computing local cohomology, wg on

need to construct the complex in tfre+ €)-neighborhood of a
center point, which radically reduces thegenerating runtime
complexity.

tence algorithm runs in tim&(n3), wheren is the number of
simplices [13]. It shows a roughly linear behavior in preeti
[6].

Step 3: solving a LSQR optimization problem, which gengrall
has low-complexity and is unlikely the performance bottleh

The ambient dimension plays a role in the computation of ic&tr
possibly as a pre-processing step. The rest of the algoigtimdepen-
dent of the ambient dimension (or even the notion of a welfilhed
embedding space).

In terms of locating points of interest for branching detact we
assume that the prior knowledge suggests a set of candidits.plf
not, the computation can be performed on a random sampéénired
any points that show an unexpected high rank for its dimensimcal
cohomology.

Our computation includes two user-specified parameterssite

Step 2: computing (local) persistence cohomology. Theipers

this is however rare in the best available option. In particular, methods for faststructions

of Vietoris-Rips complexes have become available [49], thede has
en theoretical advancement on the topology-preserviagtigs of
igtoris-Rips complexes [3]. Efficient data structure fepresenting
pnd simplifying simplicial complexes in high dimension f&n pro-
posed [2]. Other proximity graph constructions, such akthearest
neighbor graph or the Gabriel graph might be employed as ik
correctness guarantee associated with these constrsicgamains as
an open question.
Visualizing branching and circular structures. As shown in Figure
15 and Figure 16, the default projection and viewing anghesnot vi-
sualize the circular structures clearly. We obtain beti®ralization on
these structures by approximating cocycles in high dineradispace
and choose proper viewing angles, using the algorithm pteden
Section 5.4. However, augmenting a low-dimensional pt@aavith
color maps still suffers visual drawbacks as some strucinferma-
tion can be hidden. We believe it is an interesting open ipeso
develop visualization techniques that preserve and erngeh&aspo-
logical structures recovered in high-dimensions. In otherds, we
would like to develop topology-driven or feature-optindgerojection
in terms of found branches or cycles.
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