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Abstract: The Reeb graph of a scalar function that is defined on a domain gives a topologically
meaningful summary of that domain. Reeb graphs have been shown in the past decade
to be of great importance in geometric processing, image processing, computer graphics,
and computational topology. The demand for analyzing large data sets has increased in the last
decade. Hence, the parallelization of topological computations needs to be more fully considered.
We propose a parallel augmented Reeb graph algorithm on triangulated meshes with and without a
boundary. That is, in addition to our parallel algorithm for computing a Reeb graph, we describe a
method for extracting the original manifold data from the Reeb graph structure. We demonstrate the
running time of our algorithm on standard datasets. As an application, we show how our algorithm
can be utilized in mesh segmentation algorithms.

Keywords: topological data analysis; parallel algorithms; reeb graph

1. Introduction

Recent years have witnessed extensive research in topology-based methods to analyze and study
data [1,2]. The popularity of topology-based techniques comes from the generality and the robustness
of the techniques and their applicability to a wide range of areas. The Reeb graph [3] has been
one of the most successful topological tools in data analysis and data understanding. The Reeb
graph is a data structure that is associated with a scalar function defined on a manifold. It gives
an efficient topological summary for the manifold by encoding the evolution of the connectivity
of its level sets. Reeb graphs, and their loop-less version, contour trees [4], are of fundamental
importance in computational topology, geometric processing, image processing, computer graphics,
and, more recently, data analysis and visualization. Examples of Reeb graph applications include
quadrangulation [5], shape understanding [6], surface understanding and data simplification [7],
parametrization [8,9], segmentation [10], animation [11], feature detection [12], data reduction and
simplification [13,14], image processing [15], visualization of isosurfaces [16], and many others.

The past decade has witnessed an increase of large geometric data on which a scalar field is
defined. This has yielded several challenges for the time efficiency of computing topological structures
on such data. The parallelization of the utilized algorithms is a natural direction one should take in
order to improve the computational-time efficiency. In this article, we introduce an efficient shared
memory parallel algorithm in order to compute the Reeb graph from a scalar function defined on a
triangulated surface with or without a boundary. In addition, our algorithm provides a fast method
for retrieving the surface data from the constructed Reeb graph. The data consists of the Reeb graph
as well as the map that goes from the Reeb graph back to the manifold, called the augmented Reeb
graph [17]. For this purpose, we define an explicit map that associates the Reeb graph data to its
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corresponding data on the manifold. As an application, we show how the Reeb graph can be used
to identify and calculate curves with certain homological properties on a surface. Finally, we show
how the data retrieval aspect of our algorithm, along with the curves that are extracted from the Reeb
graph structure, can be used for mesh segmentation and mesh parameterization.

Prior Work and Contribution

Reeb graph literature is vast and it ranges from the computational accuracy of the graph to its
applications in data analysis and visualization. We provide an overview here.

Reeb Graph Algorithms. The first provably correct algorithm to compute a Reeb graph on a
triangulated surface was presented by Shinagawa and Kunii in [18]. They computed the Reeb graph
in O(n2) time, where n in the number of triangles in the mesh. This time was later improved to
O(n log(n)) by Cole-McLaughlin et al. [19].

Reeb graphs have also been studied for higher-dimensional manifolds and simplicial complexes.
An algorithm for computing Reeb graph for a 3-manifold embedded in R3 is proposed in [20]. The first
Reeb graph algorithm on an arbitrary simplicial complex is given in [21]. This algorithm can handle a
non-manifold input, but its worse case time complexity is quadratic. Reeb graph for a varying scalar
function is studied in [22]. Other Reeb graphs algorithms can be found in [17,23–26]. Approximate
Reeb graphs algorithms can be found in [7,27]. However, such algorithms may lead to inaccurate
results. Data retrieval from the Reeb graphs, also referred to as augmented Reeb graphs, has also been
studied, and some algorithms have been presented, for instance [28–30].

A loop-free Reeb graph, which is also called a contour tree, has been used extensively in data
analysis and data visualization. Algorithms for computing such graphs can be found in [21,24,31–33].
Contour tree have been used for scientific visualization [34], volume rendering [35], and terrain
applications [36,37]. Contour tree data retrieval is studied in [38]. For a thorough introduction to the
contour tree and its applications, the reader is referred to [31,39] and the references within.

Reeb Graph Generalizations. Reeb graphs have also been used to study and analyze point cloud data.
The applications are numerous, including data skeletonization [28], retrieving topological information
from point data such as homology group computation [40,41], locus cut [42], data abstraction [43],
and recovering structural information of a scalar function on a point data [44]. In the context of
point clouds, a relatively recent construction, named Mapper [45], has received a lot of attention, as it
generalizes both the Reeb graph and contour tree. Mapper has found numerous applications [46–49]
and it has been studied from multiple perspectives [50–53].

Applications of the Reeb Graph. There is a rich literature in computer graphics regarding the use of
the Reeb graphs. Reeb graphs have been used in mesh segmentation [54], shape similarity [55], shape
matching [56], feature-extraction [16], surface reconstruction [57], extracting tunnel and handle loops
of a surface [58], removing tiny handle in an isosurface [59], and shape matching [27]. Also see [30]
for further applications of Reeb graph in computer graphics.

Parallelization of Topological Structures. The demand to compute large data sets has increased in
the last decade and, hence, the consideration of topological computations parallelization. Multiple
attempts have been made in this direction, including multicore homology computation [60], spectral
sequence parallelization [61], distributed contour tree [38,62], distributed merge tree [63], alpha
complexes [64], and distributed Mapper [65].

Contributions. In this paper, we give a parallel Reeb graph algorithm on arbitrary triangulated mesh
with and without a boundary. We prove the correctness of our method while using fundamental
theorems in Morse Theory. Moreover, we discuss the performance results that compare our approach
to a reference sequential Reeb graph algorithm [26]. We then show how we can use the Reeb graph to
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retrieve certain curves on the manifold. Finally, we utilize the data retrieval aspect of our algorithm and
give an application to surface segmentation. Specifically, this article has the following contributions:

1. We give an efficient parallel algorithm that computes the Reeb graph of a piece-wise linear
function defined on a triangulated 2-manifold with and without a boundary.

2. Our method can be used to retrieve the manifold data from the Reeb graph. In other words,
given a point in the Reeb graph, we give an efficient method for retrieving the manifold data that
correspond to that point. This feature, as well as feature (1), makes our algorithm an augmented
Reeb graph algorithm.

3. We show how the homological properties of a Reeb graph can be used to extract certain curves on
a surface, and we utilize our algorithms to give a mesh segmentation algorithm.

4. The algorithms that are presented here are easy to implement and require minimal
memory storage.

2. Morse Theory and Reeb Graphs

In this section, we review the basic background needed in this paper. We start by reviewing
the basics of Morse theory and Reeb graphs on smooth manifolds. Susequently, we discuss the
corresponding piece-wise linear version. For more details on Morse theory, the reader is referred
to [66,67].

2.1. Morse Theory

Morse Theory is a tool from differential topology that is concerned with the relations between
the geometric and topological aspects of manifolds and the real-valued functions that are defined
on them. One of the primary interests in this theory is the relationship between the topology
of a smooth manifold M and the critical points of a real-valued smooth function f defined on
M. Intuitively, Morse theory studies the topological changes of the level sets of a real-valued
smooth function as the height of f varies. Morse [68] first introduced Morse theory for infinite
dimensional spaces. A comprehensive introduction to Morse theory on finite-dimensional manifolds
is given in [69]. Additionally, see [66,67]. Morse theory has been proven to be a very useful tool in
computer graphics and geometric data processing and understanding. The theory was extended to
triangulated 2-manifolds by [70]. Recently, Morse theory has found applications in global surface
parameterization [71], finding a fundamental domain of a surface [72], surface quadrangulation [73],
topological matching [27], implicit surfaces [74], surface segmentation [75], spline construction [76],
and many other applications.

Let M be a compact and smooth n-manifold and let I = [a, b] ⊆ R, where a < b, be a
closed interval. Let f : M −→ I be a smooth function that is defined on M. A point x ∈ M is
called a critical point of f if the differential d fx is zero. A value c in R is called a critical value of f if
f−1(c) contains a critical point of f . A point in M is called a regular point if it is not a critical point.
Similarly, if a value c ∈ R is not a critical value, then we call it a regular value. The inverse function
theorem implies that for every regular value c in I, the level set f−1(c) is a disjoint union of n− 1
manifolds. In particular, when n = 2, then f−1(c) is a disjoint union of simple closed curves. A critical
point is called non-degenerate if the matrix of the second partial derivatives of f , called the Hessian
matrix, is non-singular. A differentiable function f : M −→ I is called Morse if all of its critical points
are non-degenerate, and all critical values are distinct. If the manifold M has a boundary, i.e., ∂M 6= ∅,
then we will also require two other conditions: (1) f−1(∂I) = ∂M and (2) there are no critical points
on ∂M. In other words, the boundary points in the interval I, the values in ∂I, are regular values for the
function f . The index of a critical point x of f , as denoted by index f (x), is defined to be the number of
negative eigenvalues of its Hessian matrix. For instance, the Hessian of a scalar function on a smooth
surface is a 2× 2 symmetric matrix. Hence, the index of f on a critical point takes the values 0, 1, or 2.
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In this case, an index 0, 1, or 2 of a critical point of a function f is nothing more than a local minimum,
a saddle, or a local maximum for f , respectively.

If f is a Morse function on a surface, then, up to a change of coordinates, the surface around a
critical point f has one of the simple forms as appear in Figure 1. More formally, we have the following
important Lemma:

Lemma 1. (Morse Lemma) Let M be a smooth surface, f : M −→ R be a smooth function, and p be a
non-degenerate critical point of f . We can choose a chart (φ, U) around p, such that f ◦ φ−1 takes exactly one of
the following three forms:

1. Local minimum— f ◦ φ−1(X, Y) = X2 + Y2 + c
2. Saddle— f ◦ φ−1(X, Y) = X2 −Y2 + c
3. Local maximum— f ◦ φ−1(X, Y) = −X2 −Y2 + c

An analogous lemma holds for Morse functions on higher dimensional smooth manifolds. See [66]
for more details. Morse Lemma implies that a Morse function around a critical point looks simple,
and it is exactly one of the forms given in the Lemma above, up to a change of coordinates. Notice that
the number of minus signs in the standard form of the function f around p is equal to the index of the
critical point p.

Figure 1. Minimum, Saddle, and Maximum, respectively.

2.2. Reeb Graphs

Let M be a topological space and let f : M −→ R be a scalar function defined on M. The Reeb
graph of the pair f and M gives a summary of the topological information encoded in by tracking
changes occurring to the connected components of the level sets of f . More precisely, the Reeb graph of
M and f is the quotient space R(M, f ) of M defined, as follows. We say that the x and y are equivalent
in M, and write x ∼ y, if and only if they belong to the same connected component of f−1(r) for some
r ∈ R. The quotient space M/ ∼= R(M, f ) with the quotient space topology induced by the quotient
map π : M −→ R(M, f ) is called the Reeb graph of M and f . Here, recall that the map π takes a
point x in M to its equivalence class [x] in R(M, f ). Given a point p in R(M, f ), it is often important in
practice to retrieve the set of points in M that map to p via π. In this article, we provide an efficient
method to retrieve the data in M that are associated with a point on a Reeb graph.

The map π induces a continuous function f̄ : R(M, f ) −→ R, where f̄ (p) = f (x) if p = π(x).
This map is well defined, since f (x) = f (y), whenever π(x) = π(y).

When M is a manifold and f is Morse, then R(M, f ) exhibits certain additional properties.
For instance, in this case, every vertex of R(X, f ) arises from a critical point of f or a boundary
component. Furthermore, every maximum or minimum of f gives rise to a degree 1-node of R(M, f ).
Saddle points for a Morse function f defined on a 2-manifold have degree 3-node. This is not
guaranteed if the scalar function is not Morse. See Figure 2 for an example of a Reeb graph.
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f

Figure 2. An example of a Reeb graph (right) of a scalar function (left) defined on a surface with
a boundary.

3. Reeb Graphs on Triangulated Surfaces

3.1. Morse Functions in the Piece-Wise Linear Setting

In this paper, we will be working with triangulated surfaces. We will denote the set of vertices,
edges, and faces of a triangulated mesh M by V(M), E(M), and F(M), respectively. Banchoff provided
the extension of Morse theory to triangulated manifolds [70]. Let M be a triangulated 2-manifold and
let f : M −→ [a, b] ⊂ R be a piece-wise linear function on M. We will use the abbreviation PL for
“piece-wise linear”. The star of v, denoted by star(v), is the set of simplices that intersect with the
vertex v. The closure star(v) of star(v) is the smallest simplicial subcomplex of M that contains star(v).
The link Lk(v) consists of the subcomplex of M of simplices belonging to star(v), but not to star(v).
The upper link of v is defined to be the set:

Lk+(v) = {u ∈ Lk(v) : f (u) > f (v)} ∪ {[u, v] ∈ star(v) : f (u) > f (v)},

the lower link is defined similarly by:

Lk−(v) = {u ∈ Lk(v) : f (u) < f (v)} ∪ {[u, v] ∈ star(v) : f (u) < f (v)},

and mixed link
Lk±(v) = {[u1, u2] ∈ Lk(v) : f (u1) < f (v) < f (u2)}.

Using the link definitions, we classify vertices of M, as follows. A vertex v in M is PL regular if
the cardinality |Lk±(v)| of Lk±(v) is equal to 2. If |Lk+(v)| = 0, then v is a PL maximum vertex with
index 1, and if |Lk−(v)| = 0, then v is a PL minimum with index 0. If |Lk±(v)| = 2 + 2m, then v is a
PL saddle with index 1 and multiplicity m ≥ 1. See Figure 3. A PL function f : V −→ [a, b] ⊂ R is
a PL Morse function if each vertex is either PL regular or PL simple, and the function values of the
vertices are distinct. Similar to the smooth case, when ∂M 6= ∅, we further assume that f satisfies:
(1) f−1(∂[a, b]) = ∂M and (2) there are no critical points on ∂M.

-

- -

-

+

+

+

-

-

+ +

+

-

-

--

-

- -

- -

-+

+

++++

+

+ +

+

++

+

Figure 3. The types of vertices on a triangulated mesh. From left to right: minimum, maximum,
regular vertex, and saddle.



Algorithms 2020, 13, 258 6 of 30

3.2. Reeb Graphs of General Simplicial Complexes

Reeb graph can be defined naturally on arbitrary simplicial complexes. Let K be a simplicial
complex and f : V(K) −→ R be a map defined on the vertices of K. The map f can be linearly
extended to all simplices of K to PL function, which we will also denote denote by f . Using this
function, the Reeb graph of (K, f ) can be defined as before.

4. Reeb Graph Sequential Algorithm on Triangulated Surfaces

In this section, we assume that we are given a PL function f : M −→ R defined on a triangulated
surface M possibly with a non-empty boundary ∂M. This includes the case when f is a Morse function.
Subsequently, we discuss the degenerate case when f has non-simple saddles.

The algorithm above relies on Morse theory to find a finite set of paths traced concurrently inside
parts of the manifold where the topology of the manifold with respect to a given scalar function does
not change. The sequential algorithm that we present here is similar to the Reeb graph algorithm
that is given in [26], where tracing paths inside cylinders were used to construct the Reeb graph.
We provide the sequential version of the algorithm because it has some key differences from the
algorithm given [26] that will be utilized later in our parallel algorithm.

The main idea of the algorithm is the construction of a sub-simplicial complex X of M, such that
the Reeb graph R(X, f |X) of X with respect to f |X, the restriction of f on X, is identical to the Reeb
graph R(M, f ). The constructed simplicial complex X does not only provide us with a Reeb graph
of (M, f ), but also immediately implies an algorithm to compute the map F : R(M, f ) −→ M that
allows for us to extract the manifold data given the corresponding Reeb graph points. The main two
ingredients of the algorithm are the critical sets and the ascending paths. We introduce these two
concepts next.

4.1. Critical Sets and Ascending Paths

We start by giving the definition of critical sets. Subsequently, we provide the definition of
ascending paths.

Critical Sets. Let p be a saddle point of f , and let tp be its corresponding critical value. Consider the
connected components of the set f−1(tp). The connected components of f−1(tp) consist of a collection
of simple closed curves embedded in M, as well as a single component, which contains a singularity.
This singular set consists of multiple circles that intersect at the critical point p. We will denote this
singular set by Cp. See Figure 4 for an example. Note that, for critical value t f−1(tp) might merely
consist of the critical set Cp (with no other simple closed curves).

Choose ε > 0 small enough, such that the interval [tp − ε, tp + ε] has only the critical value tp.
As we move from tp to tp − ε, the singular set Cp becomes a non-singular one consisting of a disjoint
union of simple closed curves A1, ...An, for n ≥ 1. By convention, we will consider the sets A1, ..., An

to be the connected components of the singular set Cp, and we will refer to them as such for the rest of
the paper. We talk more about the components of a critical set and show exactly how to determine
them in the piece-wise linear setting in Section 4.2.1. The following Lemma asserts that the number of
connected components of Cp of for a simple saddle point of a Morse function defined on the surface is
either 1 or 2.

Lemma 2. Let M be a compact connected orientable surface with more than one boundary component.
Let M −→ [a, b] be a Morse function on M such that f−1(∂([a, b])) = ∂M. If f has a unique saddle
point, then M is homeomorphic to a pair of pants. See Figure 5.

For a regular value t, we will denote the number of simple closed curves of f−1(t) by | f−1(t)|.
Lemma 2 implies that, for a sufficiently small enough ε and for any saddle point p on a Morse function
f , one has | f−1(tp + ε)| − | f−1(tp− ε)| = ±1. In other words, as we are passing through a saddle point
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p, two circles merge or split. Figure 5 shows two types of saddles: a split saddle and a merge saddle.
A saddle point p is a split saddle if | f−1(tp + ε)| − | f−1(tp − ε)| = 1, and it is a merge saddle if
| f−1(tp + ε)| − | f−1(tp − ε)| = −1.

p p tp

Figure 4. For tp a critical value, on the left, the set f−1(tp) consists of a singular set Cp and two of
simple closed curves. On the right, only the critical set Cp is shown, which is the connected component
of f−1(tp) that contains the critical point p.

p
p

Figure 5. A split saddle on the left and a merge saddle on the right.

The sequential version of the algorithm relies on Lemma 2 to handle the case when the function
f is Morse and it only has simple saddle points. The case when f has saddle points with higher
multiplicities will be handled in Section 4.5.

Remark 1. If p is a maximum or minimum point, then by definition, Cp will be the set that consists of the point
p itself.

Ascending Paths. The second main ingredient of the sequential Reeb graph algorithm is a collection
of curves that we trace inside the manifold M using the function values. More precisely, an ascending
path from a non-maximum vertex v0, denoted by apath(v0), is defined to be a finite sequence of
consecutive edges {[v0, v1], ..., [vk−1, vk]} on M, such that [vi, vi+1] is an edge on M for 0 ≤ i ≤ k− 1,
f (vi+1) > f (vi), and vk is a maximum, a boundary or a saddle vertex.

4.2. Outline of the Sequential Algorithm

Now, we present the outline of the sequential Reeb graph algorithm. We assume that we are
given a triangulated PL Morse function f : M −→ [a, b] ⊂ R defined on triangulated mesh M without
boundary. The case when the function f is not Morse, or when the M has a boundary, will be discussed
in later sections.

The sequential Reeb graph algorithm is given in the following steps:

1. We start by sorting the critical points of f by their critical values. Let CP be the set of the sorted
critical points of f in an ascending order.

2. For each critical point of the function f , we define a node in the Reeb graph R(M, f ).
In other words, the node set of the graph R(M, f ) precisely corresponds to the set of critical
points of the function f defined on M.
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3. For each critical point v in CP, we compute the critical set Cv.
4. For each saddle or a minimum vertex v in CP, we associate one or two ascending paths on the

mesh: one ascending path if v is a minimum or a merge saddle, and two paths if v is a split saddle.
For each ascending path, we march with until this path intersects with the first critical Cw set
with a higher critical value than of tv. At this point, we insert an edge for the Reeb graph R(M, f )
between the vertex v and vertex w.

Figure 6 illustrates the steps of the algorithm. It remains to describe two aspects of the
previous algorithm: the construction of the critical sets mentioned in step (3) and the construction of
the ascending paths that are mentioned in step (4).

(1) (2) (3) (4)

Figure 6. Summary of the sequential algorithm. (1) The input of the algorithm is a manifold M with a
scalar function f . (2) Computing the critical sets. (3) For each saddle point or minimum, we compute
the ascending paths (4) creating the edges of the Reeb graph by the information encoded in the start
vertex of the ascending vertex and its termination critical set.

4.2.1. Construction of the Critical Sets

We now describe how to compute the critical set of a critical point in the piece-wise setting.
As before, we assume that f : M −→ [a, b] ⊂ R a piece-wise linear function is defined on a triangulated
surface M, and it takes distinct values on the vertices of M. This assumption will guarantee that, for a
given value t, the level curve f−1(t) intersects with, at most, one vertex of M.

Now, let t ∈ R. The cross simplices CR f (t) of the value t is the union of all simplices of
M, which intersect with the level curve f−1(t). This is the set of vertices, edges, and faces in M,
which intersect with the level curve f−1(t). We define CR f (t) to be the closure of the smallest
subcomplex of M, which contains CR f (t). If f−1(t) = v for a vertex v in V(M), then we define the
subcomplex CR f (t) as above, but we also add to it the simplices of star(v).

When t is the maximal or the minimal value, then CR f (t) consists of a single vertex vt. In this
case, CR f (t) is simply star(vt). When t is a regular value, then CR f (t) is a disjoint union of topological
cylinders, that is, CR f (t) appears as a “thickened” band around the curve f−1(t). Note that, when the
value t that corresponds to a vertex v in V(M) with f (v) = t for some v in M, then the set of simplices
in the intersection CR f (t) ∩ f−1(t) is simply the vertex {v}. When t is the critical value of a saddle
point, then the curve f−1(t) consists of a finite collection of simple close curves that meet at the saddle
point, and the set CR f (t) can be seen as the thickened band of these curves. See Figure 7.

The ower level of the cross subsimplex of a value t, denoted by L(CR f (t)), is the set of vertices
and edges in CR f (t), which have values less than or equal to t. Similarly, the higher level of the cross
subsimplex of a value t, denoted by H(CR f (t)), is the set of vertices and edges in CR f (t), which have
values higher than or equal to t. See Figure 7.
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Recall the notion of the connected component of a critical set from Section 4.1. Specifically, for a
critical vertex v with a critical value tv, we talked about the connected components of the critical set Cv.
Using the definitions that are introduced in this section, we can compute the connected components
of the critical set Cv in the piece-wise linear setting by considering the connected components of
L(CR f (tv)).

Figure 7. The set of vertices, edges, and faces in the mesh M, which f−1(t) intersects. The top two
figures depict cases where t is a regular value. The top figure shows an example of when there exists a
vertex v in M, such that v ∈ f−1(t). The second figure shows the case where no such a vertex exists.
In other words, f−1(t) intersects only edges and faces of M. The third figure is an example of the
local neighborhood, a critical point of f or when f−1(t) contains a critical point. The purple simplices
represent the set CR f (t). The union of the green and purple simplices represents the set CR f (t).
The blue edges and nodes are the edges in the complexes that are shown in the figure and nodes in
CR f (t), which have f -values less than or equal to t. The red edges and nodes are the edges in the
complexes shown in the figure and nodes in CR f (t), which have f -values that are higher than or equal
to t.

4.2.2. Construction of the Ascending Paths

The ascending paths from a critical point v0 are specified, as follows:

1. If v0 is a merge saddle or a minimum, then we initiate a single ascending path apath(v0) specified,
as follows. Let v1 be a vertex in Lk+(v0) such that f (v1) > f (v0). At the kth iteration, apath(v0)

consists of {[v0, v1], ..., [vk−1, vk]} with f (vi+1) > f (vi) for 0 ≤ i ≤ k− 1.
2. If v0 is a split saddle, then we start two ascending paths P1 and P2 originating from the point p

specified as follows. Divide the set Lk+(p) into two disconnected components A and B. Choose
the vertex vA in A, such that f (vA) > f (v) for all v ∈ A, and choose the vertex vB in a similar
manner. At the kth iteration, P1 consists of {[v0, vA], ..., [vk−1, vk]} with f (vi) > f (vi−1) for
0 ≤ i ≤ k− 1 (here we assume v1 = vA). The path P2 is similarly constructed.

4.2.3. Termination of an Ascending Path

The condition at which we terminate the ascending paths we initiated in step (4) is specified
as follows. Assume that we initiated an ascending path from a critical vertex v. Let w be the critical
vertex with the critical value tw right after the critical value tv of v. Assume that, at the kth iteration,
an ascending path starting from the vertex v is {[v, v1], ..., [vk−1, vk]}. We continue this iteration until
we arrive at an edge En = [vn−1, vn] with f (vn) ≥ tw and f (vn−1) < tw. At this point, we check the
condition Cw ∩ En 6= ∅. If this condition is satisfied, then we insert an edge for the Reeb graph R(M, f )
between the vertex v and the vertex w. If Cw ∩ En = ∅, then we keep marching until an edge in the
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ascending path meets a critical point w that satisfy these two conditions. Note that w can be either a
saddle or maximum vertex.

The check of intersection between the edge En in an ascending path and a critical set Cw,
as mentioned in step (4), can be done by checking if En belongs with CR f (w).

Remark 2. It is important to notice how an ascending path corresponds to an edge in the Reeb graph.
The ascending path starts at a critical point p with a critical value tp and terminates at a critical set that
corresponds to a critical point q with a critical value tq with tq > tp. More precisely, an ascending path starts
at one of the connected components of the upper link of a critical point p and ends at one of the connected
components of the critical sets Cq. If two ascending paths start at two different connected components of the
upper link of p, but still end up in the same connected component of Cq, then these two paths correspond to the
exact same edge in the Reeb graph. Therefore, only one of these ascending paths corresponds to an edge in the
final Reeb graph. For this reason, we say that each ascending path starting from a connected component of the
upper star of a vertex gives rise to a potential edge in the Reeb graph. We provide more details on this point in
Section 4.5.

4.3. Surfaces with Boundaries

In the case when the surface M has a boundary, we modify the previous algorithm, as follows.
In this case, f−1(∂I) = f−1(a) ∪ f−1(b) is not empty and consists of a finite collection of simply closed
curves. We treat each connected component of f−1(a) as a minimal point, and we treat the boundary
f−1(b) as a maximum point. More precisely, the following modifications are added to the previous
algorithm from Section 4.2.

• In step (2), each connected component in f−1(∂I) is considered a vertex in the Reeb graph
vertex set.

• In step (3), for each boundary component in f−1(a), we pick an arbitrary vertex on the boundary
and initiate an ascending path that starts from that vertex.

• In step (4), if an ascending path starting at a vertex v reaches a boundary vertex w in one of the
connected components, say Bndryw, of f−1(b), then we insert an edge in the Reeb graph R(M, f )
between the vertex v and vertex in R(M, f ) that corresponds to Bndryw.

We denote the subcomplex obtained from M using the previous algorithm by XM, f . In other words,
XM, f consists of the critical sets Cp for all critical points p, as well as the ascending paths we initiated
at the saddle, minimum, or boundary vertices. When M and f are clear from the context, we will
denote XM, f simply by X.

4.4. Correctness of the Sequential Algorithm

For a function f : M −→ [a, b] and c ∈ R define:

Mc := {x ∈ M| f (x) ≤ c}.

Note that we allow Mc to be empty. Moreover, we define:

M[c,d] := {x ∈ M|c ≤ f (x) ≤ d}.

The correctness of our algorithm relies on the following two facts:

1. The only topological changes to the level sets of f occur when as pass a critical point. This is
formally stated in Theorem 1.

2. The structure of the manifold around a critical point is completely determined by the index of
that critical point. We give this in Theorem 2.
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The proof of Theorems 1 and 2 can be found in [69].

Theorem 1. Let f : M −→ [a′, b′] be a smooth function on a smooth surface M. For two reals a, b with
a′ < a < b < b′, if f has no critical values in the interval [a, b], then the surfaces Ma and Mb are homeomorphic.

The above algorithm relies on Theorem 1. Namely, as we trace an ascending path, we assume
that no topological change occurs until we reach the next critical point. The ascending path may not
terminate at the next critical point, provided the part of the manifold in which this path is traveling
in has not changed its topology. This will become more evident after we provide the next theorem,
which shows the exact structure of M[c,d] around a critical point.

Theorem 2. Let M be a compact connected surface, possibly with a boundary, and let f : M −→ [a, b] be a
Morse function on M. Let p be a critical point and let t be its corresponding critical value. Let ε > 0 be small
enough, so that Iε := [ε− t, ε + t] has only the critical value t.

1. If index(p) is equal to 0 or 2, then MIε is homeomorphic to a disjoint union of a disk and a finite number
of topological cylinders (that is a genus zero surface with two boundary components).

2. If index(p) = 1, then MIε is homeomorphic to a pair of pants and a finite number of topological cylinders.

The previous two theorems show that for a given Morse f function on M, we can arrange M so
that at each critical point, only a single topological event occurs, and this topological event occurs
around the critical point. Moreover, we know exactly what topological event occurs by considering
the index of the critical point. Figure 8 illustrates this.

Figure 8. Given a Morse function f on a surface M, we can slice M, so that, around each critical value
t, the submanifold M[t−ε,t+ε] is a disjoint union of simple building blocks: pair of pants, topological
cylinders, and topological disks.

Moreover, subcomplex XM, f constructed in the algorithm has the same Reeb graph structure of
that of M around the critical points. See Figure 10.

This shows that any two-manifold can be built from the building blocks in Figure 9.
Moreover, Theorem 2 shows that the restriction of f on MIε has the shapes that are given in Figure 10.
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In other words, this gives us the structure of the Reeb graph around an interval Iε that contains a single
critical value.

Now, let e = (p, q) be an edge in a Reeb graph R(M, f ) connecting between the two nodes p and
q, which correspond to critical points of f . For each such edge, we can find a preimage arc E in M that
is mapped to R(M, f ) via the map π : M −→ R(M, f ). The preimages of the value p and q under π

are the critical set Cp and Cq in M, respectively. Hence, each arc E must start at a point A in Cp and
end at a point in B in Cq. Each arc on M characterizes the edge e.

An ascending path that is constructed in the sequential algorithm essentially traces an arc in the
way described above. Namely, for a critical point p, with a critical value f (p), an ascending path
created at a point p will terminate at a critical point q with f (q) > f (p). This termination occurs when
we pass through the critical set of the point q.

Figure 9. The building blocks of a surface. Given a scalar function f defined on a surface M,
Theorem 2 asserts that we can decompose the surface into the building block pieces appear in
above. These pieces are genus zero surfaces with a single boundary component (disk), genus zero
surfaces with three boundary components (pair of pants), and a genus zero surface with two boundary
components (cylinder).

Figure 10. The restriction of the Reeb graph on the building blocks of a surface along with the part of
the ascending paths in that part of the surface. Around each critical point, the structure of the ascending
curves (orange) is identical to the structure of the Reeb graph. More precisely, the quotient space of
the restriction of the function on the ascending curves the critical sets around a critical point (these
are the curves highlighted by orange and red in the figure) is identical to the quotient space of the
manifold locally.

4.5. Dealing with Degenerate Cases

It is possible in practice to obtain a scalar function with saddle points that have multiplicity m ≥ 2.
The algorithm that we present in Section 4.2 can be extended to handle such cases. We need to make
the following modifications.
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• In step (3), we calculate the connected components of the critical set Cp. Here, it is not enough
to calculate the critical set Cp. We also need to compute the connected components of this set.
Section 4.2.1 explains this.

• We create an ascending path for each connected component in Lk+(p) when the multiplicity m of
a split saddle p is greater than or equal to 2.

In the non-degenerate case, every ascending path corresponds to an edge in the Reeb graph.
This is not the case anymore in the degenerate case. Nect, we describe the sequential algorithm of the
Reeb graph when f has degenerate critical points.

1. Sort the critical points of f an in ascending order. Let CP = {v1, ..., vn} be this set. This represents
the vertex set of the Reeb graph, as we did before.

2. For each v in CP, compute the connected components of Cv and include all of these components

in a single container S . We will denote, by Bj
i , the connected component j of the critical set Cvi .

In this way, we index all of the elements in S .

3. Declare each set Bj
i of S as not visited.

4. For each critical point vi in CP and for each component in Lk+(vi), we initiate an ascending path
P as described in Section 4.2.2. For each such path, we determine the connected component Bl

k in
S , which the path terminates, as described in Section 4.2.1. We have two cases:

(a) If the connected component Bl
k is not visited, then we insert an edge between vi and vk and

mark the component Bl
k as visited.

(b) If the connected component Bl
k is visited, then we do not make any changes to the

Reeb graph and terminate the current ascending path. In this case, the ascending path
corresponds to an edge that already exists in the Reeb graph. See Remark 2.

Note that the above procedure can be used to determine the edges that originate from a
simple saddle. Namely, we do not need to check the type of the simple saddle point (merge or
split) in step (3) of the algorithm given in Section 4.2, and for any saddle point, we use the above
procedure instead.

5. Parallelization of the Algorithm

In this section, we give the details of our strategy to compute the Reeb graph in parallel.
We describe the three stages of the parallel algorithm as follows.

1. The Partition Stage. In this stage, we partition the manifold M into submanifolds, such that the
vertices counts of each submanifold are approximately equal to each other.

2. Computing the Reeb Graph for the Submanifold Stage. Computing the Reeb graphs for each
submanifold obtained from stage one concurrently.

3. The Gluing Stage. In this step, we glue the Reeb graphs that were obtained from stage 2.

5.1. The Partition Stage

In this first stage of the parallel algorithm, we sort the vertices of the manifold with respect
to the function f . This step can be done efficiently in parallel [77,78]. The critical sets for saddle
points are then determined by assigning a thread to each saddle point. This computation is only
necessary to determine the number of ascending paths that we need to initiate from that saddle point.
Next, we partition the manifold M to submanifolds along with certain regular values of the scalar
function f . More precisely, the partition stage is given, as follows:

1. Compute the critical points of f by assigning a thread to each vertex in M. Let p1, p2, ..., pn be the
list of critical points of f , and let t1, t2, ..., tn be their corresponding critical values.
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2. We choose k regular values C = {c1, · · · , ck} of f . These values will be utilized to slice the
manifold M into k + 1 submanifolds M1, ..., Mk+1, such that the vertex counts of the submanifolds
are approximately equal to each other. We also need to determine the connected components
f−1(ci) for ci in C. The connected components of the regular value ci ∈ C can be computed in
linear time with respect to the number of edges in M, as follows. We visit all edges of M and
detect if an edge crosses one of the values ci. If such an edge is found at a level ci, then we keep
rotating around to find all other edges crossing the value ci within the same connected component
of f−1(ci). After visiting all edges, we have also determined the connected components of f−1(ci)

for each ci ∈ C. We will denote the set of all connected components of f−1(ci) for 1 ≤ i ≤ k by C f .
We also call an edge in M that crosses f−1(ci) a crossing edge. See Figure 11 for an illustration.

3. Divide the surface M into k + 1 partitions along the level sets f−1(ci) for all ci ∈ C. We obtain
a list of submanifolds M[c0,c1]

,...,M[ck ,ck+1]
. Here, we set c0 = t1 and ck+1 = tn. We will denote to

M[ci−1,ci ]
by Mi. The set {Mi|1 ≤ i ≤ k + 1} will be denoted byM f .

4. Next, we extend Mi by adding other vertices in M as follows. Let Ei−1 and Ei be the edges in
M that intersect with f−1(ci−1) and f−1(ci), respectively. The submanifold M′i = M′[ci−1,ci ]

is
obtained from M[ci−1,ci ]

by adding the vertices from Ei−1 and Ei. We call the edges Ei−1 and Ei the
boundary edges of M′[ci−1,ci ]

. Note that every two consecutive submanifolds fromM f intersect
with each other along their boundary edges. See Figure 12 for an illustration.

The purpose of extending the submanifolds Mi to M′i in step (3) will be justified in the gluing
stage in Section 5.3.

Mi
M′i

(a) (b) (c)

Figure 11. An illustration of the partition stage. (a) A connected component of the submanifold Mi

is obtained. (b) Mi is extended to M′i by adding the crossing edges. (c) A closeup of the crossing
edges of the manifold M′i . The blue edges represent the crossings edges of Ei−1 and the green curve
represents the portion of the curve f−1(ci−1) within the closeup region.
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R(M2, f )

R(M1, f )

M2

M1

(a) (b) (c)

Figure 12. An illustration of the gluing stage. (a) At this stage, two ascending paths from all
submanifolds have been calculated. In the case when two consecutive submanifolds share a crossing
edge, such as the case in the illustrative figure, the ascending path of the lower submanifold M1 gets
terminated at the at a crossing edge. Similarly, an ascending path from the higher submanifold M2

gets initiated at a crossing edge. (b) A zoomed version of Figure (a) shows the two crossing edges
that determine uniquely two nodes in the Reeb graphs R(M1, f ) and R(M2, f ). The fact that these two
edges belong to the same connected component in the inverse image of the regular crossing value is
used to glue the graphs R(M1, f ) and R(M2, f ) along the blue nodes to obtain the graph in Figure (c).

5.2. Computing the Reeb Graph of Each Submanifold

The manifold M′i is, in general, homeomorphic to the manifold Mi, since the former is obtained
from the latter by slightly extending its boundary. However, in the piece-wise linear case, the extension
specified in the previous section may change the topology of the manifold. This will occur when a
crossing edge in Ei or Ei−1 contains a critical vertex of f . When this case occurs, we exclude this vertex
from M′i in order to keep it homeomorphic to Mi. Using this convention, we can assume that the Reeb
graph of the restriction of f on Mi is identical to the Reeb graph of the restriction of the Reeb graph of
f on M′i .

Computing the Reeb graphs R(M′i , f ) for M′i , for 1 ≤ i ≤ k + 1, now goes, as follows. To each
connected component in M′i for 1 ≤ i ≤ k + 1, we assign a thread and the Reeb graph R(M′i , f ) on the
submanifold M′i , which can be concurrently computed.

An ascending path that starts at a crossing edge or ends at a crossing edge will be treated
specially. We call the Reeb graph edge that corresponds to such an ascending path a crossing arc.
Furthermore, if the starting or the ending edge of this ascending path is a crossing edge, then we will
call the corresponding node in the Reeb graph a crossing node. Every crossing node is determined
by its crossing edge. In other words, given a crossing edge, we can recover its crossing node in
the graphs R(M′i , f ) for 1 ≤ i ≤ k + 1. In practice, we need to be able to do this in constant time,
so we create a global map G that takes as an input a crossing edge and returns its corresponding
crossing node. In the case when a single crossing edge is associated with two crossing nodes from
two consecutive submanifolds, then the map G associates that edge crossing edge to the two crossing
nodes (this occur when the ending edge of a crossing arc and the starting edge of the crossing arc in
the consequent submanifold are the same). If the crossing edge is not associated with any crossing
node, then this map returns a constant value indicating that this edge is not a starting or an ending
crossing edge for any ascending path. Note that each connected component in C f has either two
crossing edges that are associated with two crossing nodes or a single crossing edge that is associated
with two crossing nodes. This map will be utilized in the gluing stage.
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5.3. The Gluing Stage

For the gluing stage, we need to glue the nodes of the Reeb graphs that occur in duplication C f .
For this purpose, we utilize the function G that we constructed in Section 5.2. For each connected
component in C f , we visit its crossing edges and check whether two edges within that connected
component have been flagged by G. If this is the case, then we retrieve the crossing nodes that
correspond to these two edges via the function G and glue them. In the case when a connected
component of C f has a single crossing edge, then we retrieve the two crossing nodes that are associated
with that edge and glue them. When we finish visiting all connected components of C f , all duplicate
nodes will have been glued, and the final graph is R(M, f ). See Figure 12 for an illustration of
this process.

6. Augmented Reeb Graph Computations: Going from the Reeb Graph to the Manifold

In this section, we give an algorithm that describes an explicit computation of the map
F : R(M, f ) −→ M. The computation of this map, alongside the computation of the Reeb graph,
is usually called the augmented Reeb graph [17]. Our algorithm here is the first parallel augmented
Reeb graph algorithm that we are aware of. This map associates every vertex v in the graph R(M, f )
to the critical set Cv associated to that critical point. More importantly, for each interior point p of an
edge in R(M, f ), we want to associate a simple closed curve Crp in M, such that π(Crp) = p.

6.1. Building the Augmentation Map F : R(M, f ) −→ M

In the construction above, for our Reeb graph algorithm, an edge of the graph R(M, f ) is traced as
a sequence of edges on the mesh running between two critical sets of the function f . This immediately
gives an embedding of the edges of the Reeb graph on the surface. This embedding is used to get the
circle corresponding to any points on the graph. More precisely, we have the following correspondence.
Let e be an edge of the graph R(M, f ). By the construction of our algorithm, every edge in R(M, f ) is
determined by two critical points and a sequence of oriented edges on the mesh. Let Ee := {E1, · · · , En}
be the sequence of oriented edges on the mesh M that corresponds to the edge e. If Ei = [vi, vi+1],
then we will denote by l f (Ei) to | f (vi)− f (vi+1)|. Let Tj(Ee) be the summation ∑

j
i=1 l f (Ei), where

1 ≤ j ≤ n.
An interior point p, on the edge e, is specified by giving a value tp in the interval (0, 1). We do the

following procedure to obtain the circle Crp on the mesh M that correspond to p:

1. Map the interval (0, 1) linearly to the interval (0, Tn(Ee)).
2. Use the constructed linear function that is computed in step (1) to map tp to its corresponding

value t′ in (0, Tn(Ee)).
3. Determine the edge Ek = (vk, vk+1) in Ee, such that Tk−1(Ee) < t′ ≤ Tk(Ee).
4. Now, we need to find the value t, in the range of [a, b], the range of f , such that f−1(t) contains Crp.

We know that this value corresponds to t′, which lies in the interval [Tk−1(Ee), Tk(Ee)].
The required t lies in interval [ f (vk), f (vk+1)]. Hence, we map the interval [Tk−1(Ee), Tk(Ee)]

linearly to [ f (vk), f (vk+1)] and determine the value t in [ f (vk), f (vk+1)] that corresponds to t′.
5. The required circle Crp is precisely the connected component of f−1(t) that contains the edge Ek.

See Figure 13 for an illustration of the main parts of the previous procedure.
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Ee

Ek

Ek+1

(1) (2) (3)

Figure 13. An illustration of the data retrieval procedure. (1) A value tp is selected from the
interval (0, 1). (2) This value is used to determine a point p on the Reeb graph edge Ee. (3) This point is
contained in an edge Ek on the mesh M. This edge is used to determine the circle Crp

Note that, in the previous procedure, we rely on the fundamental assumption that f takes different
values on the vertices of the mesh.

6.2. Consistent Parameterization of the Edges of the Reeb Graph

Going back to Section 6.1 we observe that the mapping between (0, 1) and (0, Tn(Ee)) depends
on the gradient of the function f . More specifically, recall that Tj(Ee) = ∑

j
i=1 l f (Ei) = ∑

j
i=1 | f (vi)−

f (vi+1)|. Hence the values of l f for a given edge E can be interpreted as the gradient of f along that
edge. Hence, the derivative of the function j→ Tj(Ee) in not constant in general. This variability in
the derivative can make it difficult and less intuitive to choose a value t in (0, 1) that corresponds to a
specific curve on the mesh, because, while the mapping between (0, 1) is linear, the function j→ Tj(Ee)

is not linear in general. See Figure 14 for an illustration of the gradient problem.
To this end for a given function f , we want to construct another function f̂ that has the following

two properties:

1. The levels sets of the function f̂ are parallel the level sets of f .
2. The function f̂ has uniform gradient everywhere.

different gradient values of f

Figure 14. The arm of the female character mesh corresponds to a single arc in the Reeb graph associated
with the scalar function indicated on the mesh. Observe that the gradient of this scalar function varies
along this arm, which makes it hard to parametrize the mapping between the Reeb graph and the
corresponding regions on the mesh.
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We need to recall the definitions of gradient and divergence of a triangulated mesh quickly before
we give the construction of f̂ .

6.2.1. Gradient and Divergence of a PL Function on a Triangulated Mesh

Let f be a PL scalar function on a triangulated manifold M. Let Face = [vi, vi+1, vi+2] be a
face in M. Denote by Ei the counterclockwise oriented edge opposite to the vertex vi. See Figure 15.
Let Bi : Face → R be the hat function on the vertex vi defined by Bi(vj) = δij for i, j = 1, 2, 3.
The gradient of f is a constant and tangential vector on Face given by [79]:

∇ f (Face) =
3

∑
i=1
∇Bi f (vi),

where

∇Bi =
||Ei||

2AFace

−→ui

Here, −→ui is a unit vector perpendicular to the vector Ei and oriented so that it points into the face
Face and AFace is the area of the face Face. See Figure 15.

vi

vi−1

βi

vi+1

αi

Ei

Ei+1Ei−1

∇Bi

∇Bi+1∇Bi−1

Figure 15. The gradients of hat functions of a triangle.

The divergence of a vector field X defined on the vertices on M was given in [80] and it can be
computed via the formula:

div X(vi) =
1
2 ∑

j∈F(i)
cot θj1

〈
ej1 , Xj

〉
+ cot θj2

〈
ej2 , Xj

〉
,

where F(i) is the set of indices of all faces that are incident to the vertex vi, ej1 , ej2 are the two vectors
in face j that contain the vertex vi and θj1 , θj2 are the angles that are opposite the edges ej1 and ej2 ,
respectively. See Figure 16.

vi

θj1θj2

Xj

ej1 ej2

Figure 16. Computing the divergence at vertex vi.
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6.2.2. Unit Gradient Scalar Fields

Now, given a function f : M −→ R on a triangulated mesh M, we are interested in finding a
function f̂ with the following two properties:

1. The levels sets of the function f̂ are parallel to the level sets of f .
2. The function f̂ has uniform gradient everywhere.

The above two conditions are equivalent to constructing a function f̂ such that grad f̂ ≈ grad f
||grad f || .

Setting X := grad f
||grad f || finding such f̂ can be obtained by solving the following Poisson equation:

min
f̂

∫
M
|∇ f̂ − X|dM,

which is equivalent to solving ∆ f̂ = div X, where ∆ is the Laplacian of the mesh M. Hence, finding
the function f̂ can be reduced to the following two simple steps:

1. Compute X =
grad f
||grad f || .

2. Solve the Poisson equation ∆ f̂ = div X.

The previous algorithm works on any generic function f , such that the gradient of f is not zero.
Moreover, Step (2) can be easily solved while using the definitions of the gradient and the divergence
provided earlier. The above simple procedure is a generalization of the geodesic in heat method [81],
where the desired function f̂ represents a distance function.

Figure 17 illustrates an example of such a procedure. The right model in the figure shows a
solution for a scalar function f̂ obtained as a Poisson equation ∆ f̂ = div X where X is the normalized
gradient of the original function f shown on the left. Observe that the level sets of both f and f̂ are
parallel, but now the gradient of f̂ is constant.

Figure 17. Obtaining a unit gradient scalar field.

7. Run-Time Analysis and Implementation

We tested the presented algorithm on meshes with various complexities. In particular,
we performed the speedup analysis of the parallel algorithm to our implementation of the sequential
version given [26]. Our experiments were done on an AMD FX 6300 6-Core with 32 GB memory.
The algorithm was implemented in C++, and the Windows platform was used.

We test our parallel algorithm with two datasets: the AIM@SHAPE Repository as well as the
MeshDeform dataset available in [82]. The initial attempt did not give us an increase of performance
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over the sequential algorithm for most of the meshes available in the above datasets. We tested
our algorithm on high resolution meshes in order to take advantage of the parallel implementation.
Specifically, we uniformly increase the resolution of the meshes available these two datasets to 200 k.
On the AIM@SHAPE library our implementation gave us a minimum speedup of 3.6, a maximum
one of 4.3, and an average speedup of 3.8 on six cores. Using this, we obtain a 63% average parallel
efficiency. One the MeshDeform dataset we obtained a minimum speedup of 2.9, a maximum one of
3.9, and an average speedup of 3.5 on siz cores. This dataset gives a 42% average parallel efficiency on
six cores. Figure 18 provides the details. The x-axis represents the number of processes, and the y-axis
shows the speedup.

Figure 18. Speedups obtained by our parallel Reeb graph algorithm.

Figure 19 shows a few examples of the meshes that we utilized in our tests above, along with
their corresponding Reeb graphs.

Figure 19. Some of the meshes that we used for our parallel Reeb graph computations.

8. Applications

Reeb graphs on a surface M encode a rich amount of topological information from the original
surface. In this section, we show how the Reeb graph of a surface M gives rise to a natural collection
of simple closed curves on M. The applications that we present can be described in terms of these
curves. We first define these curves and show their relation with the Reeb graph. We then give a
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procedure to extract them by utilizing the tools that we described in Section 6. Finally, the curves are
utilized to obtain two higher genus surface mesh segmentation algorithms. Other Reeb graph-based
segmentation algorithms can be found in [54,83,84].

Let R(M, f ) be a surface M and a scalar function f . The edges of the Reeb graph R(M, f )
determine the following types of simple closed curves on M:

• Cutting system curves.
• Pants decomposition curves.
• Branch curves.

We describe how a Reeb graph on a surface can be used for realizing these curves next.

Cutting System Curves. Reeb graphs can also be used to determine the so-called cutting system.
A cutting system for a connected, closed, orientable surface M of genus g is a collection of unordered
disjoint simple closed loops embedded in M whose complement M\(l1 t · · · t lg) is a sphere with 2 g
boundary components [85]. Segmenting a surface along a cutting system curve yields a genus zero
surface with multiple boundary components. Hence, this can be used to aid in mesh parametrization.
See, for instance, [86] and the references therein. Here, we describe a Reeb graph-based algorithm to
obtain a cutting system. The algorithm is illustrated in the Figure 20 and it goes, as follows:

1. Let T be a spanning tree of R(M, f ) and consider the edges e1, ...eg in R( f )\T.
2. Select an interior point in ei, for 0 ≤ i ≤ g.
3. Each interior point selected in the previous step determines a loop li, which can be obtained using

the Reeb graph algorithm we described here.

The steps of the cutting system algorithm are described in Figure 20.

__ 
... .. ---------------

... -· 
------------

- .. - .. -

(1) (2) (3)

(4) (5)

Figure 20. The steps of the cutting system algorithm. (1) mesh M with a scalar function defined on it
are given. (2) The Reeb graph R(M, f ) is computed. (3) We compute a spanning tree of R(M, f ). (4) We
select all edges in the graph that do not belong the spanning tree we computed in (3) and then we
select an interior point on each one of these edges. (5) For each interior point, we used our augmented
Reeb graph algorithm to compute the circle that corresponds to it on the mesh.
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Figure 21 shows multiple examples of cutting system curves on triangulated surfaces.

Figure 21. Examples of cut system curves on triangulated surfaces.

Pants Decomposition Curves. A Reeb graph naturally gives rise to a collection of curves that can
be used to decompose a surface into a pair of pants. A pair of pants is a genus zero surface with
three boundary components. Beside surface segmentation [87], surface pants decomposition has
found applications in mesh parametrization [88], surface matching [89], and surface classification and
indexing [90]. The method for obtaining a pants decomposition from the Reeb graph is illustrated in
Figure 22 and is described, as follows:

1. Let R′(M, f ) be the deformation retract of R(M, f ). This graph can be obtained by recursively
deleting nodes with valency one from R(M, f ) and the edge attached to them until no such indices
exist. We exclude from this deletion the 1-valence nodes originating from the boundary of M.
We also delete all of the nodes with valency 2 and combine the two edges that meet at that node
to form a single edge. This step is illustrated in step (3) Figure 23.

2. We select one interior point from each edge in R′(M, f ), provided that this edge does not have a
node of valency one.

3. We use our Reeb algorithm to determine the curves on the surface that correspond to the points
that we selected on the graph in the previous step.
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Figure 22. A Reeb graph can be used to segment a surface into a collection of topologically
consistent patches. (1) The surface M, with a scalar function f , is given as an input. (2) The Reeb graph
of R(M, f ) is calculated. (3) The deformation retract graph R′(M, f ) of the graph R(M, f ) is calculated.
(4) For each edge in the graph R′(M, f ), we select a point. (5) We select the curves on the manifold M
that corresponds to the points that were selected in the previous step.

The results of the previous algorithm were tested on triangulated meshes with various
topological complexities. We show some examples in Figure 23.

Branch Curves. A branch curve on a surface M is a simple closed curve that bounds a topological
disk on M. Such a curve is also called null homotopic. A branch curve is determined by a Reeb
graph edge, which has a vertex of valence one. Note that cutting the surface along a branch curve
increases the number of connected components of the surface. Cutting along such curves can be
used for the segmentation of a genus zero surfaces. There are many Reeb graph-based segmentation
algorithms in the literature for segmentation of genus zero surfaces, such as the surface obtained from
a humanoid character. See, for instance, [54,83,84]. Because this type of curves is essentially utilized
elsewhere in the literature, we simply list it here for completeness of our discussion. However, all of
these methods lack the description of a method to extract the manifold data from the Reeb graph data.
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Figure 23. Examples of segmentation of higher genus surfaces into a pair of pants using our Reeb
graph algorithm.

8.1. Choosing Morse Scalar Functions

The cutting system and pant decomposition curves that we presented in this section depend on the
choice of the scalar function used to define the Reeb graph in the following way. In particular, the choice
of these curves affects the final quality of the segmented mesh. For this reason, it is important to choose
a scalar function with certain desirable properties. By desirable properties, we mean the following:

1. The scalar function has a small number of critical vertices.
2. The level sets of the scalar function follow the geometry of the mesh as closely as possible.
3. The scalar function requires minimal input from the user.

We briefly discuss several scalar functions with the above properties.

8.1.1. Harmonic Functions

Condition 1 is desirable, because it leads, in general, to a simpler Reeb graph. For a surface mesh
M of genus g one can always construct a scalar function f on M with 2g critical points. This can be
done by the so-called Harmonic functions. Recall that a harmonic map on a triangulated surface M is a
scalar function f : M→ R that satisfies the Laplace equation ∆ f = 0 subject to the Dirichlet boundary
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conditions f (vi) = ci for all vi ∈ VC. Here, the set VC ⊂ V is a list of constrained vertices and ci have
known scalar values providing the boundary conditions. The reason for our interest in Harmonic
functions is that they satisfy the so-called maximum principle property [91], which asserts that the
solution for the above system has no local extrema other than the constrained vertices. To achieve this
setting in practice, one has to be careful about the choice of the weights utilized to define the Laplacian.
More specifically, for a triangulated mesh M, the standard discretization for the Laplacian operator at
a vertex vi is given by:

∆ f (vi) = ∑
[vi ,vj ]∈M

wij( f (vj)− f (vi)),

where wij is a scalar weight assigned to the edge [vi, vj], such that ∑[vi ,vj ]∈M w,j = 1. Choosing the
weights wij, such that wij > 0 for all edges [vi, vj] guarantees the solution of the Laplace equation has
no local extrema other than at constrained vertices VC [92]. These conditions are satisfied by the mean
value weights:

wij =
tan(θij/2) + tan(φij/2)

||vj − vi||
,

where the angles θij and φij are the angles on either sides of the edge [vi, vj] at the vertex vi. Mean value
weights are used to approximate harmonic map and they have the advantage that they are always
non-negative, which prevents any introduction of extrema on non-constrained vertices in the solution
of the Laplace equation that is specified above. Such a function can be obtained as a solution for
Laplace equation with mean value weights and with only two constrained vertices VC = {vmin, vmax}
such that f (vmin) < f (vmax). For instance, all functions shown in Figure 19 are obtained by solving
the Laplace equation with exactly two constrained vertices.

8.1.2. The Poisson Equation

The Poisson equation on a triangulated mesh with Dirichlet boundary condition is defined by:

∆ f = h, f (vi) = ci where vi ∈ VC (1)

where VC ⊂ V is a set of constrained vertices and h : M −→ R is a known function. The cardinality of
the set VC must be at least 1 in order for system (1) to have a unique solution. With the appropriate
choice of h, we can use the Poisson equation for our purpose. Indeed, if we choose the function h as
suggested by Dong et al. in [93], then the solution f of the Poisson equation gives us a scalar field
whose level sets follow one of the principal curvatures of the underlying manifold. Specifically, this
can be done by solving:

∆ f (v) = κ(v) where f (vsource) = c (2)

where κ(v) is the mean curvature at the vertex v:

κ(vi) =
1

4Amixed(vi)
∑

j∈N(i)
(cot θij + cot βij)||(vi − vj)|| (3)

here, the angles θij and βij are given in Figure 24, and Amixed(vi) is the surface mixed area around the
vertex vi [94]. Examples of Poisson fields on triangulated meshes are shown in Figure 25.
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vi θij

βij vj

Figure 24. The angles θij and βij are defined with respect to an edge [vi, vj].

Figure 25. Example of Poisson fields on Triangulated meshes. In both characters, a single vertex,
which is the highest node in the head of the character, was chosen to be the constrained vertex required
to solve the Poisson equation. Observe how this scalar function follows the geometry of the mesh.

9. Conclusions and Future Work

The parallelization of topological data analysis algorithms is still in its infancy. There are plenty
of existing topological machineries, such as Morse theory, which offer a plethora of tools that can be
utilized to obtain robust and efficient parallel algorithms. In this paper, we presented a work that
utilizes Morse theory to obtain a parallel algorithm for augmented Reeb graphs.

The parallel algorithm that we present here has elements that make it generalizable to a Reeb
graph algorithm on a general simplicial complex. However, we thought that this would make the
discussion more complicated in many parts of the algorithm. We plan to pursue this direction in
future work.
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