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Fig. 1. Given point cloud data in high-dimensional space, we detect and visualize branching structures in a neighborhood surrounding
a given point of interest. Here we give two simple examples with point clouds sampled from surfaces embedded in 3-dimensional
space. In (a), given a genus-3 surface, we analyze the branching structure around one of its corners, x. We apply color-mapping
transfer functions to local circle-valued coordinate functions to visualize the structure. Specifically, the color scale indicates the
“direction” of the branches. As illustrated in (b), there is a local two-way branching around x, where the coordinate function of each
branch is visualized in (c) and (d), respectively. In (e), given a genus-4 surface, we detect a seven-way branching around x (f), where
three of the coordinate functions are shown in (g), (h) and (i), respectively.

Abstract—Large observations and simulations in scientific research give rise to high-dimensional data sets that present many chal-
lenges and opportunities in data analysis and visualization. Researchers in application domains such as engineering, computational
biology, climate study, imaging and motion capture are faced with the problem of how to discover compact representations of high-
dimensional data while preserving their intrinsic structure. In many applications, the original data is projected onto low-dimensional
space via dimensionality reduction techniques prior to modeling. One problem with this approach is that the projection step in the
process can fail to preserve structure in the data that is only apparent in high dimensions. Conversely, such techniques may create
structural illusions in the projection, implying structure not present in the original high-dimensional data. Our solution is to utilize
topological techniques to recover important structures in high-dimensional data that contains non-trivial topology. Specifically, we are
interested in high-dimensional branching structures. We construct local circle-valued coordinate functions to represent such features.
Subsequently, we perform dimensionality reduction on the data while ensuring such structures are visually preserved. Additionally,
we study the effects of global circular structures on visualizations. Our results reveal never-before-seen structures on real-world data
sets from a variety of applications.

Index Terms—Dimensionality reduction, circular coordinates, visualization, topological analysis.

1 INTRODUCTION

Many scientific investigations depend on exploratory data analysis
and visualization of high-dimensional data sets that represent complex
phenomena. Given a collection of high-dimensional data points, di-
mensionality reduction techniques are typically applied prior to mod-
eling and feature detection. These techniques find a low-dimensional
representation of the data with simple guarantees, by assuming that
real-valued low-dimensional coordinates are sufficient tocapture its
underlying intrinsic structure.

In mathematical terms, given a collection of high-dimensional data
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points X ∈ R
d, dimensionality reduction techniques obtain an em-

bedding that maps a pointx = (x1,x2, ...,xd) ∈ X to a point y =
(y1,y2, ...,ym), wherem≪ d, through a set of real-valued coordinate
functionsφ = (φ1,φ2, ...φm) : X → R, whereyi = φi(x), with the as-
sumption that the data typically has the topological structure of a con-
vex domain [15]. However, if the underlying space in high dimension
contains nontrivial topology, either globally or locally,dimensionality
reduction alone is no longer sufficient to preserve the topology.

In [15], the authors challenge the convex domain assumptionin
dimensionality reduction through topological analysis. They give a
method for computing global circular coordinates and interpreting the
results, and illustrate their methods on data sets containing circular
structures, such as a circle, an annulus and a torus. In particular,
the authors describe a topological procedure that enlargesthe class
of coordinate functions for dimensionality reduction to include global
circle-valued functions, mapping the point cloud to a closed circle:
θ : X→ S

1.
We extend this work by introducinglocal circular coordinatesby

computingpersistent local cohomology. As a local coordinate, we
give a procedure usingrelative cohomologyto compute a function
θU : U → S

1 from a (small) neighborhood in the point cloud to the
closed circle. We observe that these local coordinates produce a natu-



ral interpretation as encoding branching behaviors. The acquired co-
ordinates are visualized by applying a color map transfer function. In
this paper, we will describe this extension, and also give examples
from a number of datasets of both global and local circular coordi-
nates, with interpretations of these coordinates in both the global and
local realm. Even though [15] produced some examples of the global
circular coordinate structures, our emphasis will be on less artificial
datasets and on the interpretation of the resulting coordinates.

There are two advantages to using topologically motivated circle-
valued coordinate functions. First, they enrich data representations by
revealing branching and circular features in the data. Second, by re-
flecting topological properties in the high-dimensional embedding do-
main, they help differentiate intrinsic structure in the data from struc-
tural illusions.

For example, for a point cloud sampled from a torus embedded in
2D as shown in Figure 2 (a) and (b), dimensionality techniques alone
can always visualize one of its essential loops (generatorsof the ho-
mology groups) represented byθ1, while the same techniques fail to
showcase the other essential loop as revealed byθ2 without tearing
or cutting. In Figure 2 (c), (d) and (e), we can see that globalcircle-
valued coordinate functions differentiate a trefoil knot from two linked
circles based upon seemingly similar projections. While this differen-
tiation could arguably be performed with clustering techniques, the
cohomological approach is more robust to knotting and interleaving
of the data sets than a pure clustering technique would have been.

On the other hand, local circle-valued coordinate functions reveal
topological features within a sub-region of the point cloud, as shown
in Figure 3. It is able to capture the three-way branching structure
surrounding the crossing point in figure eight (Figure 3 (e),(f) and
(g)), while detecting structural illusion of a figure eight created by
projecting a circle in a certain direction (Figure 3 (b) and (c)).

Our main contributions are as follows.
• We introduce local circle-valued coordinate functions that facil-

itate local structural analysis, especially the detectionof branch-
ing features in data. We construct these functions in a local
neighborhood through topological analysis of 1-dimensional co-
homology. That is, we choose a subset of pointsU that are with
close proximity of a given point, and construct coordinate func-
tionsθU : U → S

1.
• On the technical level, we develop a local version of the per-

sistent cohomology machinery through local cohomology com-
puted on point cloud data. Persistence enables the detection of
significant local features and separates features from noise within
the data. That is, we obtain a parametrization ofU through co-
ordinate functionsθ1,θ2, ...,θn : U → S

1, wheren indicates the
number of significant local features.

• We present the first technique that approximates topological cir-
cular and branching structures in high-dimensional space to aid
visualization in the low-dimensional projection.

• We present empirical evidence demonstrating that both the local
and global circle-valued coordinate functions, for the first time,
permit more precise analysis on real-world data sets. This ex-
tends the more artificial experiments in [15], where emphasis
was on proof-of-concept using simulated data sets.

2 RELATED WORK

A variety of nonlinear dimensionality reduction techniques, mostly
spectral approaches, have been proposed in recent years. These spec-
tral methods typically construct an adjacency graph from the point
cloud data and compute a pair-wise distance matrix from which eigen-
vectors are extracted to represent the data in a low dimensional space
[36]. Some of the popular methods include Isomap [46], locally linear
embedding [43], Laplacian eigenmaps [4], and kernel PCA [44].

Several nonlinear dimensionality reduction techniques have been
presented in recent years to analyze and visualize various topologi-
cal features in high dimensions. Takahashi et al. extract approximate
contour trees and Reeb graphs from high-dimensional point samples
by introducing new distance metrics to manifold learning techniques
such as Isomap [45]. They use thek-nearest neighbor graphto approx-
imate point-wise proximity. Oesterling et al. visualize the topological
structure of point clouds indirectly by visualizing the topology of their
density distribution [40]. They first approximate the density function

Fig. 2. Visualized global circular coordinate functions. (a) and (b): two
global circle-valued coordinate functions for a point cloud sampled from
a torus. (a): θ1. (b): θ2. (c), projection of a trefoil knot; (d) and (e),
projection of two linked circles. Figures are reproductions from [15].

Fig. 3. Visualized local circle-valued coordinate function. (a): local
circle-valued coordinate function for a point cloud sampled from a torus.
(b) and (c): projection of a circle (b) on 2D (c) that gives an illusion of a
figure eight, local circle-valued coordinate function indicates there is no
local branching structure. (e), (f) and (g): projection of a figure eight on
2D, three circle-valued coordinate functions are visualized to describe
the local branching structures.

by sampling on the point cloud’sGabriel graph[31], compute its join
tree, generate thetopological landscape[48] from the join tree, and
finally argument the landscape by placing the original data points at
chosen locations [40]. The technique has been extended and applied
successfully in topology-based projection and visualization of high
dimensional document point clouds [41]. [45] focuses on preserv-
ing topological transitions of level-sets, and [41] studies the structure
of data in terms of dense regions, while our work emphasizes local
branching and global circular structure detection in high dimensions
that are not necessarily captured by the above techniques. In particu-
lar, our work introduces new localized mapping of high-dimensional
point cloud data for the analysis of branching structures.

Various algorithms have been proposed to compute loops on sur-
faces, or homology generators that satisfy certain geometric optimality
[29, 12, 51, 26]. [29] computes shortest set of homology generators for
2-manifolds. [19] uses topological persistence [25] to computes topo-
logically correct loops on surfaces, that wrap around their“handles”
and “tunnels”. Given a weighted simplicial complex and a nontrivial
cycle, [18] computes its homologous cycle with minimal weight. [20]
approximates a shortest basis of the one dimensional homology group
of a manifold inRd from its point sample. Algorithms have also been
developed to compute shortest cycles, minimum cuts, or maximum
flow related to graphs embedded on surfaces [30, 28, 27].

In terms of revealing circular structures or essential loops within
data, several approaches have been taken to find alternativerepresenta-
tions. [21] studies cylindrical manifolds, data whose generative model
includes a cyclic and a linear parameter, and tries to find embedding
functions that map them onto a cylinderS1×R. [37] projects data
with non-trivial topology by destroying essential loops via tearing and
cutting. [42] maps data to a pre-chosen non-flat target space, such as a



cylinder or a sphere, using multidimensional scaling.
In [15], the authors present a framework ofpersistent cohomology,

and demonstrates how a correspondence from homotopy theoryen-
ables the construction of circle-valued coordinate functions from co-
homology classes. In this work, persistence aids the construction by
providing a quality measure for the cohomology classes and thus also
for the corresponding circle-valued coordinates. From this framework
emerges coordinate functions for dimensionality reduction that respect
and reflect the original topology of the high-dimensional embedding,
while highlighting such structures in the data that can be continuously
mapped onto the circle.

Recent work in [8] defines a modified version of topological per-
sistence (level persistence) for 1-cocycles, and shows that such 1-
cocycles can be interpreted as a circle valued map. While both [15]
and [8] discuss circle-valued functions, we notice that thepapers dif-
fer fundamentally in approach and in the notion of persistence used.

Algorithms that focus on cohomology computation, especially per-
sistent cohomology, have been proposed in recent years [15,8]. [22]
designs efficient algorithm to compute cohomology basis. [16] ad-
dresses duality in persistent homology and cohomology computation,
while [13] compares efficiencies of these algorithms. Localpersistent
homology has been used in stratification learning [5, 7].

Compared to these bodies of previous work, our paper is the first
that constructs local circle-valued coordinates on high-dimensional
data sets using persistent local cohomology, and is the firstto observe
the connections to branching structures. We discover and visualize
topological structures such as circles and branches on somedata sets
that have never been realized before.

3 TECHNICAL BACKGROUND

Our algorithm has key ingredients from both algebra, topology, and al-
gorithmics. We review necessary background on the topological con-
cepts for non-specialists, providing intuitive and illustrative examples.
Using this, we describelocal cohomology, and how it connects to the
analysis of branching structures. For a readable mathematical intro-
duction to algebraic topology, and algorithm details for computing ho-
mology and cohomology groups, see [39, 34]. For an introduction to
persistent homology and its related algorithms, see [23, 24].

3.1 Homology and cohomology
Homology. Homology deals with topological features such as “holes”
or “cycles” ; 0-, 1- and 2- dimensional homology groups correspond
to components, tunnels and voids in a topological space. Here, we dis-
cuss its simplest and most concrete definition, at the level of simplicial
homology.

Consider the simplicial complexK pictured in Figure 4, which is a
triangulation of an annulus. The 0-, 1- and 2-simplexes inK are the
vertices, edges and triangles, denoted by the setsK0 = {vi}, K1 = {ei}
andK2 = {∆i} respectively. We assume all simplices are oriented. We
define the 0-chains, 1-chains and 2-chains as formal sums of 0-, 1- and
2-simplexes with integer coefficients, respectively,

C0 = C0(K;Z) = {b=∑givi | gi ∈ Z},

C1 = C1(K;Z) = {a=∑giei | gi ∈ Z},

C2 = C2(K;Z) = {c= ∑gi∆i | gi ∈ Z}.

By abuse of notation, each 0-, 1- and 2-simplex inK corresponds to an
elementary chainof the same dimension. Then 0-, 1- and 2-chains can
be considered as sums of elementary chains. Here, the 0-chain b1 is
v1+v2+v3 (solid green), the 1-chaina1 is e1+e2+e3+e4+e5+e6+
e7+e8 (bold red), and the 2-chainc1 is ∆1+∆2 (bold pink). We now
defineboundary maps, ∂2 : C2→C1 and∂1 : C1→C0. Representing
an orientedp-simplex by its vertices[v0, ...,vp], we have,

∂2([v0,v1,v2]) = [v1,v2]− [v0,v2]+ [v0,v1].

∂1([v0,v1]) = v1−v0.

It is easy to verify that∂ ◦ ∂ = 0. For instance,∂ ◦ ∂ (∆1) =
∂ (∂ ([v4,v5,v6])) = ∂ ([v5,v6] − [v4,v6] + [v4,v5]) = ∂ ([v5,v6]) −
∂ ([v4,v6])+∂ ([v4,v5]) = v6−v5−(v6−v4)+v5−v4 = 0. Leta∈C1.
a is a 1-cycle if ∂ (a) = 0. It is a 1-boundaryif it is the boundary

of some 2-chainc, that is,∂ (c) = a. Let ker∂1 denote the set of all
1-cycles and im∂2 denote the set of all 1-boundaries. Since the 1-
boundaries are always 1-cycles, im∂2 ⊆ ker∂1. The 1-homologyof K
is the quotient group,H1 = H1(K;Z) = ker∂1/im∂2. For example,
a1 (bold red) is a 1-cycle since∂ (a1) = 0. a2 = e9+e10+e11+e12
(bold cyan) is a 1-boundary since it is the boundary of the 2-chainc1.
a1 is a 1-cycle, but not a 1-boundary, which makes[a1] a non-trivial
element ofH1. Thereforea1 can be used as a representative of the
homology class that generates the first homology group ofK. Two el-
ementsa,a′ ∈C1 are homologous iffa−a′ = ∂ (c), for some 2-chain
c, denoted asa∼ a′. In this case[a] = [a′]. Herea1 (bold red)∼ a3
(bold orange).

Fig. 4. The triangulation of an annulus. The 1-chain a1 = e1+e2+ ...+e8
(bold red) is a generator of H1.

Consider the torus, in the triangulationK in Figure 6 top left, the
1-homology group is generated by the 1-chainsa1 (red) anda2 (blue),
that is,a1 = [a,b]+[b,c]+[c,a] anda2 = [a,d]+[d,e]+[e,a]. We can
verify that botha1 anda2 are 1-cycles, as∂ (a1) = ∂ (a2) = 0. They
are not 1-boundaries since neither∂ (b) = a1 nor ∂ (b) = a2 admit a
solutionb∈C2. In addition,a1 anda2 are not homologous.
Cohomology. Now we associate toK another sequence of groups
called cohomology groups, whose origins lie in algebra rather than
geometry [39]. In many ways, they are considered “dual” to homology
groups, and are important in practice.

Consider our example in Figure 4, cohomology deals with functions
on 0-, 1- and 2-chain groups. By abuse of notation, each 0-, 1-and 2-
dimensional simplex inK corresponds to anelementary cochainof the
same dimension. For example, the 1-simplexehas a corresponding el-
ementary 1-cochaine∗, which is a function on 1-chain whose value is
1 on e and 0 on all other edges. In other words,e∗ : C1→ Z, where
e∗(e) = 1 ande∗(e′) = 0 for all e′ ∈ K1,e′ 6= e. Similarly, we have
elementary 0-cochains,v∗ associated with the 0-simplicesv; and ele-
mentary 2-cochains∆∗ associated with the 2-simplices∆. 0-, 1- and
2-cochains can be considered as sums of elementary cochains, that is,

C0 = C0(K;Z) = {β : C0→ Z,β =∑giv
∗
i | gi ∈ Z},

C1 = C1(K;Z) = {α : C1→ Z,α = ∑gie
∗
i | gi ∈ Z},

C2 = C2(K;Z) = {γ : C2→ Z,γ = ∑gi∆∗i | gi ∈ Z}.

The boundary maps from homology give us an accessible way to
build higher-dimensional cochains from lower-dimensional ones. In
order to find a value of a newk-cochain on ak-simplexσ we could
compute the values of a known(k−1)-cochain on the boundary∂σ
and accumulate these values.

This suggests a definition, dual to the boundary map, that we call
thecoboundary map, δ0 : C0→C1, δ1 : C1→C2,

(δ0β )([v0,v1]) = β (∂1([v0,v1]) = β (v1)−β (v0),

(δ1α)([v0,v1,v2]) = α(∂2([v0,v1,v2])) =

= α([v1,v2])−α([v0,v2])+α([v0,v1]).

These notations are convenient in computing coboundaries.For ex-
ample, If α = ∑gie∗i , thenδ (α) = ∑gi(δe∗i ). To computeδe∗ for
each oriented simplexe, we haveδe∗ = ∑ε j ∆∗j , where the summation



extends over all∆ j havinge as a face, andε j = ±1 is the coefficient
with whiche appears in the expression for∂∆ j . A similar rule applies
to computingδv∗.

In analogy to the treatment of homology above, for a cochainα ∈
C1, we call α a 1-cocycleif δ1(α) = 0. We callα a 1-coboundary
if there exists a cochainβ ∈ C0 such thatδ0(β ) = 0. It is easy to
verify thatδ ◦δ = 0. 1-coboundaries are always 1-cocycles, we have
im(δ0)⊆ ker(δ1). We define the 1-cohomologyof K to be the quotient
group,H1 = H

1(K;Z) = ker(δ1)/im (δ0). Two 1-cocyclesα andα ′
arecohomologousif α−α ′ is a coboundary.

Fig. 5. Left: simple examples of cochains. Right: in this triangulation of
an annulus, the 1-cochain α1 = e∗6 + e∗7 + e∗8 + e∗9 + e∗10 is a generator of
H

1.

In Figure 5 (left), assuming all triangles are oriented counterclock-
wise, we computeδe∗5. e∗5 : C1 → Z has value 1 one5 and 0 on
other edges.δe∗5 has value−1 on ∆1 and 1 on∆2, becausee5 ap-
pears in∂∆2 and ∂∆1 with signs+1 and−1, respectively. There-
fore, δe∗5 = ∆∗2−∆∗1. A similar remark shows thatδv∗1 = e∗2−e∗1 and
δv∗3 = e∗3−e∗2−e∗5. The 1-cochainα = e∗1+e∗5−e∗3 is a 1-cocycle since
δ (α) = δ (e∗1)+δ (e∗5)−δ (e∗3) = (∆∗1)+(∆∗2−∆∗1)− (∆∗2) = 0. Mean-
while, α is also a 1-coboundary sinceα = δ (−v∗1− v∗3). In terms of
generators, in Figure 5 (right), the 1-chainα1 = e∗6+e∗7+e∗8+e∗9+e∗10
is a 1-cocycle, sinceδ (α1) = δ (e∗6)+ ..+δ (e∗10) = ∆∗3+(∆∗4−∆∗3)+
(∆∗5−∆∗4)+ (∆∗6−∆∗5)−∆∗6 = 0. It is not a 1-coboundary. Therefore,
[α1] ∈ H

1, andα1 can be used as the representative of the 1st coho-
mology class.α1 (bold red) is cohomologous toα2 (bold orange), as
we can checkα1−α2 = δ (v∗4+v∗5+v∗6).

Consider the torus example in Figure 6 bottom, its 1-cohomology
group is generated by the 1-cochainsα1 (red) andα2 (blue). We can
check that bothα1 andα2 are 1-cocycles, not 1-coboundaries, and are
not cohomologous. It is important to note the duality between coho-
mology and homology generators, which is slightly counter-intuitive.
Here,α1 ∈H

1 (bold red) is dual toa1 ∈H1 (bold red), whileα2 ∈H
1

(bold blue) is dual toa2 ∈ H1 (bold blue).

3.2 Local cohomology

The notationH1(X,Y) is commonly referred to asrelative cohomol-
ogy, which is closely connected to the computation of the cohomology
groups of the quotient spaceX/Y. Intuitively, when gluing all points
in Y to a formally introduced dummy vertexw, any non-trivial topol-
ogy within Y is destroyed, ensuring thatH1(X,Y) only cares about
topological features that are inX and not inY.

Suppose we have a topological spaceX. We may define the 1-
dimensional local homology groupof X at a pointx∈X asH1(X,X−
x) [39]. In analogy, the 1-dimensional local cohomology groupof X
is a corresponding relative cohomology groupH

1(X,X− x). Fixing
some sufficiently small radiusr, using the axiom of excision, we can
define the above local homology group asH1(X∩Br(x),X∩∂Br (x)),
whereBr(x) denotes the ball of radiusr centered aroundx, and∂Br(x)
denotes its boundary. With the same analogy, we may define the1-
dimensional local cohomology group to beH1(X∩Br (x),X∩∂Br(x)).
This local cohomology group computes topological featuresof X

within a local neighborhoodBr(x), hence the termlocal cohomology.

Fig. 6. The triangulation of a torus. Top: a1 = [a,b] + [b,c] + [c,a] (bold
red) and a2 = [a,d] + [d,e] + [e,a] (bold blue) are the generators of H1.
Bottom: 1-cochains α1 (bold red) and α2 (bold blue) are generators of
H

1.

In the discretized setting of simplicial complexes, these local coho-
mology groups are approximated in Section 5.

To put the above formal definition into context, see Figure 7 (left).
The spaceX is an annulus. Given a pointx ∈ X and a radiusr, we
draw a ball of radiusr aroundx. The space that is inside the ball is
X∩Br(x) (pink shaded region), and the space that is on the boundary
is X∩ ∂Br(x) (black). This allows us to computeH1(X∩Br(x),X∩
∂Br(x)).

Fig. 7. A simple example of local homology and cohomology. Left:
computing local (co)homology through the coning operation. Right: il-
lustration of the coning operation.

3.3 Homotopy theory

As in [15], we rely on the following principle from homotopy theory,
which relates circular coordinates with cohomology. Let[X,S1] be the
set of equivalence classes of continuous maps from spaceX to S

1 un-
der the homotopy relation. For topological spaces with the homotopy
type of a cell complex, there is an isomorphismH1(X;Z) ∼= [X,S1]
[34]. This implies thatif X has a non-trivial1-dimensional coho-
mology class[α] ∈ H

1(X;Z), we can construct a continuous function
θ : X→ S

1 from a representativeα (see [17] for a formal proof).
We shall assume that we can represent point cloud dataX by a

simplicial complexK containing vertices, edges and triangles. 1-
dimensional cohomology classes consist of integer-valuedfunctions
on the edges of this complex. By the isomorphism above, non-trivial
global 1-cohomology classes correspond to circular or cyclical struc-
tures while local 1-cohomology classes correspond to branching struc-
ture in the data underlying the point cloud.

4 OVERVIEW

With the technical tools described early, we now give an overview
of our algorithm. We detect branching structures by computing local
circular coordinates. Given a point cloudX and a point of interest
x∈ X, we choose a subsetU ⊆ X ⊂ R

d in the neighborhood ofx, and
output local circular coordinate functionsθ : U → S

1, that give the



Fig. 8. Top: local cohomology computation in a simplicial setting for the
annulus indicating an absence of branching. Bottom: local cohomology
computation in a simplicial setting for the figure eight indicating 3-way
branching.

values for points in the neighborhood ofx. Our overall pipeline is as
follows:

1. Compute a simplicial complexK from the point cloud dataX in
the local neighborhood ofx.

2. Use our local persistent cohomology to detect a significant coho-
mology class[αp] in the data:[αp] ∈H

1(K,Fp), whereFp is the
field of integers modulo a fixed primep.

3. Lift [αp] to [α] ∈ H
1(K,Z), smoothα to ᾱ ∈C1(K,R), and in-

tegrate ¯a to a circle-valued functionθ : U → S
1.

4. Approximate topological circular and branching structures rep-
resented in̄α ∈C1(K,R) in high dimension to aid visualization
in a projection.

5. Encode each local circular coordinates with a color map trans-
fer function to highlight true structures and rule out structural
illusions.

Here, step 1 adapts and build upon previous work, and step 2 isour
own development. Step 3 uses well-established procedures in [15] and
step 4 introduces approximations of circular and branchingstructures
to help visualization. We find it useful in practice as demonstrated in
Section 6.
Branching behaviors. Branching is a phenomenon we observe in
structures that are locally approximately 1-dimensional.We define a
branching pointto be a point at which any path leading in along some
locally 1-dimensional structure has some number of different paths
leading out again. Consider the example illustrated in Figure 8. The
pink regions above and below both decompose into approximately 1-
dimensional components. However, in the top figure, there isonly one
such component leading out, and in the bottom, there are three.

We call a point ak-way branching pointif it is the point wherek+1
such 1-dimensional components merge. The fundamental observation
in this paper is that we can detectk-way branching by observing a local
cohomology group of rankk, and that the resulting local circle-valued
coordinates form a basis for the space spanned by the different possible
branches. These basis elements often, though not always, immediately
correspond to the distinct branches in the data set.

5 ALGORITHM DETAILS

5.1 Data points to simplicial complexes
We describe step 1 of our algorithm in detail.Coning operation. Re-
call from Section 3.2, to compute local cohomology of a spaceX at a
point x, we computeH1(X∩Br(x),X∩ ∂Br (x)) for some appropriate
fixed radiusr. To approximate this situation simplicially, we introduce
– for a simplicial complexK representing the point cloud – two new

simplicial complexesK′ andL′. K′ consists of all simplicesσ of K
such that either some vertices ofσ are contained inBr(x), or σ is a
face of such a simplex.L′ consists of all simplicesσ of K′ such that
no vertices are contained inBr(x).

We note that ifK is in fact a parametrized family of complexes
K(ε), then we defineK′(ε) andL′(ε) correspondingly: by picking out
appropriate simplices inK(ε) for the definitions ofK′(ε) andL′(ε)
respectively.

For a simplicial complexK and a formally introduced dummy point
w, we define thecone on K with vertex w, denotedCK, to be the
simplicial complex whose simplices are of the form[w,v0, . . . ,vp] or
[v0, . . . ,vp] for each (possibly empty) simplex[v0, . . . ,vp] of K [33].
We callK thebaseof the cone.

Relative cohomology groups can be interpreted as the absolute co-
homology groups of an associated simplicial complex [33]. By using
the excision theorem, it follows thatH1(K′,L′)∼= H

1(K′ ∪CL′). This
complexK′ ∪CL′ represents the local structure aroundx.

Consider the annulus, as triangulated in Figure 8 top right.L′ con-
tains all the blue vertices and edges.K′ contains all the light shaded
triangles, bold edges and solid vertices. The local structure aroundx
can be represented by the simplicial complexK′ ∪CL′ as indicated in
the figure. Similarly, a more involved example is shown in Figure 8
bottom, with a triangulation of a figure eight.
Sequences of simplicial complexes.Given a collection of data points
X with some distance metric, such as theL2, Hamming or Edit dis-
tances, there are a number of popular ways to represent the data set as
a simplicial complex. We can extract a representation of local infor-
mation in each of these cases, by constructingK′∪CL′ from K′ andL′

induced from an appropriate simplicial representation.
While there are ways to generate a single simplicial complexto

represent a point cloud, the more useful approach has been togener-
ate a nested family of simplicial complexes [14]. In our work, we use
the Vietoris-Rips complex Rips(X,ε), which includes ap-simplex for
every finite set ofp+ 1 points inX with diameter at mostε. Since
we are only interested inH1, we can restrict our attention to the 2-
skeleton of Rips(X,ε). For a sequenceε1 ≤ ε2 ≤ ·· · ≤ εn, we obtain
a nested family of simplicial complexes Rips(X,ε1) ⊆ Rips(X,ε2) ⊆
·· · ⊆ Rips(X,εn). For larger data sets, thewitness complexconstruc-
tion may be more appropriate, as it tends to be smaller [14].

Naı̈vely we can now computeK′(εi) ∪ CL′(εi) induced from
Rips(X,εi) by the conditions stated above. However, it is enough to
compute Rips(X∩Br+εi (x),εi) instead, since all simplices ofK′(εi)∪
CL′(εi) are contained in ar + εi neighborhood ofx. The resulting
K(εi) = K′(εi)∪CL′(εi) is a nested family of simplicial complexes
that reflects local behavior aroundx.

5.2 Persistence cohomology in its local version

At step 2 of the algorithm, we are given a nested family of simplicial
complexes that represent the local structure at different parameter val-
uesε. We introduce the notion ofscalefor learning this local structure
through the concept ofpersistence. Persistence studies the evolution
of vectors in a sequence of vector spaces [11]. One main example of
such a sequence comes from relating the cohomologies of simplicial
complexes reflecting different scales. With persistence wecan rank
the significance of cohomology classes, and gain robustnessin our
proposed methods.

Formally, lettingKi = K(εi) as constructed above, we are given
a nested family of simplicial complexes connected by inclusions,
K : K1→ K2→ ...→ Kn. Forεi ≤ ε j , the inclusion of spacesKi ⊆ K j

induces a map between cohomology groups,f : H1(K j)→ H
1(Ki),

and we consider the sequence,H
1(K1)← H

1(K2)← . . .← H
1(Kn).

A classα ∈ H
1(Ka) is born at the timea if it appears for the first

time as a cohomology class, and such a classdies enteringH1(Kb)
when it disappears as a cohomology class. We callεb− εa thepersis-
tenceof α. We consider classes with high persistence as representing
significant topological structure. It is important to note here that we
computeH1(K1) =H

1(K1;Fp) with coefficients inFp. As observed in
[50], persistence as a characterization of topological features relies on
the coefficients being a field. Computing over a finite fieldFp allows
for fast arithmetic, and anyfreecohomology classes overZ will still
be classes overFp. As described in [15], if the computation detects



Fig. 9. The circular structure on the left has high persistence while the
circular structure on the right is considered topological noise [15].

classes that do not correspond to free classes overZ, the smoothing
step will fail to converge. In this case, [15] recommend thatthe user
re-run the computation with a different prime. Any classes that occur
over both primes are guaranteed to be free.

Intuitively, persistence separates topological featuresfrom noise by
measuring, in a sense, their size. An illustrative example is shown
in Figure 9 where the global circle-valued coordinate function on the
left corresponds to a persistent, or significant circular structure, while
the circle-valued coordinate function on the right might beconsidered
noise. We give topological methods to detect branching or circular
structures in point clouds, and use persistence to detect their signifi-
cance.

The algorithm that computes persistent cohomology of a sequence
of simplicial complexes is a modified version of the persistent homol-
ogy algorithm [25, 10], which in turn is a variation of the classic Smith
normal form algorithm [39]. In a nutshell, it involves a specific order-
ing of matrix reduction steps on the coboundary matrices of the nested
simplicial complexes. After reducing the matrix we obtain acollection
of cocycles, each of which is represented as a set of edges together
with their function values. For a detailed treatment and discussion of
the persistent cohomology algorithm, see [16].

5.3 Lifting, smoothing and integration
For step 3 of our algorithm, we are given a collection of cocycles ob-
tained from step 2. Each cocycle is represented as a collection of edges
with coefficients inFp. We then lift the coefficients first to the integers
(Z) and then to the reals (R). Once the cocycle is a real cochain, we
can smooth the corresponding function, and then integrate to produce
a function from vertices compatible with the given values onedges.
These steps are detailed in [15]. Here we shall review some oftheir
key ideas, for easier reference.
Lifting. Given αp, we lift αp to α, from Fp coefficient to integer
coefficient. We liftαp = ∑nie∗i to α = ∑gie∗i , wheregi is the unique
integer in[−(p−1)/2,(p−1)/2] congruent toni .
Smoothing. Givenα, we find the “smoothest” cocyclēα ∈C1(K;R)
that is cohomologous toα. By smoothness we mean thatᾱ has a
small total variation defined as||ᾱ||2 = ∑e∈K1 |ᾱ(e)|2. α and ᾱ are
cohomologous if there exists af ∈C0(K;R) such thatᾱ −α = δ0 f .
Therefore, we obtain̄α by solving the following minimization prob-
lem: ᾱ = argminᾱ{||ᾱ||2 | ᾱ−α = δ0 f ,∃ f ∈C0(K;R)}.
Integration. We can integratēα brute force, by picking a point on
each component (typically including the cone point) to havecoordi-
nate value 0, and then settingθ (b) = θ (a)+ ᾱ([a,b]) to update a ver-
texb based on the value of a vertexa and an edge[a,b]. This defines a
functionθ on the vertices. Alternatively, as pointed out in [17], sucha
functionθ comes out of the smoothing step above as thef minimizing
ᾱ, moduloZ.

5.4 Generator approximations
To aid visualization, we provide two methods to give a fast approxima-
tion to ᾱ, the cocycle generator cohomologous toα. Due to the high-
dimensionality and complexity of the data, often many data points may
map to the same value onS1, or close in parametrization by a small
ε. Therefore tracing out all edges with non-zero coefficient in ᾱ can
lead to a messy visualization when projected onto a lower dimensional
space.

One fast and simple approximation of̄α computes a minimum
weight cycle which spans bins of values. Here we assume a binning

of parametrized values, where points lie in a common bin if their dis-
tance (difference in value) is less than a predetermined value. Bins
are ordered according to their values with respect toS

1. Between two
neighboring bins, we assumes a complete graph where all pair-wise
edges across bins are possible, with edge weights reflectingvalue dif-
ferences at their end nodes. Our problem reduces to computing a min-
imum weight cycle across all bins. We demonstrate in Section6 that
even this simple approximation reveals much information onthe struc-
ture of the parametrization.

On the other hand, we know thatᾱ must operate on edges of the un-
derlying Vietoris-Rips complex. Therefore we can augment the mini-
mum weight cycle approximation to enforce this constraint.

5.5 Algorithm summary
The algorithm described above detects local 1-cocycles with the fol-
lowing highlights. First, computing local cohomology groups can be
approximated by coning operations on Vietoris-Rips complexes. Sec-
ond, persistent cohomology detects significant features from noise.
Third, the above procedure leads to a local circular parametrization
that emphasizes branching structure. Last but not least, generator
approximations correspond to approximating circular and branching
structures in high dimensions to aid visualization. It is important to
note that these branching and circular structures are detected in the
high dimensional space via cohomology computation. We onlyuse
dimensionality reduction techniques overlaying color-mapped coordi-
nate functions to visualize them in their low dimensional projections.
Furthermore, we can construct circle-valued coordinate functions lo-
cally even if topology is trivial globally.

6 RESULTS

6.1 Software and data sets
The present results are obtained by our implementation of local co-
homology computation on top of the C++ library Dionysus [38]. For
classic dimension reduction techniques such as Isomap and Laplacian
eigenmaps, we use a toolbox from [47].

We construct local and global circle-valued coordinate functions for
a variety of synthetic data and real-world examples. Through these ex-
periments, we demonstrate that both the global and local circular co-
ordinates provide a detailed analysis on the intrinsic structure and are
beneficial for many applications. Persistence parameters are chosen
based on heuristics presented in [15]. Timing information is collected
using Intel Xeon 2.67 GHz with 8GB memory.

6.2 Surfaces embedded in R
3

We test our methods on several synthetic data sets with knownbranch-
ing structures. The first data set is a point cloudX sampled from a
genus-3 surface as shown in Figure 1 (a). We focus on a pointx∈ X
from one of its four corners and construct local circle-valued coordi-
nates in its neighborhood. Its two-way branching structureis illus-
trated in 1 (b). We construct their corresponding circle-valued coordi-
nate functions from the point cloud, both of which are shown in Figure
1 (c) and (d).

The second data set is sampled from a genus-4 surface in Figure
1 (e), where seven-way branching exists in the neighborhoodof x as
indicated in Figure 1 (f). We construct seven correspondingcircle-
valued coordinate functions, three of which are shown in Figure 1, the
rest are shown in Figure 10.

Fig. 10. Genus-4 surface data set, where four of its seven local circle-
valued coordinate functions are shown.

6.3 Virus outbreak
We use the VAST 2010 mini challenge data set involving Drafa virus
genetic sequences. 58 mutated genetic sequences form a collection
of outbreak sequences rooted at the ancestor sequence namedNigeria



Fig. 11. Local structures among virus genetic sequences. Points are
overlaid with a phylogenetic tree. The red arrow points to the ancestor
sequence.

B (based on prior knowledge). Each genetic sequence contains1045
nucleotides, and corresponds to a point in 1045 dimensionalspace.
We focus on studying the local structure surroundingx =Nigeria B,
using circle-valued coordinates and Hamming distance metric. We
then embedded all 58 sequences into 3D space, with Multidimensional
Scaling. As shown in Figure 11, local circle-valued coordinates reveal
the branching structures surroundingx. To aid the visualization of the
color-coded circle-valued coordinate function, we overlay the points
with the phylogenetic tree among these sequences. This local cocycle
took 0.08 seconds to compute (0.08 for Rips calculation, persistence
calculation timing is negligible).

6.4 Motion capture data
For this example, we construct both global and local circular coordi-
nates on a couple of motion capture data sets freely distributed on-
line. Motion capture data is the recorded movement of a live actor
over time. In the following we show that there are interesting features
captured by our methods that are worth further investigation. For our
testing, we have analyzed motion capture data saved in the Biovision
BVH format. BVH is a hierarchical set of relative joint angles rooted
at a node that is traditionally centered at the hips of the live actor.
All translational motion of the actor in world space is also encoded at
this node, to give a complete representation of the motion. Since the
space for translational motion is small, finding circular structure due
to this motion should not be difficult. A much more interesting prob-
lem is finding structure and correlation in the joint angles,therefore
the translational motion is ignored in our testing.
Local illusions: walk, hop and walk. The first data set from OSU
Motion Capture Lab data repository [35] involves a female actor walk-
ing, hopping over an obstacle and then walking again. It contains 189
frames with 66 joint angles per frame. For our tests, each frame is
considered a point in 66 dimensional space with aL2 distance metric.
Figure 12 shows this point set embedded onto 3D Euclidean space us-
ing Laplacian eigenmaps. This 3D embedding appears to reveal some
branching structure, denoted in the top image of this figure.Contrary
to this, the local circle-valued coordinate functions computed in high
dimension indicate that it is a visual illusion, shown in therest of im-
ages. This example emphasizes the fact that traditional dimensionality
reduction can introduce structure where none is present. Local circle-
valued coordinates do not suffer from this flaw and thereforecan help
uncouple illusions from actual structure in visualizations. This local
cocycle took 0.08 seconds to compute (0.08 for Rips calculation, per-
sistence calculation timing is negligible).
Ballet dancer. The Ballet dancer data set, obtained from [1], involves
a ballet dancer performing a traditional stretch. The dataset contains
471 frames of 54 joint angles. A sub-sampled (every 2nd frame)
compilation of the frames is shown in Figure 13 top. In this figure,
time flows in row-major order first from left to right then top to bot-
tom by rows. We construct global circle-valued coordinate functions
on the data. The parameterized value bins for the second largest 1-
cocycle in terms of persistence is drawn over the frames of Figure 13
top. As this shows, the cycles coincide with the points of themotion
data where there is hesitation or pauses before a point of inflection
in the arm movement, see Figure 13 bottom right. Additionally, the
global-circular coordinates give a binning of similar motions in this

Fig. 12. Motion capture sequences from a female actor walking, hop-
ping over an obstacle and then walking again. (a): Laplacian eigenmaps
appears to reveal a branching structure in the local neighborhood of a
point, marked in red. (b) and (c): when we visualize local-circle valued
coordinate functions in the same neighborhood, we obtain two indepen-
dent parametrizations. This indicates that no branching structures exist
in that local neighborhood. We approximate the generators associated
with the local cohomology classes to aid visualization of the circular
structure. The approximated generator travels along a given branch
where the color indicates its direction. Notice that there are extra edges
pointed by arrows that are artifacts from the approximation. The red ar-
row in (c) shows that our sample point no longer has a distinct value in
the parametrization.

Fig. 14. 1995 voting data for the Democratic party affiliated members
of the House of Representatives. We visualize the top global circle-
valued coordinate function through a transfer function and with an ap-
proximated cocycle. The circled points indicate representatives who
switched parties or resigned.

parametrization. The bins highlighted in blue in this figureshare a
common parametrization and, as the frames show, have very similar
arm movement. Finally, Figure 13 bottom left shows the Laplacian
eigenmaps and isomap projection of the joint angles on 3D Euclidean
space, left and right respectively. This example emphasizes the fact
that without the circular-coordinate parametrization, itwould be im-
possible to infer this cycle from the embedded points alone.This
cycle took 417.38 seconds to compute (363.67 for Rips calculation,
30.47 for persistence calculation).

6.5 Voting

Consider the House of Representatives of the US Congress. Ina
given session, a number of votes are being cast on proposed bills in
the House, and a simple numeric scheme can be used to assign val-
ues+1,−1,0 to votes of Yea, votes of Nay and absence of a vote.
This yields a point cloud of representatives in a vector space of roll-
calls. We study vote records extracted fromhouse.gov that cover
the voting behaviors of Democrats in the House of Representatives
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Fig. 13. Motion capture sequences from a Ballet dancer where global circle-valued coordinates reveal moments of hesitation or pauses before a
point of inflection in the arm movement.

Fig. 15. Data from a combustion simulation. (a): 3D Isomap embedding
of the circular structure with the highest persistence. We aid the visual-
ization using an approximated cocycle generator. (b): 3D rotated view
with approximated generator to guide visualization. This circular struc-
ture can be used to discover correlations between parameters. Two
points are linked between each view to aid visualization.

during the year 1995. In this period, 205 congressmen voted on 885
different issues. Using a Hamming distance metric, we constructed
global circle-valued coordinates with respect to significant non-trivial
1-cocycles. We then embedded all 205 points into 3D using Multidi-
mensional Scaling.

In Figure 14, we see that the most significant circular structure
is formed using representatives Deal (D-GA), Laughlin (D-TX), and
Reynolds (D-IL), who switched political affiliation or resigned during
the year (marked with red arrows in the figure), as well as two tails
from the core of the point cloud. This circular structure likely indi-
cates that in addition to resignation or party switches, there are several
modes in which a representative can differ from the mainstream of
their party. Beyond not agreeing with their own party, representatives
can seem absent through having heavy political duties or being absent
from their work for other reasons. This cycle took 94.27 seconds to
compute (92.15 for Rips calculation, 1.76 for persistence calculation).

Fig. 16. Climate data: the second most significant circle-valued coordi-
nate function (a) overlaid with approximated cocycle generator (b). Two
points are linked between each view to aid visualization.

6.6 Combustion and climate simulations

Advanced modeling and simulation tools have been used recently to
reduce the need for large, expensive integrated physical and chemi-
cal experiments. As these simulations become more sophisticated and
accurate, it becomes crucial to estimate the likelihood of agiven pre-
diction and quantify its uncertainty. Topological tools have been help-
ful in handling parameter choices and an analysis of the parameter
spaces related to a simulation [32]. We believe that topological tools
in general, and the analysis of global circular structures in particular,
are helpful as feedback for domain scientists that provide extra infor-
mation useful for uncertainty quantification and sensitivity analysis.
We demonstrate here that within simulation data from both combus-
tion simulations and climate simulations, there are significantly large
circular structures present.
Combustion simulation. We use a subset of points from a combustion
simulation and analyze its output parameter space. Points are located
on a 16 by 16 grid with 4 simulation time steps. Each point is consid-
ered 16 dimensional, including parameters such as mixture fraction,



dissipation rate, heat release rate and temperature. We embedded the
points into 3D using Isomap and visualized the significant circular fea-
tures in the data. This is shown in Figure 15. This cycle took 17.04
seconds to compute (11.66 for Rips calculation, 2.96 for persistence
calculation).
Climate simulation. We are also interested in finding features in the
output parameter space of a climate simulation. This data set com-
prises 1612 simulation points, each with 8 output parameters, includ-
ing total cloud percentage, precipitation rate, sea-levelpressure, sur-
face stress and temperature . We construct global circle-valued coordi-
nate functions and visualize them in Landmark Isomap 3D projection.
This is shown in Figure 16, where the significant circular structure is
concentrated at the basin of the projection. This cycle took0.09 sec-
onds to compute (0.05 for Rips calculation, 0.02 for persistence calcu-
lation). For this particular cycle, its birth time is low compared to the
range of function values. Therefore, the calculation is very efficient
due to needing only a small Rips complex to fully capture the cocycle.

These global circle-valued coordinates indicate potential non-local
correlations among simulation parameters since they indicate high di-
mensional path along which they may be changed in different ways to
achieve the same conditions. This type of non-local correlations are
challenging to find and provide insight to the scientists on the com-
plexities of their simulations. We will work with domain scientists to
validate the consequences that the emergence of such cyclesimplies.

6.7 Feasibility, performance and limitations
We shall discuss the runtime complexities of each step in ouralgo-
rithm:

• Step 1: computing the 2-skeleton of the Vietoris-Rips complex.
For ε = ∞, the complex hasO(v3) simplices (by choosing all
possible triangles), wherev is the number of vertices. Generating
the complex takes time worst caseO(v3), this is however rare in
practice [49]. Usually,ε is chosen with prior knowledge of the
problem domain to be just large enough to detect the topology.
This decreases the above bound to an expected linear or even
constant behavior. When computing local cohomology, we only
need to construct the complex in the(r + ε)-neighborhood of a
center point, which radically reduces thev generating runtime
complexity.

• Step 2: computing (local) persistence cohomology. The persis-
tence algorithm runs in timeO(n3), wheren is the number of
simplices [13]. It shows a roughly linear behavior in practice
[6].

• Step 3: solving a LSQR optimization problem, which generally
has low-complexity and is unlikely the performance bottleneck.

The ambient dimension plays a role in the computation of metrics,
possibly as a pre-processing step. The rest of the algorithmis indepen-
dent of the ambient dimension (or even the notion of a well-defined
embedding space).

In terms of locating points of interest for branching detection, we
assume that the prior knowledge suggests a set of candidate points. If
not, the computation can be performed on a random sample, retaining
any points that show an unexpected high rank for its dimension-1 local
cohomology.

Our computation includes two user-specified parameters: the size
of the neighborhoodr and the maximal bound on the persistence pa-
rameterε. Whileε can be chosen as indicated in [15], keeping in mind
that a too smallr will miss the local structure, and a too larger may
involve disjoint parts of the data set.

Our method captures continuous occurrences of circular structures
(or branching structures) within a given data set. If the data set does
not reflect such structures, that is, its 1-dimension (local) cohomology
has rank 0, then no continuous circle-valued functions exist.

7 DISCUSSIONS

We consider our work as a first step towards a more ambitious goal of
combining dimensionality reduction with local or regionalized topo-
logical analysis of intrinsic structure. Our local circle-valued coor-
dinate functions are similar to local dimensionality estimation in a
way that they reflect detailed structural information whichmight have
global effects. We ask the following questions: how do the local and

global structures of data interact with one another? How canlocal
analysis infer global structure? There are various open questions, and
we address a few here.
Shortest local cocycle.Many algorithms exist to compute 1-cycles
with geometric constraints, such as shortest by length or minimum
by weight. Are these algorithm extendable to compute the shortest
(local) 1-cocycles? The smoothing step described earlier obtains a
1-cocycle with minimum total variance. While persistent homology
computes representative homology-generating cycles, these cycles can
fluctuate drastically due to changes in the filtration or in the simplicial
complex. Work in [9] tracks these cycles so that the changes are local
with temporal coherence. We believe this line of work can be extended
to (local) persistence cohomology computations.
Extending local parametrization. Using our algorithm, a point
set U ⊆ X in the r-neighborhood ofx ∈ X is parameterized by a
circle-valued coordinate functionθ : U → S

1. We can extend such a
parametrization by gradually increasingr until non-trivial topological
changes take place. That is, we can extendθ : U→ S

1 to θ ′ : U ′→ S
1

whereU ⊆ U ′. We can also obtain a partial ordering of all points
in X by concatenating multiple local parametrizations. That is, given
two circle-valued functionsθ1 : U1 → S

1 and θ2 : U2 → S
1, where

U1∩U2 6= /0, it might be possible to construct a gluingθ :U1∪U2→ S
1

in a coherent manner. The notion of 1-cocycle is not only important in
our context of circular coordinates, but also shows up in data ranking
and discrete vector fields [8]. Does a total partial orderingobtained
from “gluing” local 1-cocycles play a role in data ranking?
Computation efficiency.To guarantee theoretical correctness in com-
puting local (co)homology, we need to use the Delaunay complex as
detailed in [5, 7]. However it is impractical to compute Delaunay com-
plexes in high dimensions. We believe that using Vietoris-Rips or wit-
ness complexes to compute local cohomology in high dimensions is
the best available option. In particular, methods for fast constructions
of Vietoris-Rips complexes have become available [49], andthere has
been theoretical advancement on the topology-preserving qualities of
Vietoris-Rips complexes [3]. Efficient data structure for representing
and simplifying simplicial complexes in high dimension hasbeen pro-
posed [2]. Other proximity graph constructions, such as thek-nearest
neighbor graph or the Gabriel graph might be employed as well. The
correctness guarantee associated with these constructions remains as
an open question.
Visualizing branching and circular structures. As shown in Figure
15 and Figure 16, the default projection and viewing angles can not vi-
sualize the circular structures clearly. We obtain better visualization on
these structures by approximating cocycles in high dimensional space
and choose proper viewing angles, using the algorithm presented in
Section 5.4. However, augmenting a low-dimensional projection with
color maps still suffers visual drawbacks as some structural informa-
tion can be hidden. We believe it is an interesting open question to
develop visualization techniques that preserve and emphasize topo-
logical structures recovered in high-dimensions. In otherwords, we
would like to develop topology-driven or feature-optimized projection
in terms of found branches or cycles.
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