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Gaussian Cubes: Real-Time Modeling for Visual Exploration of
Large Multidimensional Datasets

Zhe Wang, Nivan Ferreira, Youhao Wei, Aarthy Sankari Bhaskar, Carlos Scheidegger

Fig. 1. Some application scenarios for Gaussian Cubes. Top left: screenshot of an interactive session of visual analysis of the Bureau
of Transportation Statistic (BTS) on-time performance data, including 160 million flights over a 25-year time span. Gaussian Cubes
enable visualizations that show the slope of the model that describes how flights get later as the day progresses, and these models can
be computed over arbitrary subsets of the data at interactive rates. This makes it easy to spot Southwest Airlines’s alleged practice
of indefinitely grounding (but not canceling) delayed flights in early 2014. Subsequently, the Department of Transportation levied on
Southwest Airlines the largest fine ever received by an airline [27]. Right: visualization of a model heatmap of a color-color diagram of
a large astronomical catalog (the Sloan Digital Sky Survey Data Release 7 [1]), which includes 51 million stars after data cleaning.
Bottom left: Gaussian Cubes used as the backing store for a large number of earthquake simulations, enabling fast computation of
Principal Component Analysis over arbitrary data subsets. See Section 6 for more details.

Abstract— Recently proposed techniques have finally made it possible for analysts to interactively explore very large datasets in
real time. However powerful, the class of analyses these systems enable is somewhat limited: specifically, one can only quickly
obtain plots such as histograms and heatmaps. In this paper, we contribute Gaussian Cubes, which significantly improves on
state-of-the-art systems by providing interactive modeling capabilities, which include but are not limited to linear least squares and
principal components analysis (PCA). The fundamental insight in Gaussian Cubes is that instead of precomputing counts of many
data subsets (as state-of-the-art systems do), Gaussian Cubes precomputes the best multivariate Gaussian for the respective data
subsets. As an example, Gaussian Cubes can fit hundreds of models over millions of data points in well under a second, enabling
novel types of visual exploration of such large datasets. We present three case studies that highlight the visualization and analysis
capabilities in Gaussian Cubes, using earthquake safety simulations, astronomical catalogs, and transportation statistics. The dataset
sizes range around one hundred million elements and 5 to 10 dimensions. We present extensive performance results, a discussion of
the limitations in Gaussian Cubes, and future research directions.
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1 INTRODUCTION

The fundamental difficulty in visual exploration of large datasets can
be summarized by two conflicting requirements. First, exploratory
analysis requires a large variety of different queries against the dataset,
and these queries are not known before the dataset is processed for
visualization. Such a constraint naturally pushes implementations to-
wards expressively powerful — but computationally naive — strategies,
such as repeated linear scans of the data. Second, user-interaction
constraints dictate that the quality of the experience is bound by the
ease with which analysts can go through an “exploratory hypothesis
cycle”: a sequence of formulating a query, issuing it, receiving the
results, examining them, and finally refining some underspecified hy-
pothesis in their mind. This constraint, in turn, pushes implementations
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Fig. 2. A summary of our proposed workflow for visual exploratory mod-
eling. In current practice, the building of models to explain or explore
a dataset typically happens through repeated scans of the dataset. As
datasets grow larger, the latency of even a single scan becomes pro-
hibitive. In this paper, we introduce Gaussian Cubes, which extends
data cubes in order to support low-latency exploratory modeling. Gaus-
sian Cubes enables the computation of model parameters in real-time;
with it, we can build interactive visualizations that compare, for example,
thousands of principal component analyses over tens of millions of data
points on the order of a second (see Section 6.2).

towards computationally-efficient — but expressively impoverished —
implementations. This tension underlies much of the current research
in interactive systems for large-scale data exploration.

Breakthrough systems like Polaris [42] and formalisms such as
conjunctive visual queries [43] have largely solved the issues of expres-
sivity. However, these improvements only brought issues of scalability
into sharper focus. If analysts are faced with datasets where a linear
scan takes longer than about a second, one can expect the quality of ex-
ploratory analysis to suffer [33]. Recently proposed techniques such as
imMens [34] and Nanocubes [32] have fundamentally changed the scale
of datasets that can be visualized in real time. In order to achieve this
performance, these techniques take the classic OLAP data cube [20]
and tailor it to visualization-specific requirements. Data cubes carefully
pre-compute aggregations across different subsets of the data in a way
that enables computation of a large class of aggregation queries without
having to refer to the original dataset. With imMens and Nanocubes, it
is now possible to produce popular interactive visualizations such as
linked histograms and heat maps for datasets in the order of millions to
billions of records, on a commodity computer such as a modern laptop
or desktop.

While having such visual summaries in an interactive manner is
powerful, they only support a limited class of analysis tasks. One im-
portant example of analytical tasks not supported by these techniques
is building statistical models from the data. Coupling statistical models
with user interactivity is one of the main strengths of modern visual
analytics systems [28]. In fact, throughout the analysis process, it is
common to derive statistical models to extract features and relations
(e.g., regression models), and build complex visual representations (e.g.,
dimensionality reduction) from the data. However, the computational
costs of fitting such models and the need for low latency in exploratory
visual analysis [33] prevent the use of these techniques in a truly inter-
active way, even for reasonably sized datasets. The usual approaches
to mitigate this problem are either to make use of only small portions
of the data in the interactive analysis or to rely on long preprocessing
steps in which the models are built. Both of these approaches are far
from ideal. The former might ignore important aspects of the data
due to sampling. The latter often restricts the analysts to visualize the
results of the modeling without being able to neither change any of
the parameters associated with this process nor the portions of the data
used to built the model.

In this paper, we contribute Gaussian Cubes, which significantly
improves on state-of-the-art systems by providing interactive visual
modeling capabilities, which include but are not limited to linear least
squares and principal components analysis (PCA). Our current im-
plementation of Gaussian Cubes is a relatively simple extension of
Nanocubes [32]. As a result, it inherits much of its runtime perfor-
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Fig. 3. On the left, an example of a data cube as it is typically created.
From the relation on the top left, the analyst picks a set of column to
“cube”. The traditional data cube table (bottom left) collects all possible
aggregations —commonly known as “group by”s— along the selected
columns. On the right, we show the added columns of a data cube model
for Gaussian Cubes, which makes a distinction between “indexing vari-
ables” and “modeling variables” (top right). Gaussian Cubes create data
cubes with added columns (bottom right) containing sums of polynomial
expansions of the modeling variables (by default, up to degree 2). As
we explain in Section 3.2, these sums suffice to find best-fitting linear
models in any of the modeling variables. It also enables other modeling
techniques, as we discuss further in Section 4.

mance and memory requirements, querying expressivity, and speed.
However, we note that the techniques we use are readily available for
use in other visualization systems as well. The fundamental insight in
Gaussian Cubes is that instead of precomputing counts of many data
subsets (as imMens and Nanocubes do), Gaussian Cubes precomputes
the best multivariate Gaussian distribution for a given set of real-valued
variables (Figure 2). As a result, Gaussian Cubes can fit hundreds of
models over millions of data points in well under a second, enabling
novel types of visual exploration of such large datasets. While the
idea of indexing sufficient statistics has been used for data mining and
machine learning [36, 13, 39], the main novelty of Gaussian Cubes is to
use this idea to extend modern visualization-focused data cube systems.
This enables many novel plots that haven’t been previously attempted,
mostly because of their unfavorable performance characteristics, and
we describe some of these plots in Section 6. We present three case
studies that highlight the visualization and analysis capabilities in Gaus-
sian Cubes, using simulations of building stress under earthquakes,
astronomical catalogs, and transportation statistics. The dataset sizes
range around one hundred million elements and 5 to 10 dimensions.
Finally, we also present extensive performance results, a discussion of
the limitations in Gaussian Cubes, and future research directions.

2 RELATED WORK

Gaussian Cubes lie at the intersection of data analysis, database man-
agement systems, and information visualization. As a result, there exist
related work spanning all of these areas.

Visualization and Data Management. Stolte et al.’s Polaris sys-
tem was a breakthrough system that showed the fundamental rela-
tionship between OLAP cubes, aggregation, and interactive visualiza-
tion [42]. The need for visualization systems to offer interactive query
times for large datasets drove the development of visualization-specific
data cubes such as imMens [34] and Nanocubes [32]. Gaussian Cubes
are a followup to these proposals, and the current implementation is
specifically built as an extension to Nanocubes.

Fig. 4. The implementation of Gaussian Cubes are based on
Nanocubes [32], which are an implementation of spatiotemporal cubes.
Such cubes generate intermediate aggregates that correspond to filtering
operations that naturally appear in spatial and temporal queries, such as
queries over time intervals and contiguous geographic regions.

Visual encodings of model information. Gaussian Cubes en-
able computation of statistical models at the same interactive rates
that previous systems computed subpopulation counts. As a result,
we can now leverage a large amount of pre-existing work in visual
encodings of statistical information. Cottam et al. propose abstract
rendering, a pixel-based metaphor in which pixels store binned model
information [16]. Abstract rendering is a generalization of the tradi-
tional pixel-based visualizations and mappings; for a thorough review
of the field, we point interested readers to Keim’s survey [29]. Chan
et al. recently developed a technique they call Regression Cube [12],
which combines model fitting and dimensionality reduction. The focus
of Gaussian Cubes, in contrast, are in enabling fast computations over
a (possibly more restricted) class of queries.

Data Management. The data management research community
has recently become aware of the importance of fluid interaction to
the overall usability of data management systems. We highlight here
two recent developments. Agarwal et al.’s BlinkDB [3] is an espe-
cially efficient implementation of Hellerstein et al.’s vision of online
aggregation [24]; BlinkDB creates a large set of stratified samples from
which many queries can be answered with relatively high precision and
confidence, and at relatively low latency. It offers a natural backend for
the developments in visualization of streaming results from a sample-
oriented database [19, 18, 5]. Instead of modeling the low-level visual
perceptual system in order to provide fast, approximate, perceptually-
similar query results, a different avenue of research is to model user
interactions, with the goal of predicting their activity and hiding latency
behind successful predictions [6, 11].

Data mining. The proposal of using preaggregation to speed-up
the process of fitting statistical models has been previously explored in
the data mining literature. Shao et al. [39] introduced the idea of storing
sufficient statistics in data cubes. Based on this idea, they proposed
a multivariate aggregate view for relational database, enabling fast
data mining queries. The seminal work by Moore et al. [36] proposed
precomputation of sufficient statistics to obtain models for different
portions of the data. This work inspired further development in the
area [13, 45]. Gaussian Cubes leverage this idea and the power of
visualization oriented data cube systems to enable both model fitting
and exploratory visual analysis.

Much of the work in visual analytics is grounded on the maxim that
visual encodings should be intimately related to statistical models that
describe the data well [4]. Gaussian Cubes can be seen as enabling
interactive, query-based visual analytics for a particular class of models.
There have been data cube systems developed for the purposes of faster
calculations of some classes of models [14, 15]. In contrast, Gaussian
Cubes collect aggregations that support both a large class of models,
and exploratory visualization of the underlying patterns, as we show in
Section 4.

3 GAUSSIAN CUBES

Gaussian Cubes combine insights from data management systems and
basic computational statistics. In this section we present background

Fig. 5. In addition to sample counts partitioned over the indexing vari-
ables (the same kind of aggregation scheme used in other visualization-
specific data cubes), Gaussian Cubes store the sums of the modeling
variables, and the sums of their pairwise products. Gaussian Cubes
require no changes in the way previous systems lay out their indexing
structures, and so the expressivity of the “slicing and dicing” capabilities
is unchanged. In exchange for the additional memory usage, we get the
ability to fit a number of models over large datasets, at interactive rates.

on these insights as well as the intuition behind Gaussian Cubes. Also,
throughout this section, we will use the tables in Figure 3 as running
examples.

3.1 Data Cubes: Fast queries from preaggregations

Exploratory analysis has long relied on aggregations for simple sum-
maries of relevant information in a dataset of interest. Following
common practice, we call the two tables in Figure 3 relations. Their
columns store attributes; in turn, rows store records, and individual
entries in either are values. Any set of records can in principle pro-
duce an aggregation: a new record that summarizes their information
somehow. The prototypical aggregation is the sum operation: aggre-
gating the set of records which represent BMW cars would yield a row
(BMW,∗,∗,2); notice the row has additional attribute, in this case a
“count”. Typically, aggregations are built by partitioning on the values
of an attribute (this is the SQL group by clause [40]).

The data cube, as originally defined, is a relation that stores aggrega-
tions of the power set (the set of all subsets) of a user-defined attribute
set. On the bottom-left side of Figure 3, we show a data cube on the
attribute set {Style,Transmission}. Data cubes formalize the notion
that group by operations can be created for many possible sets of
attributes, and that these aggregations nest in a very particular way.
Specifically, if one computes an aggregation relation A on car makes
and styles of a relation R, and then aggregates A only on car makes, the
result is exactly the same as computing the aggregation on car makes
directly from R.

In a single sentence, the fundamental insight is that many aggrega-
tions can be build incrementally, and efficiently, from previous aggre-
gations: to find the total number of BMW or Hondas sold, we simply
add the counts of the rows corresponding each to total Hondas and total
BMWs sold, without having to scan the original relation. This is what
allows imMens and Nanocubes (and essentially other data cube struc-
tures) to quickly recover a relatively large number of aggregations from
a (carefully constructed) relatively small “basis set” of aggregations.

In this section and in the ones which follow, it will be helpful to
think of the structure representing a data cube as a directed graph.
This observation, to the best of our knowledge, is due to Sismanis et
al.[41]. Each node of the graph (stored as a record in the data cube
table) encodes an aggregation for a particular set of records, and edges
connect coarser aggregations to finer ones. If there exists an edge from
node Ni to node Nj, then the aggregation represented by Ni is over
a set which contains that of the node Nj. Moving along the edges
refines the query set (by choosing, for example, a specific spatial region,
time interval, or attribute value). For readers interested in more details,
we recommend the original presentation from Gray et al.’s classic
paper [20].
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Fig. 2. A summary of our proposed workflow for visual exploratory mod-
eling. In current practice, the building of models to explain or explore
a dataset typically happens through repeated scans of the dataset. As
datasets grow larger, the latency of even a single scan becomes pro-
hibitive. In this paper, we introduce Gaussian Cubes, which extends
data cubes in order to support low-latency exploratory modeling. Gaus-
sian Cubes enables the computation of model parameters in real-time;
with it, we can build interactive visualizations that compare, for example,
thousands of principal component analyses over tens of millions of data
points on the order of a second (see Section 6.2).

towards computationally-efficient — but expressively impoverished —
implementations. This tension underlies much of the current research
in interactive systems for large-scale data exploration.

Breakthrough systems like Polaris [42] and formalisms such as
conjunctive visual queries [43] have largely solved the issues of expres-
sivity. However, these improvements only brought issues of scalability
into sharper focus. If analysts are faced with datasets where a linear
scan takes longer than about a second, one can expect the quality of ex-
ploratory analysis to suffer [33]. Recently proposed techniques such as
imMens [34] and Nanocubes [32] have fundamentally changed the scale
of datasets that can be visualized in real time. In order to achieve this
performance, these techniques take the classic OLAP data cube [20]
and tailor it to visualization-specific requirements. Data cubes carefully
pre-compute aggregations across different subsets of the data in a way
that enables computation of a large class of aggregation queries without
having to refer to the original dataset. With imMens and Nanocubes, it
is now possible to produce popular interactive visualizations such as
linked histograms and heat maps for datasets in the order of millions to
billions of records, on a commodity computer such as a modern laptop
or desktop.

While having such visual summaries in an interactive manner is
powerful, they only support a limited class of analysis tasks. One im-
portant example of analytical tasks not supported by these techniques
is building statistical models from the data. Coupling statistical models
with user interactivity is one of the main strengths of modern visual
analytics systems [28]. In fact, throughout the analysis process, it is
common to derive statistical models to extract features and relations
(e.g., regression models), and build complex visual representations (e.g.,
dimensionality reduction) from the data. However, the computational
costs of fitting such models and the need for low latency in exploratory
visual analysis [33] prevent the use of these techniques in a truly inter-
active way, even for reasonably sized datasets. The usual approaches
to mitigate this problem are either to make use of only small portions
of the data in the interactive analysis or to rely on long preprocessing
steps in which the models are built. Both of these approaches are far
from ideal. The former might ignore important aspects of the data
due to sampling. The latter often restricts the analysts to visualize the
results of the modeling without being able to neither change any of
the parameters associated with this process nor the portions of the data
used to built the model.

In this paper, we contribute Gaussian Cubes, which significantly
improves on state-of-the-art systems by providing interactive visual
modeling capabilities, which include but are not limited to linear least
squares and principal components analysis (PCA). Our current im-
plementation of Gaussian Cubes is a relatively simple extension of
Nanocubes [32]. As a result, it inherits much of its runtime perfor-

Make
Honda
BMW
Ford
Ford
BMW

Style
sedan
hatch
SUV
hatch
sedan

Trans.
auto
auto

manual
manual
auto

Relation…

Make
*
*
*
*
*
*
*
*
*
*

Style
*
*
*

sedan
hatch
SUV
sedan
hatch
hatch
SUV

Trans.
*

auto
manual

*
*
*

auto
auto

manual
manual

Count
5
3
2
2
2
1
2
1
1
1

Data Cube…

…plus modeling variables
Age
10
5
3
1
4

Price
9

25
20
12
35

∑A
23
19
4

14
6
3

14
5
1
1

∑P
101
69
32
44
37
20
44
25
12
20

…plus sufficient statistics
∑A*A
151
141
10

116
41
9

116
25
1
9

∑A*P
427
355
72

230
137
60

230
125
12
60

∑P*P
2,475
1,931
544

1,306
1,994
400

1,306
625
144
400

Data Cubes Gaussian Cubes

Fig. 3. On the left, an example of a data cube as it is typically created.
From the relation on the top left, the analyst picks a set of column to
“cube”. The traditional data cube table (bottom left) collects all possible
aggregations —commonly known as “group by”s— along the selected
columns. On the right, we show the added columns of a data cube model
for Gaussian Cubes, which makes a distinction between “indexing vari-
ables” and “modeling variables” (top right). Gaussian Cubes create data
cubes with added columns (bottom right) containing sums of polynomial
expansions of the modeling variables (by default, up to degree 2). As
we explain in Section 3.2, these sums suffice to find best-fitting linear
models in any of the modeling variables. It also enables other modeling
techniques, as we discuss further in Section 4.

mance and memory requirements, querying expressivity, and speed.
However, we note that the techniques we use are readily available for
use in other visualization systems as well. The fundamental insight in
Gaussian Cubes is that instead of precomputing counts of many data
subsets (as imMens and Nanocubes do), Gaussian Cubes precomputes
the best multivariate Gaussian distribution for a given set of real-valued
variables (Figure 2). As a result, Gaussian Cubes can fit hundreds of
models over millions of data points in well under a second, enabling
novel types of visual exploration of such large datasets. While the
idea of indexing sufficient statistics has been used for data mining and
machine learning [36, 13, 39], the main novelty of Gaussian Cubes is to
use this idea to extend modern visualization-focused data cube systems.
This enables many novel plots that haven’t been previously attempted,
mostly because of their unfavorable performance characteristics, and
we describe some of these plots in Section 6. We present three case
studies that highlight the visualization and analysis capabilities in Gaus-
sian Cubes, using simulations of building stress under earthquakes,
astronomical catalogs, and transportation statistics. The dataset sizes
range around one hundred million elements and 5 to 10 dimensions.
Finally, we also present extensive performance results, a discussion of
the limitations in Gaussian Cubes, and future research directions.

2 RELATED WORK

Gaussian Cubes lie at the intersection of data analysis, database man-
agement systems, and information visualization. As a result, there exist
related work spanning all of these areas.

Visualization and Data Management. Stolte et al.’s Polaris sys-
tem was a breakthrough system that showed the fundamental rela-
tionship between OLAP cubes, aggregation, and interactive visualiza-
tion [42]. The need for visualization systems to offer interactive query
times for large datasets drove the development of visualization-specific
data cubes such as imMens [34] and Nanocubes [32]. Gaussian Cubes
are a followup to these proposals, and the current implementation is
specifically built as an extension to Nanocubes.

Fig. 4. The implementation of Gaussian Cubes are based on
Nanocubes [32], which are an implementation of spatiotemporal cubes.
Such cubes generate intermediate aggregates that correspond to filtering
operations that naturally appear in spatial and temporal queries, such as
queries over time intervals and contiguous geographic regions.

Visual encodings of model information. Gaussian Cubes en-
able computation of statistical models at the same interactive rates
that previous systems computed subpopulation counts. As a result,
we can now leverage a large amount of pre-existing work in visual
encodings of statistical information. Cottam et al. propose abstract
rendering, a pixel-based metaphor in which pixels store binned model
information [16]. Abstract rendering is a generalization of the tradi-
tional pixel-based visualizations and mappings; for a thorough review
of the field, we point interested readers to Keim’s survey [29]. Chan
et al. recently developed a technique they call Regression Cube [12],
which combines model fitting and dimensionality reduction. The focus
of Gaussian Cubes, in contrast, are in enabling fast computations over
a (possibly more restricted) class of queries.

Data Management. The data management research community
has recently become aware of the importance of fluid interaction to
the overall usability of data management systems. We highlight here
two recent developments. Agarwal et al.’s BlinkDB [3] is an espe-
cially efficient implementation of Hellerstein et al.’s vision of online
aggregation [24]; BlinkDB creates a large set of stratified samples from
which many queries can be answered with relatively high precision and
confidence, and at relatively low latency. It offers a natural backend for
the developments in visualization of streaming results from a sample-
oriented database [19, 18, 5]. Instead of modeling the low-level visual
perceptual system in order to provide fast, approximate, perceptually-
similar query results, a different avenue of research is to model user
interactions, with the goal of predicting their activity and hiding latency
behind successful predictions [6, 11].

Data mining. The proposal of using preaggregation to speed-up
the process of fitting statistical models has been previously explored in
the data mining literature. Shao et al. [39] introduced the idea of storing
sufficient statistics in data cubes. Based on this idea, they proposed
a multivariate aggregate view for relational database, enabling fast
data mining queries. The seminal work by Moore et al. [36] proposed
precomputation of sufficient statistics to obtain models for different
portions of the data. This work inspired further development in the
area [13, 45]. Gaussian Cubes leverage this idea and the power of
visualization oriented data cube systems to enable both model fitting
and exploratory visual analysis.

Much of the work in visual analytics is grounded on the maxim that
visual encodings should be intimately related to statistical models that
describe the data well [4]. Gaussian Cubes can be seen as enabling
interactive, query-based visual analytics for a particular class of models.
There have been data cube systems developed for the purposes of faster
calculations of some classes of models [14, 15]. In contrast, Gaussian
Cubes collect aggregations that support both a large class of models,
and exploratory visualization of the underlying patterns, as we show in
Section 4.

3 GAUSSIAN CUBES

Gaussian Cubes combine insights from data management systems and
basic computational statistics. In this section we present background

Fig. 5. In addition to sample counts partitioned over the indexing vari-
ables (the same kind of aggregation scheme used in other visualization-
specific data cubes), Gaussian Cubes store the sums of the modeling
variables, and the sums of their pairwise products. Gaussian Cubes
require no changes in the way previous systems lay out their indexing
structures, and so the expressivity of the “slicing and dicing” capabilities
is unchanged. In exchange for the additional memory usage, we get the
ability to fit a number of models over large datasets, at interactive rates.

on these insights as well as the intuition behind Gaussian Cubes. Also,
throughout this section, we will use the tables in Figure 3 as running
examples.

3.1 Data Cubes: Fast queries from preaggregations

Exploratory analysis has long relied on aggregations for simple sum-
maries of relevant information in a dataset of interest. Following
common practice, we call the two tables in Figure 3 relations. Their
columns store attributes; in turn, rows store records, and individual
entries in either are values. Any set of records can in principle pro-
duce an aggregation: a new record that summarizes their information
somehow. The prototypical aggregation is the sum operation: aggre-
gating the set of records which represent BMW cars would yield a row
(BMW,∗,∗,2); notice the row has additional attribute, in this case a
“count”. Typically, aggregations are built by partitioning on the values
of an attribute (this is the SQL group by clause [40]).

The data cube, as originally defined, is a relation that stores aggrega-
tions of the power set (the set of all subsets) of a user-defined attribute
set. On the bottom-left side of Figure 3, we show a data cube on the
attribute set {Style,Transmission}. Data cubes formalize the notion
that group by operations can be created for many possible sets of
attributes, and that these aggregations nest in a very particular way.
Specifically, if one computes an aggregation relation A on car makes
and styles of a relation R, and then aggregates A only on car makes, the
result is exactly the same as computing the aggregation on car makes
directly from R.

In a single sentence, the fundamental insight is that many aggrega-
tions can be build incrementally, and efficiently, from previous aggre-
gations: to find the total number of BMW or Hondas sold, we simply
add the counts of the rows corresponding each to total Hondas and total
BMWs sold, without having to scan the original relation. This is what
allows imMens and Nanocubes (and essentially other data cube struc-
tures) to quickly recover a relatively large number of aggregations from
a (carefully constructed) relatively small “basis set” of aggregations.

In this section and in the ones which follow, it will be helpful to
think of the structure representing a data cube as a directed graph.
This observation, to the best of our knowledge, is due to Sismanis et
al.[41]. Each node of the graph (stored as a record in the data cube
table) encodes an aggregation for a particular set of records, and edges
connect coarser aggregations to finer ones. If there exists an edge from
node Ni to node Nj, then the aggregation represented by Ni is over
a set which contains that of the node Nj. Moving along the edges
refines the query set (by choosing, for example, a specific spatial region,
time interval, or attribute value). For readers interested in more details,
we recommend the original presentation from Gray et al.’s classic
paper [20].
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3.2 Sufficient statistics: what is really required to fit a
model?

Gray et al.’s breakthrough paper already notes that it is possible to
build aggregations with many different functions besides sum (e.g.
min and max). Consider a slightly different example from before:
imagine we want to find averages (of, for example, sales prices). It is
possible to use data cubes for this task, but we need to be somewhat
careful; in order for data cubes to work properly, aggregations need
to be associative and commutative: the order in which aggregations
happen must not affect the outcome. Consider the set {1,2,3}. If we
(incorrectly) build averages by averaging 1 and 2, and then averaging
1.5 and 3, clearly the result is wrong. The solution, of course, is to
compute the appropriate information from which to find averages. In
this case, we keep a running sum of the prices and a running count; the
average is obviously the ratio. In statistics parlance, the sum of prices
and the cardinality of a set of records are both sufficient statistics to
compute the average price of that set of records.

This particular trick is folklore. However, it is not as well-known
in some fields that same principle of sufficient statistics applies much
more generally, and this principle is central to our proposal. To the
best of our knowledge, Gaussian Cubes are the first system to take
central advantage of this concept to build fast interactive tools for
visual modeling. In fact, one way to think of Gaussian Cubes is as a
spatiotemporal data cube (Figure 4) of sufficient statistics, coupled with
a system to query and inspect results visually (Figure 5).

Here, let us thoroughly work through a simple example of linear
regression. Imagine we have a large dataset of pairs of numbers (xi,yi),
and we want to find the linear model that best fits these numbers. In
other words, we want an equation

yi = mxi +b

that describes all points equally well. The principle of least-squares
says that over all possible choices of m and b, we should pick the one
that minimizes the quadratic error E summed over all pairs:

E = ∑
i
(yi −mxi −b)2

We do this by looking for the values for which the derivative of the error
with respect to the parameters is zero, dE/dm = dE/db = 0. Writing
this out,

dE
dm = 2∑

i
(yi −mxi −b)yi = 2(∑

i
y2

i ) −2m(∑
i

xiyi) −2b(∑
i

yi) = 0

dE
db = 2∑

i
(yi −mxi −b) = 2(∑

i
yi) −2m(∑

i
xi) −2b(∑

i
1) = 0

The crucial observation here is that the model depends on the dataset
only through the sums. Although additional computation is necessary
to obtain the actual parameters, this computation can be done without
referring to the original relation. Once we store these sums in a table
such as the bottom table in Figure 3, we have everything we need to
know in order to compute the parameters of the final model. This is
computationally important. If we can find these sums without having to
linearly scan the entire dataset, then we obtain a scalable method: we
have eliminated a runtime dependency on the overall size of the data
(the trade-off is that we have, of course, introduced a preprocessing
requirement and a storage overhead. See Section 6 for more details).
Gaussian Cubes can use these sufficient statistics to build a variety of
models besides the simplest least squares; we defer a full discussion of
the range of applicability to Section 7. We also note that although our
implementation is built on top of a specific system, the concept is quite
general, and can clearly be applied to other implementations.

3.3 Gaussian Cubes: A Normal Distribution at Every Node
A natural question arises when considering sufficient statistics: which
statistics should one store? This decision affects which models can be
fit efficiently, and so it merits discussion. As an illustration, it is clear

Input: k: # of Gaussians, x1,x2: Projection Axes, v: Initial Node
Output: PQ = [n̄1, . . . , n̄k̄]: Priority queue of Final Nodes

PQ.insert(n,projected-variance(n,x1,x2))
repeat

(n̄,priorityn̄)← PQ.pop-max()
if priorityn̄ =−∞ then

break
end if
if n̄.partitions() = /0 then

PQ.insert(n,−∞)
else

prev-proj-var ← projected-variance(v,x1,x2)
priority ← new dictionary
for split in n̄.partitions() do

split-vars ← ∑n∈split projected-variance(n,x1,x2)
priority[split]← prev-proj-var− split-vars

end for
best-split ← argmin(priority)
for n in best-split do

priority ← new dictionary
for split′ in n.partitions() do

split-vars ← ∑n∈split projected-variance(n,x1,x2)
priority[split]← prev-proj-var− split-vars

end for
best-priority ← min(priority)
PQ.insert(n,best-priority)

end for
end if

until PQ.length()≤ k
return PQ

Fig. 6. Algorithm for progressive refinement of a projected Gaussian
Cube.

that some models cannot be fit using only the sufficient statistics of the
previous example, such as one quadratic in x: yi = ax2

i +bxi + c. This
means that a full decision of which statistics to precompute will always
involve some amount of user input.

At the same time, some classes of sufficient statistics are relatively
small, and suffice for a relatively large number of models. In Gaussian
Cubes, what we propose to store are statistics to compute all second-
order moments of a particular subset of variables. The first-order
moments suffice to compute averages, and the first- and second-order
moments suffice to compute variances of these variables. A particularly
helpful way to think about these values is that we’re storing information
to compute the number of samples, their centroid, and the covariance
matrix. This is precisely the information captured by a multivariate
normal distribution [10] — hence the name of our proposal.

Computing a traditional data cube requires the analyst to decide
on which variables to perform the hierarchical aggregation. Gaussian
Cubes introduce an additional decision: over which variables should
the analyst compute the second-order moments? For the remainder of
the paper, we will refer to the variables in which filtering and grouping
can be performed (capabilities existing in traditional data cubes) as the
indexing variables. The variables with which models are fit, in contrast,
will be referred to as modeling variables. We currently do not offer an
automatic method to make this decision, and leave the choice up to the
analysts.

We note that the two sets do not need to be disjoint. In fact, a “fully-
materialized” Gaussian cube would include every variable as both
indexing and modeling variable. The reason we do not advocate this is
simple: even though the total storage of Nanocubes and imMens are
typically acceptable, they are ultimately exponential in the size of the
indexing variable set. Gaussian Cubes incur an additional multiplicative
space overhead that is quadratic on the size of the modeling variable
set (see Table 1). This can be seen as both a good and a bad thing.
As a negative consequence, some of the data structures we use in our
experiments push well into the tens of gigabytes of main memory. On
the other hand, a quadratic blowup is better than an exponential one;
whenever Gaussian Cubes allow variables which needed to be in the

Dataset Objects(N) Memory Time Indexing Schema Modeling Schema |dim|
Synthetic 1 M 0.56 GB 14 sec x(15), y(15) count, a, b, c 10

SDSS DR7 Stars 51 M 12.8 GB 21 min i− r(15), i−g(15), g− r(4) count,u,g,r,i,z,eu,eg,er,ei,ez 66

Flights 163 M 1.74 GB 14 min lat(25), lon(25),
carrier(5), time(16) count,arrival time,arrival delay 6

Earthquake 14 M 14.9 GB 8 min timestep(15), floor(15),
earthquake number(6)

count,shear,diaph.force,moment,acc.,
interstory drift ratio,drift ratio 28

Table 1. Summary of the datasets and respective Gaussian Cubes used in our experiments. We note that both the overall memory usage and build
times are comparable to that of Nanocubes [32]. (In column Indexing Schema, the numbers in the parentheses indicate how many bits are used to
store that dimension. Column |dim| means the total number of dimensions stored in each Gaussian Cube.)

Color Map
Image Size 4×4 8×8 16×16 32×32 64×64 128×128

Query Time (ms) 2 4 7 21 50 172
Query Time/Cell (ms) 0.125 0.063 0.027 0.021 0.012 0.010

JSON Parsing Time (ms) 3 3 4 5 14 45
PCA Calculation Time (ms) 1 7 33 84 254 718

JSON Size (KB) 2.4 9.1 35.1 136 524 1945.6

Table 2. An illustration of a synthetic dataset design to assess the querying performance of Gaussian Cubes. We note that the query time is
essentially proportional to the size of the output image; the query time per cell is essentially constant (the apparent decrease is likely due to a
constant overhead from network latency). In addition, the overall time is dominated by the calculation of the Principal Components Analysis. This
computation is currently done on the client side in Javascript; there are clear opportunities for parallelization.

indexing set to be pushed over to the modeling set, we can expect an
overall reduction in overhead.

4 BUILDING VISUALIZATIONS WITH GAUSSIAN CUBES

We now describe how the Gaussian distributions stored in Gaussian
Cubes can be used as a way to fit linear models to our data and build
visualizations from them. We are concerned with the interactive data
exploration scenario in which users are constantly selecting portions of
the data and the resulting visualizations (and the models used to build
them) need to be updated in real time to reflect those selections. In such
scenario, in many typical cases for large datasets, what grows without
bounds is the number of samples, n. We therefore look for models and
visualizations for which we can avoid linear scans over the data.

4.1 Ordinary Least Squares and Generalizations

As discussed in Section 3.2, by using Gaussian Cubes, it is possible to
perform linear regression on different subsets of data at interactive rates.
In general, it is easy to see that a similar approach can be used to solve
a general linear least squares problem, i.e., to fit models that depend
linearly on the parameters. In fact, considering the model y = Xβ ,
where X is a n by d matrix of observations (data) and y are the observed
responses. By using linear least squares, we obtain the parameter β , by
minimizing ||y−Xβ ||2. It can be seen that the solution of this problem
is given by β̂ = (XT X)−1XT y. Although it is typical to consider the
matrix inversion calculation to be a time-consuming step (cubic on d),
we note that, as previously discussed, the number of samples grows
without bounds. Because of this, even though the cost to build the XT X
matrix from a linear scan is O(nd2), for an overall running time of
O(nd2 +d3), the O(n) term dominates. If we denote by x1, ...,xd the
columns of the matrix X , it is easy to see that

(XT X)i j =
n

∑
k=1

xi
kx j

k.

Similarly, the entries of product XT y are given by

(XT y)i j =
n

∑
k=1

xi
kyk.

In the case of Gaussian Cubes, the preaggregations we store are
sufficient to compute both XT X and XT y effectively in O(d2) time
(assuming all the variables involved are modeling variables). As a
result, we expect the overall computation of the solution for a subset of
data in a Gaussian Cubes to be on the order of O(d3). As we show in
Section 6.3, this strategy can be used to interactively fit large collections
of regression models over millions of records.

In addition, many generalizations of this typical example can also be
computed directly from the sufficient statistics. We note just one exam-
ple here, that of ridge regression[25]. This model consists of modifying
the classical linear regression model to include a regularization term
as a way to control model “complexity”. In the simplest formulation
of ridge regression, one attempts to minimize ||y−Xβ ||2 + λ ||β ||2.
In other words, ridge regression tries to balance goodness of fit with
the magnitude of the coefficient’s components, which tends to avoid
overfitting. The interesting connection with Gaussian Cubes is that the
solution here is given by

β̂ = (XT X +λ I)−1XT y.

Thus, once more, we can compute the solution in constant time. A
constant source of worry when using regularization is the choice of λ
(known as a hyperparameter [23]). Notably, with Gaussian Cubes we
can visually — and interactively — investigate the effects of different
choices of λ , since refitting the models is, in practice, instant.

The framework of ordinary least squares provides a rich setting for
future interactive visualization research, which we do not explore here
mostly because of space constraints. Possibilities include visualization
of ANOVA results, mixed effects least-squares, and even the direct use
of per-bin hypothesis tests and effect-size measurements (using, for
example, Wald tests or Cohen’s d [10]).

4.2 Principal Components Analysis

Principal Components Analysis is a popular method for dimensionality
reduction [17]. In a nutshell, the principal components of a dataset are
the directions in which variance is largest (variance being the expected
squared distance from the average) . By choosing to ignore all but the
first few connected components, the analyst’s hope is to preserve most
of the signal. Computationally speaking, the principal components are
given by the eigenvectors of the covariance matrix. This is particularly
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3.2 Sufficient statistics: what is really required to fit a
model?

Gray et al.’s breakthrough paper already notes that it is possible to
build aggregations with many different functions besides sum (e.g.
min and max). Consider a slightly different example from before:
imagine we want to find averages (of, for example, sales prices). It is
possible to use data cubes for this task, but we need to be somewhat
careful; in order for data cubes to work properly, aggregations need
to be associative and commutative: the order in which aggregations
happen must not affect the outcome. Consider the set {1,2,3}. If we
(incorrectly) build averages by averaging 1 and 2, and then averaging
1.5 and 3, clearly the result is wrong. The solution, of course, is to
compute the appropriate information from which to find averages. In
this case, we keep a running sum of the prices and a running count; the
average is obviously the ratio. In statistics parlance, the sum of prices
and the cardinality of a set of records are both sufficient statistics to
compute the average price of that set of records.

This particular trick is folklore. However, it is not as well-known
in some fields that same principle of sufficient statistics applies much
more generally, and this principle is central to our proposal. To the
best of our knowledge, Gaussian Cubes are the first system to take
central advantage of this concept to build fast interactive tools for
visual modeling. In fact, one way to think of Gaussian Cubes is as a
spatiotemporal data cube (Figure 4) of sufficient statistics, coupled with
a system to query and inspect results visually (Figure 5).

Here, let us thoroughly work through a simple example of linear
regression. Imagine we have a large dataset of pairs of numbers (xi,yi),
and we want to find the linear model that best fits these numbers. In
other words, we want an equation

yi = mxi +b

that describes all points equally well. The principle of least-squares
says that over all possible choices of m and b, we should pick the one
that minimizes the quadratic error E summed over all pairs:

E = ∑
i
(yi −mxi −b)2

We do this by looking for the values for which the derivative of the error
with respect to the parameters is zero, dE/dm = dE/db = 0. Writing
this out,

dE
dm = 2∑

i
(yi −mxi −b)yi = 2(∑

i
y2

i ) −2m(∑
i

xiyi) −2b(∑
i

yi) = 0

dE
db = 2∑

i
(yi −mxi −b) = 2(∑

i
yi) −2m(∑

i
xi) −2b(∑

i
1) = 0

The crucial observation here is that the model depends on the dataset
only through the sums. Although additional computation is necessary
to obtain the actual parameters, this computation can be done without
referring to the original relation. Once we store these sums in a table
such as the bottom table in Figure 3, we have everything we need to
know in order to compute the parameters of the final model. This is
computationally important. If we can find these sums without having to
linearly scan the entire dataset, then we obtain a scalable method: we
have eliminated a runtime dependency on the overall size of the data
(the trade-off is that we have, of course, introduced a preprocessing
requirement and a storage overhead. See Section 6 for more details).
Gaussian Cubes can use these sufficient statistics to build a variety of
models besides the simplest least squares; we defer a full discussion of
the range of applicability to Section 7. We also note that although our
implementation is built on top of a specific system, the concept is quite
general, and can clearly be applied to other implementations.

3.3 Gaussian Cubes: A Normal Distribution at Every Node
A natural question arises when considering sufficient statistics: which
statistics should one store? This decision affects which models can be
fit efficiently, and so it merits discussion. As an illustration, it is clear

Input: k: # of Gaussians, x1,x2: Projection Axes, v: Initial Node
Output: PQ = [n̄1, . . . , n̄k̄]: Priority queue of Final Nodes

PQ.insert(n,projected-variance(n,x1,x2))
repeat

(n̄,priorityn̄)← PQ.pop-max()
if priorityn̄ =−∞ then

break
end if
if n̄.partitions() = /0 then

PQ.insert(n,−∞)
else

prev-proj-var ← projected-variance(v,x1,x2)
priority ← new dictionary
for split in n̄.partitions() do

split-vars ← ∑n∈split projected-variance(n,x1,x2)
priority[split]← prev-proj-var− split-vars

end for
best-split ← argmin(priority)
for n in best-split do

priority ← new dictionary
for split′ in n.partitions() do

split-vars ← ∑n∈split projected-variance(n,x1,x2)
priority[split]← prev-proj-var− split-vars

end for
best-priority ← min(priority)
PQ.insert(n,best-priority)

end for
end if

until PQ.length()≤ k
return PQ

Fig. 6. Algorithm for progressive refinement of a projected Gaussian
Cube.

that some models cannot be fit using only the sufficient statistics of the
previous example, such as one quadratic in x: yi = ax2

i +bxi + c. This
means that a full decision of which statistics to precompute will always
involve some amount of user input.

At the same time, some classes of sufficient statistics are relatively
small, and suffice for a relatively large number of models. In Gaussian
Cubes, what we propose to store are statistics to compute all second-
order moments of a particular subset of variables. The first-order
moments suffice to compute averages, and the first- and second-order
moments suffice to compute variances of these variables. A particularly
helpful way to think about these values is that we’re storing information
to compute the number of samples, their centroid, and the covariance
matrix. This is precisely the information captured by a multivariate
normal distribution [10] — hence the name of our proposal.

Computing a traditional data cube requires the analyst to decide
on which variables to perform the hierarchical aggregation. Gaussian
Cubes introduce an additional decision: over which variables should
the analyst compute the second-order moments? For the remainder of
the paper, we will refer to the variables in which filtering and grouping
can be performed (capabilities existing in traditional data cubes) as the
indexing variables. The variables with which models are fit, in contrast,
will be referred to as modeling variables. We currently do not offer an
automatic method to make this decision, and leave the choice up to the
analysts.

We note that the two sets do not need to be disjoint. In fact, a “fully-
materialized” Gaussian cube would include every variable as both
indexing and modeling variable. The reason we do not advocate this is
simple: even though the total storage of Nanocubes and imMens are
typically acceptable, they are ultimately exponential in the size of the
indexing variable set. Gaussian Cubes incur an additional multiplicative
space overhead that is quadratic on the size of the modeling variable
set (see Table 1). This can be seen as both a good and a bad thing.
As a negative consequence, some of the data structures we use in our
experiments push well into the tens of gigabytes of main memory. On
the other hand, a quadratic blowup is better than an exponential one;
whenever Gaussian Cubes allow variables which needed to be in the

Dataset Objects(N) Memory Time Indexing Schema Modeling Schema |dim|
Synthetic 1 M 0.56 GB 14 sec x(15), y(15) count, a, b, c 10

SDSS DR7 Stars 51 M 12.8 GB 21 min i− r(15), i−g(15), g− r(4) count,u,g,r,i,z,eu,eg,er,ei,ez 66

Flights 163 M 1.74 GB 14 min lat(25), lon(25),
carrier(5), time(16) count,arrival time,arrival delay 6

Earthquake 14 M 14.9 GB 8 min timestep(15), floor(15),
earthquake number(6)

count,shear,diaph.force,moment,acc.,
interstory drift ratio,drift ratio 28

Table 1. Summary of the datasets and respective Gaussian Cubes used in our experiments. We note that both the overall memory usage and build
times are comparable to that of Nanocubes [32]. (In column Indexing Schema, the numbers in the parentheses indicate how many bits are used to
store that dimension. Column |dim| means the total number of dimensions stored in each Gaussian Cube.)

Color Map
Image Size 4×4 8×8 16×16 32×32 64×64 128×128

Query Time (ms) 2 4 7 21 50 172
Query Time/Cell (ms) 0.125 0.063 0.027 0.021 0.012 0.010

JSON Parsing Time (ms) 3 3 4 5 14 45
PCA Calculation Time (ms) 1 7 33 84 254 718

JSON Size (KB) 2.4 9.1 35.1 136 524 1945.6

Table 2. An illustration of a synthetic dataset design to assess the querying performance of Gaussian Cubes. We note that the query time is
essentially proportional to the size of the output image; the query time per cell is essentially constant (the apparent decrease is likely due to a
constant overhead from network latency). In addition, the overall time is dominated by the calculation of the Principal Components Analysis. This
computation is currently done on the client side in Javascript; there are clear opportunities for parallelization.

indexing set to be pushed over to the modeling set, we can expect an
overall reduction in overhead.

4 BUILDING VISUALIZATIONS WITH GAUSSIAN CUBES

We now describe how the Gaussian distributions stored in Gaussian
Cubes can be used as a way to fit linear models to our data and build
visualizations from them. We are concerned with the interactive data
exploration scenario in which users are constantly selecting portions of
the data and the resulting visualizations (and the models used to build
them) need to be updated in real time to reflect those selections. In such
scenario, in many typical cases for large datasets, what grows without
bounds is the number of samples, n. We therefore look for models and
visualizations for which we can avoid linear scans over the data.

4.1 Ordinary Least Squares and Generalizations

As discussed in Section 3.2, by using Gaussian Cubes, it is possible to
perform linear regression on different subsets of data at interactive rates.
In general, it is easy to see that a similar approach can be used to solve
a general linear least squares problem, i.e., to fit models that depend
linearly on the parameters. In fact, considering the model y = Xβ ,
where X is a n by d matrix of observations (data) and y are the observed
responses. By using linear least squares, we obtain the parameter β , by
minimizing ||y−Xβ ||2. It can be seen that the solution of this problem
is given by β̂ = (XT X)−1XT y. Although it is typical to consider the
matrix inversion calculation to be a time-consuming step (cubic on d),
we note that, as previously discussed, the number of samples grows
without bounds. Because of this, even though the cost to build the XT X
matrix from a linear scan is O(nd2), for an overall running time of
O(nd2 +d3), the O(n) term dominates. If we denote by x1, ...,xd the
columns of the matrix X , it is easy to see that

(XT X)i j =
n

∑
k=1

xi
kx j

k.

Similarly, the entries of product XT y are given by

(XT y)i j =
n

∑
k=1

xi
kyk.

In the case of Gaussian Cubes, the preaggregations we store are
sufficient to compute both XT X and XT y effectively in O(d2) time
(assuming all the variables involved are modeling variables). As a
result, we expect the overall computation of the solution for a subset of
data in a Gaussian Cubes to be on the order of O(d3). As we show in
Section 6.3, this strategy can be used to interactively fit large collections
of regression models over millions of records.

In addition, many generalizations of this typical example can also be
computed directly from the sufficient statistics. We note just one exam-
ple here, that of ridge regression[25]. This model consists of modifying
the classical linear regression model to include a regularization term
as a way to control model “complexity”. In the simplest formulation
of ridge regression, one attempts to minimize ||y−Xβ ||2 + λ ||β ||2.
In other words, ridge regression tries to balance goodness of fit with
the magnitude of the coefficient’s components, which tends to avoid
overfitting. The interesting connection with Gaussian Cubes is that the
solution here is given by

β̂ = (XT X +λ I)−1XT y.

Thus, once more, we can compute the solution in constant time. A
constant source of worry when using regularization is the choice of λ
(known as a hyperparameter [23]). Notably, with Gaussian Cubes we
can visually — and interactively — investigate the effects of different
choices of λ , since refitting the models is, in practice, instant.

The framework of ordinary least squares provides a rich setting for
future interactive visualization research, which we do not explore here
mostly because of space constraints. Possibilities include visualization
of ANOVA results, mixed effects least-squares, and even the direct use
of per-bin hypothesis tests and effect-size measurements (using, for
example, Wald tests or Cohen’s d [10]).

4.2 Principal Components Analysis

Principal Components Analysis is a popular method for dimensionality
reduction [17]. In a nutshell, the principal components of a dataset are
the directions in which variance is largest (variance being the expected
squared distance from the average) . By choosing to ignore all but the
first few connected components, the analyst’s hope is to preserve most
of the signal. Computationally speaking, the principal components are
given by the eigenvectors of the covariance matrix. This is particularly
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Fig. 7. Approximate scatterplots along non-indexing dimensions. The
partition schema doesn’t directly offer a spatial subdivision scheme for
the axes being presented, but the traversal algorithm can adaptively
subdivide nodes to maximally increase the resolved details of the plot.
Here, we show a set of 300 projected Gaussians along different axes
of the SDSS dataset. Even though this is a tiny fraction of the available
nodes in the graph, they are sufficient to highlight a well-known feature
of the dataset: errors in the u band (top left) are much larger than in
the other bands [1]. The bottom-right image shows the corresponding
(compared to top-right) exact scatterplot, which requires scanning the
entirety of the dataset. We discuss the discrepancies in Section 7.

fortunate in the case of Gaussian Cubes, since the modeling variables
we store are exactly the ones sufficient to build the covariance matrix.

As in the case of least squares problem, we try to eliminate the de-
pendency on number of samples. Although the eigenvector calculation
is considered to be the most time-consuming step (cubic in the size
of the modeling variable set), which dominates the overall calculation
is the construction of the covariance matrix. Actually it is O(nd2)
from a linear scan, where n is the number of rows and d is the number
of dimensions (for an overall running time of O(nd2 + d3), the O(n)
term dominates). In the case of Gaussian Cubes, the preaggregations
we store are sufficient to compute the covariance matrix effectively in
O(d2) time. As a result, we expect the overall computation of the PCA
for a subset of data in a Gaussian Cubes to be on the order of O(d3).
Just like in the case of least-squares fitting (and sample counts for tradi-
tional data cubes), we obtain runtime performances that are effectively
independent of the overall size of the data. We provide experimental
evidence of this in Section 6.1. The procedure to go from moments
to covariance via sufficient statistics is spelled out below. Consider a
hypothetical 3×3 covariance matrix M:

M =




cov(x,x) cov(x,y) cov(x,z)
cov(y,x) cov(y,y) cov(y,z)
cov(z,x) cov(z,y) cov(z,z)


 (1)

Without loss of generality, consider cov(x,y) = 1
n−1 ∑n

i=1(xi − x̄)(yi −
ȳ). The time complexity of this term still scales with the dataset size,
as O(n). However, the expression can be restated as:

cov(x,y) = (n−1)−1
n

∑
i=1

(xi − x̄)(yi − ȳ) (2)

= (n−1)−1
n

∑
i=1

(xiyi − xiȳ− yix̄+ x̄ȳ) (3)

= (n−1)−1(
n

∑
i=1

(xiyi)−
n

∑
i=1

(xi) · ȳi −
n

∑
i=1

(yi) · x̄+nx̄ȳ) (4)

Since x̄ = ∑n
i=1(xi)/n and ȳ = ∑n

i=1(yi)/n, all we need for the covari-
ance matrix are ∑n

i=1(xi), ∑n
i=1(yi) and ∑n

i=1(xiyi), Generally, for a
d dimensional data set, we need the count n, ∑n

i=1(ci), i = 0,1,2, ...d
and ∑i=1 n(cic j), i, j = 0,1,2, ...,d As we mentioned above, these are
precisely the summaries stored in Gaussian Cubes. Thus, we reduce
the time for calculating the covariance matrix from O(nd2) to O(d2).

5 SCATTERPLOTS OVER PRINCIPAL COMPONENTS WITH
GAUSSIAN CUBES

An attentive reader will have noticed that although the algorithm we
just described can compute a PCA of a large sample very quickly, the
principal components themselves are very rarely the goal of exploratory
analysis. In fact, we are typically interested in a scatterplot of the
sample, using the principal components as the axis. But now we
are faced with a problem: the straightforward way to generate a plot
requires a scan over the entire dataset (in order, at least to actually
rasterize them on the screen!). Although this seems to be the same
class of problem that Nanocubes and imMens both solve, the situation
here is more complicated: the axes themselves (principal components)
depend on the sample. We cannot, then, precompute these scatterplots
ahead of time!

In lieu of an exact solution, we propose to take advantage of the
multivariate normals stored at every level of the data structures of Gaus-
sian Cubes in yet another way to produce approximate scatterplots.
Recall that normal distributions have a remarkable property: when
transformed by affine transformations (a linear transformation followed
by a translation), normal distributions remain normal. If values X are
drawn from a multivariate normal N(µ,Σ), the distribution of the X
values transformed by a matrix M is given by N(Mµ,MΣMT ). As a
result, for any desired projection (say, the first two principal compo-
nents of some sample), given a Gaussian (representing the density of
points), we can compute the two-dimensional normal corresponding to
its projection.

Therefore, we can generate an approximate scatterplot (a density
plot) by using the hierarchical structure of Gaussian Cubes to obtain a
refined collection of Gaussians and projecting them. In order to describe
how this is done, let us go back to the graph interpretation of a data cube.
Each node N is a graph corresponds to a collection of points in the raw
data. Hence, given a collection of nodes that corresponds to a partition
of the original data points, we can project the Gaussian corresponding
to each node to obtain the approximate scatterplot. It is clear that the
final result will depend on the partition used. In order to obtain such
a paritition, we traverse the edges in the graph, which corresponds to
performing “splits” in the original data. For any node N in the graph,
there are several ways to “split” its sample set by selecting nodes which
N connects to. For example, one possible choice from the example data
cube in Figure 3 is to split on transmission types, which produces two
nodes each with their own multivariate normals: each describing all
cars with, respectively, manual and automatic transmissions. Another
possible split would partition on car makes: Honda, BMW, and Ford.
The final insight is to note that for any desired projection, one of these
splits will produce a better-resolved image: the faster the variances
reduce, the faster the projections are converging to projecting individual
points (which would be the ideal outcome).

We are now ready to describe an algorithm to plot approximate
scatterplots directly from a Gaussian Cube. We simply traverse the
graph of a data cube progressively, using a priority queue to greedily
split nodes which would reduce the total projected variance by the
largest amount. The pseudo-code for the algorithm is in Figure 6.
While we don’t provide any theoretical guarantees of the effectiveness
of this algorithm, we find it works quite well in practice, as can be seen
in the following sections.

Most importantly, this algorithm provides a way to generate plots
with axes outside the indexing variable sets of a Gaussian Cube. To
the best of our knowledge, this is a novel capability, enabled precisely
because of the sufficient statistics stored as modeling variables. Figure 7
shows results obtained by using this algorithm on the SDSS dataset
(described in Section 6.2).

6 EXPERIMENTS

Hardware and Backend Software All timing measurements in
this section are reported from running Gaussian Cubes on a dual, six-
core Intel Xeon E5 server with 256GB of RAM. Besides configuring
the server to not perform any power-saving measures by dynamic clock
setting, the system runs a stock version of Ubuntu 14.04. In particular,
the machine is intermittently used by other projects, and so there are

Fig. 8. Showcasing interactive exploration workflows enabled by Gaussian Cubes. The figure on the left shows a visualization of 51 million stars
aggregated spatially in what astronomers call a color diagram: it shows that most of the visible stars follow a specific one-dimensional curve, the
stellar locus. In this visualization, the hue corresponds to the average brightness of the stars in each bin. Users can select different principal
subspaces (middle figure) by clicking on different parts of the image. The principal subspaces can be used to generate approximate PCA plots (see
Section 5) and compute a colormap based on distances between the subspaces of each region of the plot, and get a visual clustering of places
along the diagram where the internal variation of the set of stars is comparable.

occasional load spikes. We have made no attempt to control for these
in our timing measurements. All binaries are compiled with g++ 4.8.5,
using -O3 as the only notable compilation flag.

Front End The geographic maps for the visualization front ends
we build in this section come from the OpenStreetMap project [22],
and are rendered using a slightly modified version of Leaflet [2].

In Table 1, we present a summary of the building time and memory
usage of Gaussian Cubes used in our experiments.

6.1 Synthetic Dataset

We evaluate the correctness and performance of Gaussian Cubes by
a synthetic dataset. Each of the entries in the dataset has two key
dimensions and three value dimensions. The range of the two key
dimensions are all in [0,10]. The keys are sampled from three multi-
variate Gaussians. The means for the Gaussians are [7,2], [2,7] and
[2,2] respectively. All of them have the same covariance matrix which
is a diagonal matrix with the diagonal entries [2,2,2]. The values are
sampled from different multivariate Gaussians. Specifically, for a data
entry whose keys are x,y, the value dimensions a,b,c are sampled from
a multivariate Gaussian N (m,Σ), where m is a 3×3 zero matrix and
Σ is a diagonal matrix. The diagonal elements are [x,y,10−|x− y|].

The synthetic dataset contains 1 million rows in our evaluation. It
takes 15 seconds for Gaussian Cubes to load and process the whole
dataset. The total memory usage for the 1-million dataset is 570MB.
The experimental results are shown in Table 2. In the evaluation, we
are building colormaps for the whole dataset based on the covariance
matrix of each subset of the data. For example, the first colormap in
row 1 shows the dataset is divided into 4×4 = 16 subsets. Then the
covariance matrix is queried from Gaussian Cubes respectively. We
only use the diagonal elements c00,c11,c22 of the covariance matrix for
color mapping. Actually, they are just the variance of the three value
dimensions. Then c00,c11,c22 are mapped to r, g and b respectively.
So if c00 is large, r will have a large value. Although the second row of
Table 2 shows that the query time grows significantly when the dataset
is divided into more subsets, it should be pointed out that the JSON file’
size that is been transferred through the network is also increasing sig-
nificantly(see the last row). So the network communication is actually
dominating the query time. If we look at the query time per cell, it’s
even decreasing. This proves that we would be able to save much more
query time if the query result was encoded in binary format.

6.2 Visualizing variability in the SDSS DR7 catalog
The Sloan Digital Sky Survey is one of the largest astronomical surveys
ever undertaken. In this section, we use its seventh data release (“DR7”
[1]) to showcase the ability of Gaussian Cubes to handle relatively high-
dimensional data for its modeling schema. SDSS DR7 contains survey
information of galaxies, quasars and stars. We only use stars in our
experiments. DR7 includes a catalog of upwards of 180 million stars,
where the brightness of each such star was measured at five different
wavelengths, known collectively as ugriz. In addition to the individual
wavelength measurements, DR7 includes an estimate of the error for
each wavelength, for a total of 10 real-valued dimensions.

Data cleaning We filter out rows which have missing values in any
of the 10 dimensions; other problems in data acquisition are recorded
in DR7 as magnitudes of −9999 and 9999. We filter these as well. The
SDSS dataset includes a large amount of bad data. We use the ranges of
magnitudes described by Narayan et al. in order to filter the data [37],
ultimately yielding a total of 51,265,171 rows.

Data cube schema For most distant stars, it’s essentially impos-
sible to know whether they are far away or they shine weakly (these
both produce the same photometric effects); as a result, astronomers
focus on the differences between the magnitude measurements along
different wavelengths (since this factors out the issue of absolute mag-
nitudes). For this example, we use i− r and i− g as the values for
the spatial dimension in the indexing variable set. This produces the
elongated line we see in Figures 1 and 8. The spatial dimension uses a
maximum depth of 15 for the quad-tree (for an effective resolution of
32768x32768), and we compute an additional linear dimension with
binned values of g− r, using 10 possible bins. As modeling variables,
we use all 10 values described above, for a total of 66 attributes in the
data cube. The total memory consumption for the cleaned SDSS DR7
Stars is 12.8GB. It takes 21 minutes to build the Gaussian Cubes for it.

Visual clustering of subspaces Based on Gaussian Cubes, we
build an interactive user interface to do visual clustering of the sub-
spaces along which stars are distributed in the SDSS DR7. Specifically,
an overall view of the whole dataset is shown by default (leftmost
picture in Figure 8). Each cell in this overall view is selectable. When
a user clicks on a given cell, we calculate the distance between this cell
and each of the other cells. Then the default colormap is updated to
show the distances as the shown in the right most pictures in Figure
8. In the new colormap, the cells that are close to the clicked cell
will be dark brown; the cells that have large distance to the clicked
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Fig. 7. Approximate scatterplots along non-indexing dimensions. The
partition schema doesn’t directly offer a spatial subdivision scheme for
the axes being presented, but the traversal algorithm can adaptively
subdivide nodes to maximally increase the resolved details of the plot.
Here, we show a set of 300 projected Gaussians along different axes
of the SDSS dataset. Even though this is a tiny fraction of the available
nodes in the graph, they are sufficient to highlight a well-known feature
of the dataset: errors in the u band (top left) are much larger than in
the other bands [1]. The bottom-right image shows the corresponding
(compared to top-right) exact scatterplot, which requires scanning the
entirety of the dataset. We discuss the discrepancies in Section 7.

fortunate in the case of Gaussian Cubes, since the modeling variables
we store are exactly the ones sufficient to build the covariance matrix.

As in the case of least squares problem, we try to eliminate the de-
pendency on number of samples. Although the eigenvector calculation
is considered to be the most time-consuming step (cubic in the size
of the modeling variable set), which dominates the overall calculation
is the construction of the covariance matrix. Actually it is O(nd2)
from a linear scan, where n is the number of rows and d is the number
of dimensions (for an overall running time of O(nd2 + d3), the O(n)
term dominates). In the case of Gaussian Cubes, the preaggregations
we store are sufficient to compute the covariance matrix effectively in
O(d2) time. As a result, we expect the overall computation of the PCA
for a subset of data in a Gaussian Cubes to be on the order of O(d3).
Just like in the case of least-squares fitting (and sample counts for tradi-
tional data cubes), we obtain runtime performances that are effectively
independent of the overall size of the data. We provide experimental
evidence of this in Section 6.1. The procedure to go from moments
to covariance via sufficient statistics is spelled out below. Consider a
hypothetical 3×3 covariance matrix M:

M =




cov(x,x) cov(x,y) cov(x,z)
cov(y,x) cov(y,y) cov(y,z)
cov(z,x) cov(z,y) cov(z,z)


 (1)

Without loss of generality, consider cov(x,y) = 1
n−1 ∑n

i=1(xi − x̄)(yi −
ȳ). The time complexity of this term still scales with the dataset size,
as O(n). However, the expression can be restated as:

cov(x,y) = (n−1)−1
n

∑
i=1

(xi − x̄)(yi − ȳ) (2)

= (n−1)−1
n

∑
i=1

(xiyi − xiȳ− yix̄+ x̄ȳ) (3)

= (n−1)−1(
n

∑
i=1

(xiyi)−
n

∑
i=1

(xi) · ȳi −
n

∑
i=1

(yi) · x̄+nx̄ȳ) (4)

Since x̄ = ∑n
i=1(xi)/n and ȳ = ∑n

i=1(yi)/n, all we need for the covari-
ance matrix are ∑n

i=1(xi), ∑n
i=1(yi) and ∑n

i=1(xiyi), Generally, for a
d dimensional data set, we need the count n, ∑n

i=1(ci), i = 0,1,2, ...d
and ∑i=1 n(cic j), i, j = 0,1,2, ...,d As we mentioned above, these are
precisely the summaries stored in Gaussian Cubes. Thus, we reduce
the time for calculating the covariance matrix from O(nd2) to O(d2).

5 SCATTERPLOTS OVER PRINCIPAL COMPONENTS WITH
GAUSSIAN CUBES

An attentive reader will have noticed that although the algorithm we
just described can compute a PCA of a large sample very quickly, the
principal components themselves are very rarely the goal of exploratory
analysis. In fact, we are typically interested in a scatterplot of the
sample, using the principal components as the axis. But now we
are faced with a problem: the straightforward way to generate a plot
requires a scan over the entire dataset (in order, at least to actually
rasterize them on the screen!). Although this seems to be the same
class of problem that Nanocubes and imMens both solve, the situation
here is more complicated: the axes themselves (principal components)
depend on the sample. We cannot, then, precompute these scatterplots
ahead of time!

In lieu of an exact solution, we propose to take advantage of the
multivariate normals stored at every level of the data structures of Gaus-
sian Cubes in yet another way to produce approximate scatterplots.
Recall that normal distributions have a remarkable property: when
transformed by affine transformations (a linear transformation followed
by a translation), normal distributions remain normal. If values X are
drawn from a multivariate normal N(µ,Σ), the distribution of the X
values transformed by a matrix M is given by N(Mµ,MΣMT ). As a
result, for any desired projection (say, the first two principal compo-
nents of some sample), given a Gaussian (representing the density of
points), we can compute the two-dimensional normal corresponding to
its projection.

Therefore, we can generate an approximate scatterplot (a density
plot) by using the hierarchical structure of Gaussian Cubes to obtain a
refined collection of Gaussians and projecting them. In order to describe
how this is done, let us go back to the graph interpretation of a data cube.
Each node N is a graph corresponds to a collection of points in the raw
data. Hence, given a collection of nodes that corresponds to a partition
of the original data points, we can project the Gaussian corresponding
to each node to obtain the approximate scatterplot. It is clear that the
final result will depend on the partition used. In order to obtain such
a paritition, we traverse the edges in the graph, which corresponds to
performing “splits” in the original data. For any node N in the graph,
there are several ways to “split” its sample set by selecting nodes which
N connects to. For example, one possible choice from the example data
cube in Figure 3 is to split on transmission types, which produces two
nodes each with their own multivariate normals: each describing all
cars with, respectively, manual and automatic transmissions. Another
possible split would partition on car makes: Honda, BMW, and Ford.
The final insight is to note that for any desired projection, one of these
splits will produce a better-resolved image: the faster the variances
reduce, the faster the projections are converging to projecting individual
points (which would be the ideal outcome).

We are now ready to describe an algorithm to plot approximate
scatterplots directly from a Gaussian Cube. We simply traverse the
graph of a data cube progressively, using a priority queue to greedily
split nodes which would reduce the total projected variance by the
largest amount. The pseudo-code for the algorithm is in Figure 6.
While we don’t provide any theoretical guarantees of the effectiveness
of this algorithm, we find it works quite well in practice, as can be seen
in the following sections.

Most importantly, this algorithm provides a way to generate plots
with axes outside the indexing variable sets of a Gaussian Cube. To
the best of our knowledge, this is a novel capability, enabled precisely
because of the sufficient statistics stored as modeling variables. Figure 7
shows results obtained by using this algorithm on the SDSS dataset
(described in Section 6.2).

6 EXPERIMENTS

Hardware and Backend Software All timing measurements in
this section are reported from running Gaussian Cubes on a dual, six-
core Intel Xeon E5 server with 256GB of RAM. Besides configuring
the server to not perform any power-saving measures by dynamic clock
setting, the system runs a stock version of Ubuntu 14.04. In particular,
the machine is intermittently used by other projects, and so there are

Fig. 8. Showcasing interactive exploration workflows enabled by Gaussian Cubes. The figure on the left shows a visualization of 51 million stars
aggregated spatially in what astronomers call a color diagram: it shows that most of the visible stars follow a specific one-dimensional curve, the
stellar locus. In this visualization, the hue corresponds to the average brightness of the stars in each bin. Users can select different principal
subspaces (middle figure) by clicking on different parts of the image. The principal subspaces can be used to generate approximate PCA plots (see
Section 5) and compute a colormap based on distances between the subspaces of each region of the plot, and get a visual clustering of places
along the diagram where the internal variation of the set of stars is comparable.

occasional load spikes. We have made no attempt to control for these
in our timing measurements. All binaries are compiled with g++ 4.8.5,
using -O3 as the only notable compilation flag.

Front End The geographic maps for the visualization front ends
we build in this section come from the OpenStreetMap project [22],
and are rendered using a slightly modified version of Leaflet [2].

In Table 1, we present a summary of the building time and memory
usage of Gaussian Cubes used in our experiments.

6.1 Synthetic Dataset

We evaluate the correctness and performance of Gaussian Cubes by
a synthetic dataset. Each of the entries in the dataset has two key
dimensions and three value dimensions. The range of the two key
dimensions are all in [0,10]. The keys are sampled from three multi-
variate Gaussians. The means for the Gaussians are [7,2], [2,7] and
[2,2] respectively. All of them have the same covariance matrix which
is a diagonal matrix with the diagonal entries [2,2,2]. The values are
sampled from different multivariate Gaussians. Specifically, for a data
entry whose keys are x,y, the value dimensions a,b,c are sampled from
a multivariate Gaussian N (m,Σ), where m is a 3×3 zero matrix and
Σ is a diagonal matrix. The diagonal elements are [x,y,10−|x− y|].

The synthetic dataset contains 1 million rows in our evaluation. It
takes 15 seconds for Gaussian Cubes to load and process the whole
dataset. The total memory usage for the 1-million dataset is 570MB.
The experimental results are shown in Table 2. In the evaluation, we
are building colormaps for the whole dataset based on the covariance
matrix of each subset of the data. For example, the first colormap in
row 1 shows the dataset is divided into 4×4 = 16 subsets. Then the
covariance matrix is queried from Gaussian Cubes respectively. We
only use the diagonal elements c00,c11,c22 of the covariance matrix for
color mapping. Actually, they are just the variance of the three value
dimensions. Then c00,c11,c22 are mapped to r, g and b respectively.
So if c00 is large, r will have a large value. Although the second row of
Table 2 shows that the query time grows significantly when the dataset
is divided into more subsets, it should be pointed out that the JSON file’
size that is been transferred through the network is also increasing sig-
nificantly(see the last row). So the network communication is actually
dominating the query time. If we look at the query time per cell, it’s
even decreasing. This proves that we would be able to save much more
query time if the query result was encoded in binary format.

6.2 Visualizing variability in the SDSS DR7 catalog
The Sloan Digital Sky Survey is one of the largest astronomical surveys
ever undertaken. In this section, we use its seventh data release (“DR7”
[1]) to showcase the ability of Gaussian Cubes to handle relatively high-
dimensional data for its modeling schema. SDSS DR7 contains survey
information of galaxies, quasars and stars. We only use stars in our
experiments. DR7 includes a catalog of upwards of 180 million stars,
where the brightness of each such star was measured at five different
wavelengths, known collectively as ugriz. In addition to the individual
wavelength measurements, DR7 includes an estimate of the error for
each wavelength, for a total of 10 real-valued dimensions.

Data cleaning We filter out rows which have missing values in any
of the 10 dimensions; other problems in data acquisition are recorded
in DR7 as magnitudes of −9999 and 9999. We filter these as well. The
SDSS dataset includes a large amount of bad data. We use the ranges of
magnitudes described by Narayan et al. in order to filter the data [37],
ultimately yielding a total of 51,265,171 rows.

Data cube schema For most distant stars, it’s essentially impos-
sible to know whether they are far away or they shine weakly (these
both produce the same photometric effects); as a result, astronomers
focus on the differences between the magnitude measurements along
different wavelengths (since this factors out the issue of absolute mag-
nitudes). For this example, we use i− r and i− g as the values for
the spatial dimension in the indexing variable set. This produces the
elongated line we see in Figures 1 and 8. The spatial dimension uses a
maximum depth of 15 for the quad-tree (for an effective resolution of
32768x32768), and we compute an additional linear dimension with
binned values of g− r, using 10 possible bins. As modeling variables,
we use all 10 values described above, for a total of 66 attributes in the
data cube. The total memory consumption for the cleaned SDSS DR7
Stars is 12.8GB. It takes 21 minutes to build the Gaussian Cubes for it.

Visual clustering of subspaces Based on Gaussian Cubes, we
build an interactive user interface to do visual clustering of the sub-
spaces along which stars are distributed in the SDSS DR7. Specifically,
an overall view of the whole dataset is shown by default (leftmost
picture in Figure 8). Each cell in this overall view is selectable. When
a user clicks on a given cell, we calculate the distance between this cell
and each of the other cells. Then the default colormap is updated to
show the distances as the shown in the right most pictures in Figure
8. In the new colormap, the cells that are close to the clicked cell
will be dark brown; the cells that have large distance to the clicked
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Fig. 9. By colormapping the rate at which flights become late during the day, we typically see snowballing effects specific to pairs of airlines and
locations (such as ExpressJet’s case). In Southwest’s case, however, the effects are spread throughout the country. We have found evidence in the
press that Southwest Airlines plans flight schedules differently from other companies, and that this difference may account for the effect [21].

cell will be light blue. We define the distances between the cells to
be the distances between the principal subspaces of the samples. In
our experiment, we choose the first three principal components of each
cell. This choice was mostly arbitrary; different choices will produce
different clusterings, but the general workflow is the same. Let P0 be
the principal subspace of the user clicked cell C0, and let Pk be the
principal subspace of one of the other cells Ck. The matrices P are
defined by computing the eigendecomposition UΣUT for each cell, and
then setting the first three diagonal elements of Σ to one, and the rest of
the diagonal to zero. This gives a d ×d projection. Then the distance
between C0 and Ck given by the operator norm of Pk −P0 — the largest
eigenvalue of the matrix Pk −P0. As the user selects different subspaces
to compare, Gaussian Cubes can update the plots in about 0.1s, much
faster than would be possible by computing the covariance matrices by
a linear scan of the 51 million stars in the catalog.

6.3 Flight Dataset
In this section, we use a dataset collected by the Bureau of Trans-
portation Statistics, containing on-time performance information for
commercial airlines for the past 25 years [9]. We will use it here to
showcase the visualization of regression coefficients, and we refer the
reader to Figure 9 for an illustration of our exploration.

The dataset contains 163,228,431 records and about 70 columns,
many of which are redundantly encoded. For this example, the only
spatial information we keep is the latitude and longitude of the arrival
airport. Although the dataset itself contains only airport identifiers
and not spatial information, we chose to perform spatial aggregation
on airport locations (by joining the airport identifiers with a separate
table containing the respective positions). We made this decision so
that the hierarchical aggregation of the spatial dimension could be used
for coarser models that would represent regional trends. We note that
although the dataset includes flight departure and arrival information,
in this example we discard departure information entirely. We did
so because we wanted to highlight the novel capabilities of Gaussian
Cubes; the ability to index on multiple spatial dimensions is a pre-
existing feature of a recent version of nanocubes [31].

The schema for the Gaussian Cube we use in this section uses three
indexing variables: a 25-bit spatial dimension encoding the latitude
and longitude of the flight arrival, a categorical variable encoding
31 different airlines, and a time variable binned at 1 day resolution
indicating the date of arrival of the flight. The modeling variable schema
contains two variables: delay at arrival and flight arrival time. For
computational convenience, we encode both of the modeling variables
in fractions of a day.

We were personally interested in exploring the “snowball” effect
which exists in flight data: as the day goes by, flight arrivals get progres-
sively more late (we wish to acknowledge Bostock’s demo of Crossfilter
as partial inspiration [8]). In our case, we model this effect as a simple
linear relationship between flight delay and flight arrival: d = at +b
(we defer a discussion of the power of obviously wrong, but obviously
simple models to Section 7), and we state that although the overall
lateness of a flight is interesting, it is (for our case) less interesting
than the rate in which flights become later. In other words, we need
to include the intercept coefficient in order to capture an important
aspect of the data, but we are ourselves interested in visualizing the a
coefficient: the slope of the lateness curve.

The sufficient statistics for this model are the following sums:
∑dt,∑ t2,∑ t,∑d,∑1. Note that strictly speaking we do not need to
compute ∑d2 to fit this particular linear regression problem. However,
for the sake of uniformity, the Gaussian Cube we create includes the
additional term that is unused in this section.

Because we used the same units for flight arrival time and flight delay,
the coefficient a in d = at+b can be readily interpreted as a percentage:
if the best-fitting slope is (say) 0.05, then on average, for that particular
subset of data, every passing 60 minutes mean an expected delay of 3
minutes. This seems like a small number, but remember that this is an
average, and so applies to every flight in the set, and it accumulates.
At the end of day, a slope of 0.05 would mean that flights arriving at
8:00PM (assuming for now that flights never start the day delayed)
would on average be a full hour behind schedule.
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Fig. 10. Comparison of PCA calculation using naive approach and
Gaussian Cubes. Multiple portions of the earthquake datasets are se-
lected and the PCA is computed using a naive approach (implemented
in Javascript) and Gaussian Cubes. As can be seen, Gaussian Cubes
are significantly faster and can provide PCA results at interactive rates.

Visual data exploration We created a heatmap visualization
where the color of each bin is decided based on the slope of the model
which best fits the containing flights. Since the sufficient statistics are
readily available from the results of queries into the Gaussian Cubes,
the time to actually fit these models is negligible, and the overall perfor-
mance is indistinguishable from traditional count-based visualizations.
In addition to the slope of the best-fitting model, we use the total size
of the sample to determine the bin’s opacity. In a sense, we are using
sample size as a proxy for confidence in the model, and using opacity
to hide model fits which are likely bad.

We concede that this use of sample size is needlessly naive. Nev-
ertheless, this simple visualization readily yielded several interesting
leads. First, it becomes apparent that most airlines have one specifically
problematic airport. See, for example the middle row of images in Fig-
ure 9 for the case of ExpressJet; other companies have similar examples.
We believe (but only checked cursorily) these are the airport hubs for
the respective airlines, where flights are tightly scheduled and so snow-
balling is prone to happen. However, one company (and notably just
one company) experiences this problem in a widespread fashion: South-
west Airlines. In addition, we found one particular instance (January
2014 in Chicago’s Midway Airport) in which Southwest flights were
getting delayed at an average rate of upwards of 10% for a sustained
period of about two weeks (see Figure 1). We found indications in the
press that this was due to Southwest’s alleged practice of indefinitely
delaying (but not canceling) flights, presumably to sideskirt costs of
rescheduling passenger flights. For this practice, Southwest Airlines
was eventually fined over a million dollars [27].

6.4 Earthquake Simulations
Our final case study comes from an ongoing collaboration with civil
engineers studying an ensemble of simulations of building stresses
under earthquakes. In this project, we are interested in studying the
interplay of different physical variables (moment, shear, etc.) on dif-
ferent portions of a building as it undergoes stresses because of an
earthquake. In order to support the analysis of these variables, we built
a web-based visualization system (the current user interface can be
seen on the bottom-left of Figure 1). One of the important tasks that is
performed by the domain experts in the process of studying this data is
to perform PCA to understand the relationships between the multiple
physical variables. The system uses Gaussian Cubes to interactively
compute PCA over its variable set, as described in Section 4.2. In order
to have an idea of the gains in computation speed obtained by using
this approach, we compare it with a naive method in Figure 10. In this
experiment, 162 different subcollections of varied sizes are selected
from the earthquake dataset during the use of our system. For each
subcollection, the PCA is computed using the naive approach, in which
covariance matrices are computed for the selected portion of the data,
and Gaussian Cubes. As shown in Figure 10, Gaussian Cubes achieve
a significantly better performance which enables performing PCA at
interactive rates.

7 DISCUSSION, LIMITATIONS, AND FUTURE WORK

We believe Gaussian Cubes offer a significant improvement over the
state-of-the-art in exploratory model visualization. However, there are
still many limitations and opportunities for improvement.

First of all, the supported models are limited. The model coverage

is determined by the preaggregated values. These include: descrip-
tive statistics, confidence intervals, hypothesis tests, cross-tabulation
analysis, analysis of variance, multivariate analysis of variance, linear
regression, correlation analysis, principal component analysis, factor
analysis, χ2 analysis of independence [39]. We take residual calcu-
lation as a simple example. Assume we want to fit a linear model
yi = mxi +b, that m̂, b̂ are the solutions obtained from Gaussian Cubes,
and Ê is the residual of the best model. Then,

Ê = ∑(yi − m̂xi − b̂)2 (5)

= ∑y2
i + m̂2 ∑x2

i + b̂2 ∑1−2m̂∑xiyi +2m̂b̂∑xi −2b̂∑yi (6)

The sums are again prestored in Gaussian Cubes, and so the residual
calculation can be done as fast as fitting a model. We want to make
clear that it’s likely there are many other models that can be supported.
We would like to investegate this in our future work. Secondly, the
choice of indexing dimensions determines what kind of analysis could
be provided. If the user wants to explore the dataset on any dimensions,
Gaussian Cubes will require much more space building index on every
dimension. This sacrifice in memory consumption might be acceptable
if latency is truly unacceptable. Still, we want to note that a full
treatment of the memory-query-time tradeoff for data cubes is an open
research question that is beyond the scope of our proposal.

Currently, the process of matching models to visual encodings is
manual and laborious. We envision a future class of visualization speci-
fications a la MacKinlay’s classic APT[35] which would automatically
take into account knowledge about the particular models being fit to
derive appropriate classes of visual representations [30]. These might
include glyphs [7], ensembles[26, 38], and other metaphors. Gaussian
Cubes, in this context, enables this visualization technology to be used
at larger scales than previously possible. While Gaussian Cubes do not
currently incorporate perceptual knowledge in its backend, we believe
it is possible to integrate perceptual constraints (in the sense of Wu et
al.’s vision paper [44]) to influence the progressive scatterplot algorithm
of Section 5. In a sense, we would seek to spend computational effort
only if it would cause perceptual differences.

We also want to enable model evaluation. Currently, Gaussian Cubes
only provide the fitted model without showing how well the model is
fitted. A natural next step is to allow users to run model diagnoses, for
example, providing exploratory, interactive visualization of residuals.

Leveraging Gaussian Cubes, we are able to build visualizations that,
to our best knowledge, have never been attempted at this scale and
low latency. An example is the approximate scatterplot proposed in
Section 5. We see this as a powerful tool to generate density plots
that can be used in a progressive maner [19] as hinted earlier. In
fact, more refined versions of the plot can be produced by traversing
the Gaussian Cube structure. This gives the user control of the time-
accuracy trade-off and can be used to provide immediate feedback to
the user. While these plots can reveal important structures on the data
at a low computational costs, some artifacts of the approximation can
be produced, see right most column in Figure 7. While the approximate
(top) plot shows that most of the points are concentrated around 0 error
(y-axis), the variance of the Gaussians creates a larger spread than the
exact (bottom) plot. Furthermore, also due to the use of Gaussians
as modeling distributions, the approximate plot suggests that negative
error points might exist, which is not the case as shown in the exact
plot. This is due to the symmetry of the Gaussian distribution around
its mean. We note that, however crude the approximate plots might be,
they are distinct enough from each other to highlight science-relevant
aspects of the data. In a sense, we are replacing ideal, impracticaably
slow plots with rough, practically useful ones. Nevertheless, we believe
further research is needed to understand to what extent users can benefit
from these approximate plots and also precisely how these artifacts will
influence the understanding of the data.

Finally, the implementation of Gaussian Cubes are an simple exten-
sion to Nanocubes. Still, the technology is easily applicable in other
systems. In addition, we expect the adaptive traversal of a datacube
to be applicable to a variety of other visualization and data mining
algorithms, and this is an enticing avenue of future work.
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Fig. 9. By colormapping the rate at which flights become late during the day, we typically see snowballing effects specific to pairs of airlines and
locations (such as ExpressJet’s case). In Southwest’s case, however, the effects are spread throughout the country. We have found evidence in the
press that Southwest Airlines plans flight schedules differently from other companies, and that this difference may account for the effect [21].

cell will be light blue. We define the distances between the cells to
be the distances between the principal subspaces of the samples. In
our experiment, we choose the first three principal components of each
cell. This choice was mostly arbitrary; different choices will produce
different clusterings, but the general workflow is the same. Let P0 be
the principal subspace of the user clicked cell C0, and let Pk be the
principal subspace of one of the other cells Ck. The matrices P are
defined by computing the eigendecomposition UΣUT for each cell, and
then setting the first three diagonal elements of Σ to one, and the rest of
the diagonal to zero. This gives a d ×d projection. Then the distance
between C0 and Ck given by the operator norm of Pk −P0 — the largest
eigenvalue of the matrix Pk −P0. As the user selects different subspaces
to compare, Gaussian Cubes can update the plots in about 0.1s, much
faster than would be possible by computing the covariance matrices by
a linear scan of the 51 million stars in the catalog.

6.3 Flight Dataset
In this section, we use a dataset collected by the Bureau of Trans-
portation Statistics, containing on-time performance information for
commercial airlines for the past 25 years [9]. We will use it here to
showcase the visualization of regression coefficients, and we refer the
reader to Figure 9 for an illustration of our exploration.

The dataset contains 163,228,431 records and about 70 columns,
many of which are redundantly encoded. For this example, the only
spatial information we keep is the latitude and longitude of the arrival
airport. Although the dataset itself contains only airport identifiers
and not spatial information, we chose to perform spatial aggregation
on airport locations (by joining the airport identifiers with a separate
table containing the respective positions). We made this decision so
that the hierarchical aggregation of the spatial dimension could be used
for coarser models that would represent regional trends. We note that
although the dataset includes flight departure and arrival information,
in this example we discard departure information entirely. We did
so because we wanted to highlight the novel capabilities of Gaussian
Cubes; the ability to index on multiple spatial dimensions is a pre-
existing feature of a recent version of nanocubes [31].

The schema for the Gaussian Cube we use in this section uses three
indexing variables: a 25-bit spatial dimension encoding the latitude
and longitude of the flight arrival, a categorical variable encoding
31 different airlines, and a time variable binned at 1 day resolution
indicating the date of arrival of the flight. The modeling variable schema
contains two variables: delay at arrival and flight arrival time. For
computational convenience, we encode both of the modeling variables
in fractions of a day.

We were personally interested in exploring the “snowball” effect
which exists in flight data: as the day goes by, flight arrivals get progres-
sively more late (we wish to acknowledge Bostock’s demo of Crossfilter
as partial inspiration [8]). In our case, we model this effect as a simple
linear relationship between flight delay and flight arrival: d = at +b
(we defer a discussion of the power of obviously wrong, but obviously
simple models to Section 7), and we state that although the overall
lateness of a flight is interesting, it is (for our case) less interesting
than the rate in which flights become later. In other words, we need
to include the intercept coefficient in order to capture an important
aspect of the data, but we are ourselves interested in visualizing the a
coefficient: the slope of the lateness curve.

The sufficient statistics for this model are the following sums:
∑dt,∑ t2,∑ t,∑d,∑1. Note that strictly speaking we do not need to
compute ∑d2 to fit this particular linear regression problem. However,
for the sake of uniformity, the Gaussian Cube we create includes the
additional term that is unused in this section.

Because we used the same units for flight arrival time and flight delay,
the coefficient a in d = at+b can be readily interpreted as a percentage:
if the best-fitting slope is (say) 0.05, then on average, for that particular
subset of data, every passing 60 minutes mean an expected delay of 3
minutes. This seems like a small number, but remember that this is an
average, and so applies to every flight in the set, and it accumulates.
At the end of day, a slope of 0.05 would mean that flights arriving at
8:00PM (assuming for now that flights never start the day delayed)
would on average be a full hour behind schedule.
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Fig. 10. Comparison of PCA calculation using naive approach and
Gaussian Cubes. Multiple portions of the earthquake datasets are se-
lected and the PCA is computed using a naive approach (implemented
in Javascript) and Gaussian Cubes. As can be seen, Gaussian Cubes
are significantly faster and can provide PCA results at interactive rates.

Visual data exploration We created a heatmap visualization
where the color of each bin is decided based on the slope of the model
which best fits the containing flights. Since the sufficient statistics are
readily available from the results of queries into the Gaussian Cubes,
the time to actually fit these models is negligible, and the overall perfor-
mance is indistinguishable from traditional count-based visualizations.
In addition to the slope of the best-fitting model, we use the total size
of the sample to determine the bin’s opacity. In a sense, we are using
sample size as a proxy for confidence in the model, and using opacity
to hide model fits which are likely bad.

We concede that this use of sample size is needlessly naive. Nev-
ertheless, this simple visualization readily yielded several interesting
leads. First, it becomes apparent that most airlines have one specifically
problematic airport. See, for example the middle row of images in Fig-
ure 9 for the case of ExpressJet; other companies have similar examples.
We believe (but only checked cursorily) these are the airport hubs for
the respective airlines, where flights are tightly scheduled and so snow-
balling is prone to happen. However, one company (and notably just
one company) experiences this problem in a widespread fashion: South-
west Airlines. In addition, we found one particular instance (January
2014 in Chicago’s Midway Airport) in which Southwest flights were
getting delayed at an average rate of upwards of 10% for a sustained
period of about two weeks (see Figure 1). We found indications in the
press that this was due to Southwest’s alleged practice of indefinitely
delaying (but not canceling) flights, presumably to sideskirt costs of
rescheduling passenger flights. For this practice, Southwest Airlines
was eventually fined over a million dollars [27].

6.4 Earthquake Simulations
Our final case study comes from an ongoing collaboration with civil
engineers studying an ensemble of simulations of building stresses
under earthquakes. In this project, we are interested in studying the
interplay of different physical variables (moment, shear, etc.) on dif-
ferent portions of a building as it undergoes stresses because of an
earthquake. In order to support the analysis of these variables, we built
a web-based visualization system (the current user interface can be
seen on the bottom-left of Figure 1). One of the important tasks that is
performed by the domain experts in the process of studying this data is
to perform PCA to understand the relationships between the multiple
physical variables. The system uses Gaussian Cubes to interactively
compute PCA over its variable set, as described in Section 4.2. In order
to have an idea of the gains in computation speed obtained by using
this approach, we compare it with a naive method in Figure 10. In this
experiment, 162 different subcollections of varied sizes are selected
from the earthquake dataset during the use of our system. For each
subcollection, the PCA is computed using the naive approach, in which
covariance matrices are computed for the selected portion of the data,
and Gaussian Cubes. As shown in Figure 10, Gaussian Cubes achieve
a significantly better performance which enables performing PCA at
interactive rates.

7 DISCUSSION, LIMITATIONS, AND FUTURE WORK

We believe Gaussian Cubes offer a significant improvement over the
state-of-the-art in exploratory model visualization. However, there are
still many limitations and opportunities for improvement.

First of all, the supported models are limited. The model coverage

is determined by the preaggregated values. These include: descrip-
tive statistics, confidence intervals, hypothesis tests, cross-tabulation
analysis, analysis of variance, multivariate analysis of variance, linear
regression, correlation analysis, principal component analysis, factor
analysis, χ2 analysis of independence [39]. We take residual calcu-
lation as a simple example. Assume we want to fit a linear model
yi = mxi +b, that m̂, b̂ are the solutions obtained from Gaussian Cubes,
and Ê is the residual of the best model. Then,

Ê = ∑(yi − m̂xi − b̂)2 (5)

= ∑y2
i + m̂2 ∑x2

i + b̂2 ∑1−2m̂∑xiyi +2m̂b̂∑xi −2b̂∑yi (6)

The sums are again prestored in Gaussian Cubes, and so the residual
calculation can be done as fast as fitting a model. We want to make
clear that it’s likely there are many other models that can be supported.
We would like to investegate this in our future work. Secondly, the
choice of indexing dimensions determines what kind of analysis could
be provided. If the user wants to explore the dataset on any dimensions,
Gaussian Cubes will require much more space building index on every
dimension. This sacrifice in memory consumption might be acceptable
if latency is truly unacceptable. Still, we want to note that a full
treatment of the memory-query-time tradeoff for data cubes is an open
research question that is beyond the scope of our proposal.

Currently, the process of matching models to visual encodings is
manual and laborious. We envision a future class of visualization speci-
fications a la MacKinlay’s classic APT[35] which would automatically
take into account knowledge about the particular models being fit to
derive appropriate classes of visual representations [30]. These might
include glyphs [7], ensembles[26, 38], and other metaphors. Gaussian
Cubes, in this context, enables this visualization technology to be used
at larger scales than previously possible. While Gaussian Cubes do not
currently incorporate perceptual knowledge in its backend, we believe
it is possible to integrate perceptual constraints (in the sense of Wu et
al.’s vision paper [44]) to influence the progressive scatterplot algorithm
of Section 5. In a sense, we would seek to spend computational effort
only if it would cause perceptual differences.

We also want to enable model evaluation. Currently, Gaussian Cubes
only provide the fitted model without showing how well the model is
fitted. A natural next step is to allow users to run model diagnoses, for
example, providing exploratory, interactive visualization of residuals.

Leveraging Gaussian Cubes, we are able to build visualizations that,
to our best knowledge, have never been attempted at this scale and
low latency. An example is the approximate scatterplot proposed in
Section 5. We see this as a powerful tool to generate density plots
that can be used in a progressive maner [19] as hinted earlier. In
fact, more refined versions of the plot can be produced by traversing
the Gaussian Cube structure. This gives the user control of the time-
accuracy trade-off and can be used to provide immediate feedback to
the user. While these plots can reveal important structures on the data
at a low computational costs, some artifacts of the approximation can
be produced, see right most column in Figure 7. While the approximate
(top) plot shows that most of the points are concentrated around 0 error
(y-axis), the variance of the Gaussians creates a larger spread than the
exact (bottom) plot. Furthermore, also due to the use of Gaussians
as modeling distributions, the approximate plot suggests that negative
error points might exist, which is not the case as shown in the exact
plot. This is due to the symmetry of the Gaussian distribution around
its mean. We note that, however crude the approximate plots might be,
they are distinct enough from each other to highlight science-relevant
aspects of the data. In a sense, we are replacing ideal, impracticaably
slow plots with rough, practically useful ones. Nevertheless, we believe
further research is needed to understand to what extent users can benefit
from these approximate plots and also precisely how these artifacts will
influence the understanding of the data.

Finally, the implementation of Gaussian Cubes are an simple exten-
sion to Nanocubes. Still, the technology is easily applicable in other
systems. In addition, we expect the adaptive traversal of a datacube
to be applicable to a variety of other visualization and data mining
algorithms, and this is an enticing avenue of future work.
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