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Functional magnetic resonance imaging (fMRI) measures brain activity by detecting changes
in blood oxygenation levels (BOLD signals). Relating these activity measurements to behavioral
and cognitive measures is a topic of great interest in neuroscience. Such relationships may lead
to identification of bio-markers for various brain disorders and may also help us develop targeted
treatments. However, working with fMRI data can be computationally challenging due to its size
and complexity. Instead, it is common practice to extract BOLD signals corresponding to a pre-
determined set of regions of interests (ROIs).

Consider a data matrix where each row represents the BOLD signal corresponding to a ROI
in the brain across time. A functional connectivity network (FCN) is represented as a correlation
matrix, or alternatively, a weighted graph; where each ROI is a node, and edge weights are given
by correlations between the corresponding rows of the data matrix. These networks capture the
synchronicity between ROIs of the brain.

Persistent homology [4] allows us to capture topological features of these weighted graphs across
all scales. These topological features can be represented in the form of persistence diagrams (PDs),
or transformed into objects such as persistent landscapes (PLs) [3] or persistence images (PIs) [1]
which admit simple vector representations. An inner product structure can be defined directly
on the space of persistence diagrams, which allows us to apply kernel methods. We give two
applications of employing topological features of functional brain networks in machine learning
tasks.

ASD Classification. In our first application [5], we evaluate the utility of persistence diagrams
derived from FCNs in the classification of autism. Using all three representations - PD, PLs, PIs -
of topological features, we experiment with classification models such as support vector machines
(SVMs), random forests (RFs) and neural networks (NNs). We also propose hybrid SVM and NN
models that combine correlations with topological features.

Even with a simple 3-layer architecture, our proposed hybrid NNs achieve close to state-of-
the-art classification accuracy, with the best accuracy of 69.19%. Both NNs with only correlation
features, and the hybrid NNs provide a significant improvement in test accuracy over SVM and
RF classifiers. The three representations of topological features (PD, PI and PL) have similar per-
formance. Kernel SVM models using four different kernels for PDs show very similar classification
accuracies. However, our experiments also show that the improvement due to topological features
is not always statistically significant. Therefore, we offer a cautionary tale to the practitioners
regarding the limited discriminative power of topological features derived from fMRI data for the
classification of autism.
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Relating Functional Brain Networks to Cognitive Measures. Researchers have predomi-
nantly focused on studying spatial co-activation patterns captured by FCNs. However, there is a
dynamic aspect to brain function that is not captured by traditional FCNs. In our second applica-
tion [2], we construct networks with time points as nodes instead of ROIs. The edge weights are now
given by correlations between corresponding columns of the data matrix. These networks, which
we refer to as temporal functional connectivity networks (tFCNs), encode how similar the spatial
patterns of ROI activations are at different time points. We derive persistence barcodes, as well as
graph theoretic measurements such as modularity, characteristic path length, global efficiency and
clustering coefficient, from both traditional FCNs and tFCNs. We then correlate these measures
to various cognitive and personality measurements.

When comparing cognitive and personality metrics to persistence barcodes, with partial cor-
relation with age, sex and head motion as covariates, there are significant correlations between
persistent barcodes and fluid intelligence for tFCNs, with less sensitivity to head motion. For
traditional FCNs, fluid intelligence is correlated with barcode values in brain regions comprising
association cortex of the frontal, parietal and temporal lobes, with weaker correlations in sensory
and motor regions. Of the 12 cognitive tests, 11 show significant partial correlation with persis-
tent barcodes of traditional FCNs, and of the 5 personality factors, four show significant corrected
partial correlation with persistent barcodes of traditional FCNs.

Although less intuitive than traditional functional connectivity between brain regions, our re-
sults suggest that functional connectivity between timepoints may offer new insights into aspects of
cognition and neuropathology. Persistent homology in combination of temporal functional connec-
tivities may reflect temporal duration and frequency of brain microstates, or oscillations between
metastable patterns of relative brain activity; therefore providing new insights into brain network
architecture and opportunities for the prediction of behavioral traits.
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