
DISTRIBUTED MAPPER

MUSTAFA HAJIJ, BASEM ASSIRI, AND PAUL ROSEN

Abstract. The construction of Mapper has emerged in the last decade as a powerful and effective
topological data analysis tool that approximates and generalizes other topological summaries, such
as the Reeb graph, the contour tree, split, and joint trees. In this paper we study the parallel
analysis of the construction of Mapper. We give a provably correct algorithm to distribute Mapper
on a set of processors and discuss the performance results that compare our approach to a reference
sequential Mapper implementation. We report the performance experiments that demonstrate the
efficiency of our method.

1. Introduction and Motivation

The topology of data is one of the fundamental originating principle in studying data. Consider
the classical problem of fitting data set of point in Rn using linear regression. In linear regression
one usually assumes that data is almost distributed near a hyperplane in Rn. See Figure 1 (a). If
the data does not meet this assumption then the model chosen to fit the data may not work very
well.

(b) (c)(a)
Figure 1. (a) The linear shape of the data is a fundamental assumption underlying
the linear regression method. (b) Clustering algorithms assume that the data is
clustered in a certain way. (c) Data can come in many other forms and shapes.

On the hand if the clustering algorithms make the shape assumption that the data forms into
clusters. See Figure 1 (b). Data can come in many other forms and shapes, see Figure 1 (c).
It is the shape of data [9] that drives the meaning of the analytical methods and underlines the
fundamental assumptions.

Topology is the field in Mathematics that rigorously defines and studies the notion of shape.
Over the past two decades, topology has found enormous applications in data analysis and the
application of topological techniques to study data has become is now considered a vibrant area
of research called as Topological Data Analysis (TDA) [8–13, 17]. Many popular tools have been
invented in the last two decades to study the shape of data, most notably Persistence Homology
[20, 41] and the construction of Mapper [45]. Persistent Homology has been successfully used
to study a wide range of data problems including three-dimensional structure of the DNA [21],
financial networks [23], material science [28] and many other applications [39]. The construction
of Mapper has emerged recently as a powerful and effective topological data analysis tool to solve

1

ar
X

iv
:1

71
2.

03
66

0v
2

 [
cs

.C
V

]
 1

2
D

ec
 2

01
7

DISTRIBUTED MAPPER 2

a wide variety of problems[31, 38] and it has been studied from multiple points of view [14, 19, 35].
Mapper works as a tool of approximation of a topological space by mapping this space via a ”lens”,
or a sometimes called a filter, to another domain. One uses properties of the lens and the range
to then extract a topological approximation of the original space. We give the precious notion in
section 3. Mapper generalizes other topological summaries such as the Reeb graph, the contour
tree, split, and joint trees. Moreover, Mapper is the core software developed by Ayasdi, a data
analytic company whose main interest is promoting the usage of methods inspired by topological
constructions in data science applications.

As the demand of analyzing larger data sets grows, it is natural to consider parallelization of
topological computations. While there are numerous parallel algorithms that tackle the less general
topological constructions, such as Reeb graph and contour tree, we are not aware of similar attempts
targeting the parallel computation of Mapper in the literature. Our work here is an attempt to fill
in this gap.

This article addresses the parallel analysis of the construction of Mapper. We give a provably
correct algorithm to distribute Mapper on a set of processors and discuss the performance results
that compare our approach to a reference sequential implementation for the computation of Mapper.
Finally, we report the performance analysis experiments that demonstrate the efficiency of our
method.

2. Prior Work

While there are numerous algorithms to compute topological constructions sequentially, the
literature of parallel computing in topology is relatively young. One notable exception is paral-
lelizing Morse-Smale complex computations [26, 44]. Parallelization of merge trees is studied in
[24, 32, 40, 43]. Other parallel algorithms in topology include multicore homology computation
[29] spectral sequence parallelization [30], distributed contour tree [33]. There are several other
attempts to speed up the serial computation of topological constructions including an optimized
Mapper sequential algorithm for large data [46], a memory efficient method to compute persis-
tent cohomology [6], efficient data structure for simplicial complexes [2], optimized computation of
persistent homology [15] and Morse-Smale complexes [25].

3. Preliminaries and Definitions

We start this section by recall basic notions from topology. For more details the reader is
referred to standard texts in topology. See for instance [36]. All topological spaces we consider
in this paper will be compact unless otherwise specified. An open cover of a topological space
is a collection of open sets U = {Aα}α∈I such that ∪α∈IAα = X. All covers in this article
will consist of a finite number of sets unless otherwise specified. Given a topological space X
with a cover U , one may approximate this space via an abstract simplicial complex construction
called the nerve of the cover U . The nerve of a cover is a simplicial complex whose vertices are
represented by the open sets the cover. Each non-empty intersection between two sets in the cover
defines an edge in the nerve and each non-empty intersection between multiple sets defines higher
order simplicies. See Figure 4 for an illustrative example. Under mild conditions the nerve of a
cover can be considered as an approximation of the underlying topological space. This is usually
called the Nerve Theorem [22]. The Nerve Theorem plays an essential role in TDA: it gives a
mathematically justified approximation of the topological space, being thought as the data under
study, via simplicial complexes which are suitable for data structures and algorithms. In [45] Singh
et al proposed using a continuous map f : X −→ Z to construct a nerve of the space X. Instead
of covering X directly, Singh et al suggested covering the codomain Z and then use the map f
to pull back this cover to X. This perspective has multiple useful points of view. On one hand,
choosing different maps on X can be used to capture different aspects of the space X. In this sense

DISTRIBUTED MAPPER 3

the function f is thought of as a ”lens” or a ”filter” in which we view the space X. On the other
hand, fixing the map f and choosing different covers for the codomain Z can be used to obtain
multi-level resolution of the Mapper structure. This has been recently studied in details in [18,19]
and utilized to obtain a notion of persistence-based signature based on the definition of Mapper.

As we mentioned in the introduction, Mapper is related to Reeb graphs. In fact, it has been
proven that under certain conditions Mapper and the Reeb graph give essentially the same topo-
logical summery for the underlying space [14, 35]. While Mapper is a more general topological
construction than Reeb graph, we choose to motivate the main idea behind Mapper by illustrat-
ing its relationship with Reeb graph because the latter has found numerous applications. See for
instance [5] and the references therein.

For the sake of illustration X will be considered to be a surface. Let f : X −→ [a, b] be a Morse
scalar function on X. The Reeb graph R(X, f) of the Morse function f defined on X is constructed
as follows. Define the equivalence relation ∼ on X by x ∼ y if and only if x and y belong to the
same connected component of a level set f−1(c) for the same c ∈ [a, b]. The set X/∼ with the
standard quotient topology induced by the function π : X −→ X/∼ is called the Reeb graph of
f . See Figure 2 for an illustrative example of a Reeb graph on a surface. If X is an embedded
surface, orientable and without a boundary then X can be recovered up to a homeomorphism from
R(X, f) as the boundary of an oriented 3-dimensional regular neighborhood of the graph R(X, f)
[27]. This is a perspective from which a Reeb graph may be considered as a topological summary
of the original space. Other properties of Reeb graph can be found in [5, 16].

Figure 2. The Reeb graph R(X, f) of surface X and a scalar function f . The
scalar function is indicated by the color on the surface. The highlighted points on
the surface are illustration of the critical points of f . These points correspond to
the vertices of the graph R(X, f).

Due to the successfulness of Reeb graph in various applications on meshes, there have been
several attempts to give similar constructions on point clouds. In [37] Natali et el gave a method
to mimic the Reeb graph construction for a point cloud in R3. Similar attempts were made in
[48]. See also [4] and the references within. The problem with most of these methods is the lack
of theoretical justification. Moreover it is not clear how these constructions can be generalized
to a higher dimensional data. Besides being theoretically justified and applicable to data of any
dimension, the Mapper construction gives a data structure that generalizes both Reeb graphs and
merge/split trees and operates in practice on a metric space. We illustrate here how the construction
of Mapper can realize in the special case of the Reeb graph of a space. We need first the following
definition.

DISTRIBUTED MAPPER 4

N1(f
?(U))f?(U)

U

X

(a) (b) (c)

Figure 3. (a) Given a scalar function f : X −→ [a, b] and an open cover U for [a, b]
we obtain an open cover f?(U) for the space X by considering the inverse images of
the elements of U under f . (b) The connected-components of the inverse images are
identified as well as the intersection between these sets. (c) Mapper is defined as a
graph whose vertices represent the connected component and whose edge represent
the intersection between these components.

Definition 3.1. Let X be a topological space and let U be an open cover for X. The 1-nerve
N1(U) of U is a graph whose nodes are represented by the elements of U and whose edges are the
pairs A,B of U such that A ∩B 6= ∅.

N(U)UX

Figure 4. Each open set defines a vertex in the nerve simplicial complex. Each
non-empty intersection between two sets define an edge and each non-empty inter-
section between multiple sets define higher order simplicies.

A scalar function f on X and a cover for the codomain [a, b] of f give rise to a natural cover of
X in the following way. Start by defining an open cover for the interval [a, b] and take the inverse
image of each open set to obtain an open cover for X. This is illustrated in Figure 3 (a). In other
words if U = {(a1, b1), ..., (an, bn)} is a finite collection of open sets that cover the interval [a, b]
then f?(U) := {f−1((a1, b1)), ..., f−1((an, bn))} is an open cover for the space X. The open cover
f?(U) can now be used to obtain the 1-nerve graph N1(f

?(U)). With an appropriate choice of the
cover U , the graph N1(f

?(U)) is a version of the Reeb graph R(X, f) [14,35]. This is illustrated in
Figure 3. Clearly, for a fixed function f the graph N1(f

?(U)) depends on the choice of the cover U
of the interval [a, b]. Figure 5 shows how different choices affect the graph G.

Observe that the different covers for [a, b] give various “resolution” of the graph N1(f
?(U)).

The idea of mapper presented in Definition 3.1 can be generalized to encompass a larger set of
problems. One can replace the interval [a, b] in Definition 3.1 by any parametization domain Z
to obtain more sophisticated insights on the data X. This requires introducing the definition of a
nerve of a cover of a topological space.

DISTRIBUTED MAPPER 5

f

X

Figure 5. For the same function f : X −→ [a, b], different choices of the cover U
for [a, b] induce different graphs. In other words, the 1-nerve graph depends on the
choice of the cover of [a, b].

Definition 3.2. Let X be a topological space and let U be a finite cover for X. The nerve of U
is the abstract simplicial complex N(U) whose vertices are the elements of U and whose simplicies
are the finite subcollections A1,, Ak of U such that : A1 ∩ ... ∩Ak 6= ∅.

In this paper we will deal with nerves of multiple topological spaces simultaneously. For this
reason we will sometimes refer to the nerve of a cover U of a space X by N(X,U).

Figure 4 shows an illustrative example of nerve on a topological space X. We will denote the
vertex in N(U) that corresponds to an open set A in U by vA.

Let f : X −→ Z be a continuous map between two topological spaces X and Z. Let U be a finite
cover of Z. The cover that consists of f−1(U) for all open sets U ∈ U will be called the pullback of
U under f and will be denoted by f∗(U). A continuous map f : X −→ Z is said to be well-behaved
if the inverse image of any path-connected set U in Z, consists of finitely many path-connected sets
in X [18]. All maps in this paper will be assumed to be well-behaved.

Definition 3.3. Let f : X −→ Z be a continuous map between two topological space X and Z.
Let U be a finite cover for Z. The Mapper of f and U , denoted by M(f,U), is the nerve N(f∗U).

3.1. Some Graph Theory Notions. Our construction requires a few definitions from graph
theory. We include these notions here for completeness. See [3] for a more thorough treatment.

Definition 3.4. Let G = (V,E) be a graph. Let ∼ be an equivalence relation defined on the node
set V . The quotient graph of G with respect to the equivalence relation is a graph G/ ∼ whose
node set is the quotient set V/ ∼ and whose edge set is {([u], [v])|(u, v) ∈ E}.

1

2

34

5

6 1

2

34

5

6

Figure 6. An example of a quo-
tient graph.

For example consider the cyclic graph
C6 with V = {1, 2, 3, 4, 5, 6} and edges
(1, 2),(2,3),...,(6, 1). Define the partition ∼ on
V by p1 = {1, 2}, p2 = {3, 4} and p3 = {5, 6}.
The quotient graph induced by ∼ is the cyclic
graph C3. See Figure 6.

We will also need the definition of disjoint
union of two graphs. We will denote to the disjoint union of two sets A and B by A tB.

Definition 3.5. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The disjoint union of G1

and G2 is the graph G1 tG2 defined by (V1 t V2, E1 t E2).

DISTRIBUTED MAPPER 6

4. Distributed Computing of Topological Constructions

The idea of parallelizing the computation of Mapper lies in decomposing the space of interest
into multiple smaller subspaces. The subspaces will be chosen to overlap on a smaller portion to
insure a meaningful merging for the individual pieces. A cover of each space is then chosen. Each
subspace along with its cover is then processed independently by a processing unit. The final stage
consists of gathering the individual pieces and merging them together to produce the final correct
Mapper construction on the entire space. Since Mapper is essentially a nerve of a certain cover we
will start our discussion by laying our some theorems that will facilitate the computation of nerve
of a topological space on two units. Our discussion here operates on a general topological space X.
The algorithmic aspects will be discussed in later sections.

X Y

Figure 7. Decomposing a
space X into two overlap-
ping open sets Y and Z
such that X = Y ∪ Z in
order to process each space
individually.

4.1. Distributed Nerve Computation. Let X be a
topological space and let Y and Z be two open sets of
X with X = Y ∪ Z. See Figure 7. Let U and V be
covers for the spaces Y and Z respectively. The cover
U ∪V is clearly a cover for X. Under which conditions
can we build the 1-nerve N1(X,U∪V) from the 1-nerves
N1(Y,U) and N1(Z,V)? This is an important question
for us because we want to be able to build the 1-nerve
N1(X,U ∪V) from the ”building blocks” N1(Y,U) and
N1(Z,V).

A natural initial choice is to consider the disjoint
union of N1(Y,U) and N1(Z,V). The disjoint union N1(Y,U) tN1(Z,V) shares some vertices and
edges with N1(X,U ∪V) but these two graphs are not identical in general. The problems that could
arise when trying to rebuild N1(X,U ∪V) from the disjoint union of N1(Y,U) and N1(Z,V) are the
following :

(1) There may exist some duplicate nodes in N1(Y,U) tN1(Z,V). This could occur when the
same open set occur in both covers V and U .

(2) The same problem can occur for edges as well: the same edge might exist in both N1(Y,U)
and N1(Z,V).

(3) Finally, N1(X,U ∪ V) might contain an edge (vA, vB) that is coming from two open sets
A,B with A ∈ U but A 6∈ V and B ∈ V but B 6∈ U . Such an edge will not exist in
N1(Y,U) tN1(Z,V).

The following definition addresses the previous problems and allows a correct reconstruction of
N1(X,U ∪ V) from N1(X,U) and N1(X,V).

Definition 4.1. Let X be a topological space. Let Y, Z be two subspaces of X such that X = Y ∪Z
and Y ∩Z 6= ∅. Suppose that the intersection Y ∩Z consists of a finite collection of maximal path-
connected open sets A1, · · · , An. Let U ,V be open covers for Y and Z respectively. We say that
the covers U and V are nerve-consistent if the following two conditions are satisfied :

(1) A ∈ U ∩ V for every A in {A1, · · · , An}.
(2) If U ∈ U and V ∈ V such that U ∩ V 6= ∅, then U = V ∈ {A1, · · · , An}.

Note that it is necessary to impose the condition of maximal path-connectedness on the open
sets of A := {A1, · · · , An} in the definition above. Otherwise, the opens sets that form A may
not be unique and the nerve-consistency definition would have to depend on the open sets that
form A. In the definition above nerve-consistency depends only on the spaces Y and Z. Moreover,
this condition implies A ∩ B = ∅ for every A,B ∈ A with A 6= B because otherwise that would
contradict the fact that A and B are maximal path-connected. We now have the following theorem.

DISTRIBUTED MAPPER 7

Theorem 4.2. Let X be a topological space. Let Y and Z be two open sets of X such that
X = Y ∪ Z and Y ∩ Z 6= ∅ intersecting on a finite union of maximal path-connected open sets
A1∪· · ·∪An. Let U ,V be open covers for Y and Z that are nerve-consistent. Then N1(X,U ∪V) =
(N1(Y,U)tN1(Z,V))/ ∼ where vA ∼ vB for all A ∈ U and B ∈ V such that A = B and A ∈ U ∩V.

Proof. We show that both N1(X,U∪V) and (N1(Y,U)tN1(Z,V))/ ∼ have essentially the same node
and edge sets. Let A = {Ai}ni=1. Every node vA in N1(X,U ∪ V) corresponds to an open set A in
U ∪V. If A is not in A then there is a unique corresponding node of vA in (N1(Y,U)tN1(Z,V))/ ∼.
Otherwise A ∈ A. In this case A must be in both U and V, since the covers U and V are nerve-
consistent. Hence there are two copies of the vertex vA inside N1(Y,U)tN1(Z,V). By the definition
of the equivalence relation ∼ these two nodes are identified in N1(Y,U)tN1(Z,V)/ ∼. Hence there
is a one to one correspondence between the node sets of N1(X,U ∪V) and N1(Y,U)tN1(Z,V)/ ∼.
On the other hand let (vA, vB) be an edge in N1(X,U ∪ V). We distinguish four cases:

• If A and B are in U but not in V then there is a unique edge that corresponds to (vA, vB)
in N1(Y,U) tN1(Z,V)/ ∼.
• The case when A and B are in V but not in U is similar to case (2).
• The case when A ∈ U and B ∈ V. We show that no such edge can exist in N1(X,U ∪ V).

Assume otherwise that (vA, vB) an edge in N1(X,U ∪ V) then we must have A ∩ B 6= ∅.
Since U and V are nerve-consistent then we have A = B.
• The case when when A ∈ V and B ∈ U is similar to the previous case.

�

With this in mind, we now address the problem of distributed Mapper on two concurrent units.

4.2. Distributed Mapper Computation. Let f : X −→ [a, b] be a continuous function. The
construction of distributed Mapper on two units goes as follows:

(1) Choose an open cover for the interval [a, b] that consists of exactly two sub-intervals A1 and
A2 such that A := A1 ∩A2 6= ∅. See Figure 8 (a).

(2) Choose open covers U1 and U2 for A1 and A2 respectively that satisfy the following condi-
tions. First we want the intersection of the two coverings U1 and U1 to have only of the set
A. Furthermore we do not want the covers U1 and U2 to overlap in anyway on any open set
other than A. For this reason also have the following condition : if U1 ∈ U1 and U2 ∈ U2
such that U1 ∩ U2 6= ∅ then U1 ∩ U2 = A. See Remark 4.4 below.

(3) We compute the Mapper construction on the covers f∗(Ui) for i = 1, 2. We obtain two
graphs G1 and G2. See Figure 8 (b).

(4) We merge the graphs G1, G2 as follows. By the construction of A, U1 and U2, the set
A presents in both covers Ui, i=1,2. Let C1, ..., Cn be the path-connected components of
f−1(A). Since A appears in both of the covers every connected component Ci in f−1(A)
occurs in both graphs G1 and G2. In other words, the nodes v1, ..., vn that corresponds to
the components C1, ..., Cn occur in both G1 and G2 where each vertex vi corresponds to
the set Ci. The merge of the graph is done by considering the disjoint union G1 tG2 and
then take the quotient of this graph by identifying the duplicate nodes v1, ..., vk presenting
in both G1 and G2. See Figure 8 (c).

The steps of the previous algorithm are summarized in Figure 8.

Remark 4.3. Note that the interval [a, b] in the construction above can be replaced by any domain
Y and the construction above remains valid. However for the purpose of this paper we restrict
ourselves to the simplest case when Y = [a, b].

Remark 4.4. Note that the covers U1 and U2 we chose for the sets A1 and A2 are nerve-consistent
in the sense of Definition 4.1.

DISTRIBUTED MAPPER 8

A1

A2

A

(a) (b) (c)

G1

G2

G

Figure 8. The steps of the distributed Mapper on two units. (a) The space X is
decomposition based on a decomposition of the codomain (b) Each part is sent to
a processing unit and the Mapper graphs are computed on the subspaces (c) The
graphs are merged by identifying the corresponding the nodes.

It is immediate from the construction of the distributed Mapper on two units above that the
covers f∗(U1) and f∗(U2) are nerve-consistent. We record this fact in the following Lemma.

Lemma 4.5. The covers f∗(U1) and f∗(U2) given in the construction above are nerve-consistent.

Lemma 4.5 and Theorem 4.2 imply immediately the following Corollary.

Corollary 4.6. N1(f
∗(U1) ∪ f∗(U2)) = (N1(f

∗(U1) t N1(f
∗(U2))/ ∼ where vC ∼ vD for all C ∈

f∗(U1) and D ∈ f∗(U1) such that C = D and C ∈ f−1(A1 ∩A2).

Now define an N -chain cover of [a, b] to be a cover U of [a, b] that consists of N open intervals
A1, ..., AN such that Ai,j := Ai ∩ Aj 6= ∅ when |i − j| = 1 and empty otherwise. By convention, a
1-chain cover for an interval [a, b] is any open interval that contains [a, b].

5. The Design of the Algorithm

In this section we discuss the computational details of the distributed Mapper algorithm we
discussed in the previous section from the topological perspective. Before we give our algorithm
we recall quickly the reference sequential version.

5.1. The Sequential Mapper Algorithm. The serial Mapper algorithm can be obtained by a
straightforward change of terminology of the topological mapper introduced in Section 3. To this
end, the topological space X is replaced by the data under investigation. The lens, or the filter,
f is chosen to reflect a certain property of the data. Finally, the notion of path-connectedness is
replaced by an appropriate notion of clustering. This is algorithm is summarized in the Algorithm
1.

Algorithm 1: Sequential Mapper [45]

Input: A dataset X with a notion of metric between the data points;

a scalar function f : X −→ Rn;
a finite cover U = {U1, ..., Uk} of f(X);
Output: A graph that represents N1(f

?(U)).

1 For each set Xi := f−1(Ui), its clusters Xij ⊂ Xi are computed using the chosen clustering

algorithm.;

2 Each cluster is considered as a vertex in the Mapper graph. Moreover we insert an edge
between two nodes Xij and Xkl whenever Xij ∩Xij 6= ∅;

We will refer the mapper graph obtained using Algorithm 1 by the sequential Mapper.

DISTRIBUTED MAPPER 9

5.2. The Main Algorithm. We now give the details of the Distributed Mapper algorithm. To
guarantee that the output of the distributed Mapper is identical to the sequential Mapper we need
to do some processing on the cover that induces the final Mapper output. In distributed Mapper,
we consider an N -chain cover A1, · · · , AN of the interval [a, b] along with the their cover U1,...,UN .
The justification of the previous choice of covers will be given when we discuss the correctness of
Algorithm 3. The details of the cover preprocessing are described in Algorithm 2.

Algorithm 2: Cover Preprocessing

Input: A point cloud X;

a scalar function f : X −→ [a, b];

a set of N processors (P);

Output: A collection of pairs {(Ai,Ui)}Ni=1 where {Ai}Ni=1 is an N -chain cover of [a, b] and Ui
is a cover of Ai.

1 Construct an N -chain cover of [a, b]. That is, cover [a, b] by N open intervals A1, · · · , AN such

that Ai,j := Ai ∩Aj 6= ∅ when |i− j| = 1 and empty otherwise;

2 For each open set Ai construct an open cover Ui. The covers {Ui}Ni=1 satisfy the following
conditions: (1) Ai,i+1 is an open set in both coverings Ui and Ui+1. In other words
Ui ∩ Ui+1 = {Ai,i+1} and (2) if Ui ∈ Ui and Ui+1 ∈ Ui+1 such that Ui ∩ Ui+1 6= ∅ then
Ui ∩ Ui+1 = Ai,i+1 for each i = 1, ..., N − 1;

After doing the preprocessing of the cover and obtaining the collection {(Ai,Ui)}Ni=1, every pair
(Ai,Ui) is then mapped to a specific processor Pi which performs some calculations to produce a
subgraph Gi. At the end, we merge the subgraphs into one graph G. The details of the algorithm
are presented in Algorithm 3.

Algorithm 3: Distributed Mapper

Input: A point cloud X;

a scalar function f : X −→ [a, b];

a set of N processors (P);

a collection of pairs {(Ai,Ui)}Ni=1 obtained from the cover preprocessing algorithm;
Output: Distributed Mapper Graph.

1 for (i← 1 to i = N) do
2 Pi ← (Ai,Ui); //Map each Ai, and its cover Ui to the processor Pi.

3 Determine the set of point Xi ⊂ X that maps to Ai via f and run the sequential Mapper
construction concurrently on the covers (f |Xi)

∗(Ui) for i = 1, .., N . We obtain N graphs
G1, ...GN . If N = 1, return the graph G1;

4 Let Cij1 , ..., C
i
ji

be the clusters obtained from f−1(Ai,i+1). These clusters are represented by

the vertices vij1 , ..., v
i
ji

in both Gi and Gi+1 (each vertex vik corresponds to the cluster Cik) by

the choice of the coverings Ui and Ui+1;

5 Merge the graphs G1, ..., GN as follows. By the construction of Ai,i+1, Ui and Ui+1, each one

of the sets f∗(Ui) and f∗(Ui+1) share the clusters Cijk in f∗(Ai,i+1) . Hence Cijk is
represented by a vertex in both graphs Gi and Gi+1. The merging is done by considering the
of the disjoint union graph G1 t ... tGN and then take the quotient of this graph that
identifies the corresponding vertices in Gi and Gi+1 for 1 ≤ i ≤ N − 1.

DISTRIBUTED MAPPER 10

5.3. Correctness of the Algorithm. The correctness of the previous algorithm follows basically
from Corollary 4.6. That being said, we give here a detailed proof of the correctness that discusses
the steps of the algorithms in details.

Proposition 5.1. The Distributed Mapper algorithm returns a graph identical to the sequential
Mapper.

Proof. We will prove that the Distributed Mapper performs the computations on X and correctly
produces a graph G that is identical to the graph obtained by the sequential Mapper algorithm
using induction.

Denote by N to the number of units of initial partitions of interval I, which is the same number
of processing units. If N = 1, then the Distributed Mapper works exactly like the sequential
Mapper. In this case A1 = X and the single cover U1 for X is used to produce the final graph
which Algorithm 3 returns at step (3).

Now assume the hypothesis is true on k unit. We show that it holds on k+1 units. In step (1) and
(2) Algorithm 3 constructs a k+ 1-chain cover for [a, b] consisting of the open sets A1, ..., Ak, Ak+1.
Denote by Ui to the cover of Ai for 1 ≤ i ≤ k + 1. We can run Algorithm 3 on the collection
{(Ai,Ui)}ki=1 and produce a sequential Mapper graphs Gi 1 ≤ i ≤ k in step (3). By the induction
hypothesis, Algorithm 3 produces correctly a graph G′ obtained by merging the sequential Mapper
graphs G1, ..., Gk. In other words the graph G′ obtained from Algorithm 3 is identical to the graph
obtain by running the sequential Mapper construction on the cover ∪ki Ui.

We want to show that combining G′ and Gk+1 using our algorithm produces a graph G that

is identical to running the sequential Mapper on the covering consists of ∪k+1
i Ui. Let U ′ be the

union ∪ki Ui and a denote by A′ to the union ∪ki=1Ai. By the the construction of the covers {Ui}k+1
i=1

in step (2), U ′ covers A′. Moreover, the covers U ′ and Uk+1 only share the open set A′ ∩ Ak+1.
Moreover there are no intersections between the open sets of the cover U ′ and the open sets of
the cover Uk+1 except for A′ ∩ Ak+1. Since there is no intersection between the open sets of U ′
and Uk+1 then there will be no creation of edges between the nodes induced from them and hence
the computation of edges done on the first k processors are independent from the computation of
edges done on the k + 1 possessor. Now we compare the node sets of the graphs G′, Gk+1 and
the graph G. Recall that each node in a sequential Mapper is obtained by a connected component
of an inverse image of an open set in the cover that defines the Mapper construction. Since the
covers U ′ and Uk+1 intersect at the open set f−1(A′ ∩ Ak+1) then each connected component of
f−1(A′ ∩ Ak+1) corresponds to a node that exists in both graphs G′ and Gk+1. This means that
each connected component of f−1(A′ ∩Ak+1) is processed twice : one time on the first k processor
and one time on the k + 1 processor and for each such component corresponds to a node in both
G′ and Gk+1. In step (5) the algorithm checks the graphs G′ and Gk+1 for node duplication and
merge them according to their correspondence to produce the graph G. �

6. Performance of the Algorithm

In this section, we discuss the performance improvement obtained using the Distributed Mapper
algorithm. Generally there are some systems and applications where parallelism cannot be applied
on all data or processes. In this case, part of data can be processed in parallel, while the other
should be sequential. This may happen because of the nature of data (e.g. dependencies), the
natures of processors (e.g. heterogeneity) or some other factors. In this case we can rely on a
well-known formula which is the Amedahl’s law to calculate the speedup ratio upper bound that
comes from parallelism and the improvement percentage [1]. The Amedahl’s law is formulated as
follows:

S =
1

(1− part) + part/N
,

DISTRIBUTED MAPPER 11

where S is the theoretical speedup ratio, part is the proportion of system or program that can
be made in parallel, 1 − part is the proportion that remains sequential, and N is the number of
processors.

Speedup
N part

=0.25
part
=0.50

(Distributed Mapper)
part =0.94

part
=0.99

10 1.29 1.82 6.49 9.17
100 1.33 1.98 14.40 50.25
1000 1.33 1.99 16.40 90.99

Table 1. Speedup calculations based on Amedahl’s law, using different numbers
of processors and different ratios of parallelism. Column four shows the speedup of
the distributed Mapper with respect to the sequential Mapper

In Table 1 we use Amedahl’s law to calculate the theoretic speedup ratios using different numbers
of processors and different ratios of parallelism. The table shows that the speedup increases as a
response of the increase in the number of processors and/or in the proportion of the program that
can be made parallel. For instnace, based on the table, when part = 0.25 the speedup of the
program increases by 1.33. Notice however that at some points the performance stops improving
even if we increase the number of processors.

In the distributed Mapper, there are two computational pieces which are the clustering piece that
is about 94% of the execution, and cover construction/merging subgraphs piece that is about 4%
of the execution. Our algorithm makes the clustering piece completely in parallel while the cover
construction/merging subgraphs piece is processed sequentially. Table 1 shows that the speedup of
the Distributed Mapper achieves 6.49 when N = 10 and it goes up to 16.40 when N = 1000.

6.1. Experimentations. In this section we present practical results obtained using a Python
implementation. We ran our experimentations on a Dell OptiPlex 7010 machine with 4-core i7-
3770 Intel CPU @ 3.40GHz and with a 24GiB System Memory. The distributed Mapper algorithm
was tested on different models and compared their run-time with a publicly available data available
at [47]. The size of the point cloud data are shown in Table 2.

Data Size
camel 21887
cat 7277
elephant 42321
horse 8431
face 29299
head 15941

Table 2. The size of the datasets used in our experiments.

The sequential Mapper algorithm relies on 3 inputs: the data X, the scalar function f : X −→
[a, b] and the choice of cover U of [a, b]. The existing publicly available Mapper implementations,
see for instance [34], do not satisfy the level of control that we require for the cover choice and so
we relied on our own Mapper implementation. The clustering algorithm that we used to specify
the Mapper nodes is a modified version of the DBSCAN [7].

Using our implementation on the data given in Table 2 we obtained a minimum speedup of 2.41,
a maximum one of 3.35 and an average speedup of 2.95 on 4 cores. This gives 73% average parallel
efficiency. This is detailed in Figure 9. The figure shows the results of distributed Mapper speedup

DISTRIBUTED MAPPER 12

obtained using our experiments. The x-axis represents the number of processes while the y-axis
shows the speedup. It is clear from the figure that the curves are increasing in a monotonic fashion
as we increase the number of processes. Moreover, the experimental results matches the theoretical
calculations that appears in Table 1.

Figure 9. Speedups obtained by the distributed Mapper using number of processes
that run concurrently.

7. Conclusion and Future Work

In this work we gave a provably correct algorithm to distribute Mapper on a set of processors.
Our algorithm relies on a divide an conquer strategy for the codomain cover which gets pulled
back to the domain cover. This work has several potential directions of the work that we have not
discussed here. For instance, the recursive nature of the main algorithm was implied throughout
the paper but never discussed explicitly. On the other hand the algorithm can be utilized to obtain
a multi-resolution Mapper construction. In other words, using this algorithm we have the ability
to increase the resolution of Mapper for certain subsets of the data and decrease at others. This is
potentially useful for interactive Mapper applications.

References

[1] Gene M Amdahl, Validity of the single processor approach to achieving large scale computing capabilities, Pro-
ceedings of the april 18-20, 1967, spring joint computer conference, 1967, pp. 483–485.

[2] Ulrich Bauer, Michael Kerber, Jan Reininghaus, and Hubert Wagner, Phat–persistent homology algorithms tool-
box, Journal of Symbolic Computation 78 (2017), 76–90.

[3] Lowell W Beineke and Robin J Wilson, Topics in algebraic graph theory, Vol. 102, Cambridge University Press,
2004.

[4] Silvia Biasotti, Leila De Floriani, Bianca Falcidieno, Patrizio Frosini, Daniela Giorgi, Claudia Landi, Laura
Papaleo, and Michela Spagnuolo, Describing shapes by geometrical-topological properties of real functions, ACM
Computing Surveys (CSUR) 40 (2008), no. 4, 12.

[5] Silvia Biasotti, Daniela Giorgi, Michela Spagnuolo, and Bianca Falcidieno, Reeb graphs for shape analysis and
applications, Theoretical Computer Science 392 (2008), no. 1-3, 5–22.

[6] Jean-Daniel Boissonnat, Tamal K Dey, and Clément Maria, The compressed annotation matrix: An efficient data
structure for computing persistent cohomology, Algorithmica 73 (2015), no. 3, 607–619.

[7] Tadeusz Caliński and Jerzy Harabasz, A dendrite method for cluster analysis, Communications in Statistics-
theory and Methods 3 (1974), no. 1, 1–27.

[8] Erik Carlsson, Gunnar Carlsson, and Vin De Silva, An algebraic topological method for feature identification,
International Journal of Computational Geometry & Applications 16 (2006), no. 04, 291–314.

[9] Gunnar Carlsson, Topology and data, Bulletin of the American Mathematical Society 46 (2009), no. 2, 255–308.
[10] Gunnar Carlsson, Tigran Ishkhanov, Vin De Silva, and Afra Zomorodian, On the local behavior of spaces of

natural images, International journal of computer vision 76 (2008), no. 1, 1–12.
[11] Gunnar Carlsson and Facundo Mémoli, Persistent clustering and a theorem of j. kleinberg, arXiv preprint

arXiv:0808.2241 (2008).

DISTRIBUTED MAPPER 13

[12] Gunnar Carlsson and Afra Zomorodian, The theory of multidimensional persistence, Discrete & Computational
Geometry 42 (2009), no. 1, 71–93.

[13] Gunnar Carlsson, Afra Zomorodian, Anne Collins, and Leonidas J Guibas, Persistence barcodes for shapes,
International Journal of Shape Modeling 11 (2005), no. 02, 149–187.

[14] Mathieu Carrière and Steve Oudot, Structure and stability of the 1-dimensional mapper, arXiv preprint
arXiv:1511.05823 (2015).

[15] Chao Chen and Michael Kerber, Persistent homology computation with a twist, Proceedings 27th european
workshop on computational geometry, 2011.

[16] Kree Cole-McLaughlin, Herbert Edelsbrunner, John Harer, Vijay Natarajan, and Valerio Pascucci, Loops in
reeb graphs of 2-manifolds, Proceedings of the nineteenth annual symposium on computational geometry, 2003,
pp. 344–350.

[17] Anne Collins, Afra Zomorodian, Gunnar Carlsson, and Leonidas J Guibas, A barcode shape descriptor for curve
point cloud data, Computers & Graphics 28 (2004), no. 6, 881–894.

[18] Tamal K Dey, Facundo Mémoli, and Yusu Wang, Multiscale mapper: topological summarization via codomain cov-
ers, Proceedings of the twenty-seventh annual acm-siam symposium on discrete algorithms, 2016, pp. 997–1013.

[19] Tamal K Dey, Facundo Memoli, and Yusu Wang, Topological analysis of nerves, reeb spaces, mappers, and
multiscale mappers, arXiv preprint arXiv:1703.07387 (2017).

[20] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian, Topological persistence and simplification, Foun-
dations of computer science, 2000. proceedings. 41st annual symposium on, 2000, pp. 454–463.

[21] Kevin Emmett, Benjamin Schweinhart, and Raul Rabadan, Multiscale topology of chromatin folding, Proceedings
of the 9th eai international conference on bio-inspired information and communications technologies (formerly
bionetics), 2016, pp. 177–180.

[22] Robert Ghrist, Barcodes: the persistent topology of data, Bulletin of the American Mathematical Society 45
(2008), no. 1, 61–75.

[23] Marian Gidea, Topology data analysis of critical transitions in financial networks (2017).
[24] Charles Gueunet, Pierre Fortin, Julien Jomier, and Julien Tierny, Task-based augmented merge trees with fibonacci

heaps, Ieee symposium on large data analysis and visualization 2017, 2017.
[25] David Günther, Jan Reininghaus, Hubert Wagner, and Ingrid Hotz, Efficient computation of 3d morse–smale

complexes and persistent homology using discrete morse theory, The Visual Computer 28 (2012), no. 10, 959–969.
[26] Attila Gyulassy, Valerio Pascucci, Tom Peterka, and Robert Ross, The parallel computation of morse-smale

complexes, Parallel & distributed processing symposium (ipdps), 2012 ieee 26th international, 2012, pp. 484–495.
[27] Allen Hatcher and William Thurston, A presentation for the mapping class group of a closed orientable surface,

Topology 19 (1980), no. 3, 221–237.
[28] Yasuaki Hiraoka, Takenobu Nakamura, Akihiko Hirata, Emerson G Escolar, Kaname Matsue, and Yasumasa

Nishiura, Hierarchical structures of amorphous solids characterized by persistent homology, Proceedings of the
National Academy of Sciences 113 (2016), no. 26, 7035–7040.

[29] Ryan H Lewis and Afra Zomorodian, Multicore homology via mayer vietoris, arXiv preprint arXiv:1407.2275
(2014).

[30] David Lipsky, Primoz Skraba, and Mikael Vejdemo-Johansson, A spectral sequence for parallelized persistence,
arXiv preprint arXiv:1112.1245 (2011).

[31] PY Lum, G Singh, A Lehman, T Ishkanov, Mikael Vejdemo-Johansson, M Alagappan, J Carlsson, and G Carlsson,
Extracting insights from the shape of complex data using topology, Scientific reports 3 (2013), 1236.

[32] Dmitriy Morozov and Gunther Weber, Distributed merge trees, Acm sigplan notices, 2013, pp. 93–102.
[33] Dmitriy Morozov and Gunther H Weber, Distributed contour trees (2012).
[34] Daniel Müllner and Aravindakshan Babu, Python mapper: An open-source toolchain for data exploration, anal-

ysis, and visualization, URL http://math. stanford. edu/muellner/mapper (2013).
[35] Elizabeth Munch and Bei Wang, Convergence between categorical representations of reeb space and mapper, arXiv

preprint arXiv:1512.04108 (2015).
[36] James R Munkres, Elements of algebraic topology, Vol. 2, Addison-Wesley Menlo Park, 1984.
[37] Mattia Natali, Silvia Biasotti, Giuseppe Patanè, and Bianca Falcidieno, Graph-based representations of point

clouds, Graphical Models 73 (2011), no. 5, 151–164.
[38] Monica Nicolau, Arnold J Levine, and Gunnar Carlsson, Topology based data analysis identifies a subgroup of

breast cancers with a unique mutational profile and excellent survival, Proceedings of the National Academy of
Sciences 108 (2011), no. 17, 7265–7270.

[39] Nina Otter, Mason A Porter, Ulrike Tillmann, Peter Grindrod, and Heather A Harrington, A roadmap for the
computation of persistent homology, EPJ Data Science 6 (2017), no. 1, 17.

[40] Valerio Pascucci and Kree Cole-McLaughlin, Parallel computation of the topology of level sets, Algorithmica 38
(2004), no. 1, 249–268.

DISTRIBUTED MAPPER 14

[41] Vanessa Robins, Towards computing homology from finite approximations, Topology proceedings, 1999,
pp. 503–532.

[42] Alejandro Robles, Mustafa Hajij, and Paul Rosen, The shape of an image: A study of mapper on images, Accepted
to VISAPP 2018 (2018).

[43] Paul Rosen, Junyi Tu, and L Piegl, A hybrid solution to calculating augmented join trees of 2d scalar fields in
parallel, Cad conference and exhibition (accepted), 2017.

[44] Nithin Shivashankar, M Senthilnathan, and Vijay Natarajan, Parallel computation of 2d morse-smale complexes,
IEEE Transactions on Visualization and Computer Graphics 18 (2012), no. 10, 1757–1770.

[45] Gurjeet Singh, Facundo Mémoli, and Gunnar E Carlsson, Topological methods for the analysis of high dimensional
data sets and 3d object recognition., Spbg, 2007, pp. 91–100.

[46] Václav Snášel, Jana Nowaková, Fatos Xhafa, and Leonard Barolli, Geometrical and topological approaches to big
data, Future Generation Computer Systems 67 (2017), 286–296.

[47] Robert W Sumner and Jovan Popović, Deformation transfer for triangle meshes, ACM Transactions on Graphics
(TOG) 23 (2004), no. 3, 399–405.

[48] Yijun Xiao, Paul Siebert, and Naoufel Werghi, A discrete reeb graph approach for the segmentation of human
body scans, 3-d digital imaging and modeling, 2003. 3dim 2003. proceedings. fourth international conference on,
2003, pp. 378–385.

University of South Florida, Tampa, Florida
E-mail address: mhajij@usf.edu

Jazan University, Jazan City, Saudi Arabia
E-mail address: babumussmar@jazanu.edu.sa

University of South Florida, Tampa, Florida
E-mail address: prosen@usf.edu

	1. Introduction and Motivation
	2. Prior Work
	3. Preliminaries and Definitions
	3.1. Some Graph Theory Notions

	4. Distributed Computing of Topological Constructions
	4.1. Distributed Nerve Computation
	4.2. Distributed Mapper Computation

	5. The Design of the Algorithm
	5.1. The Sequential Mapper Algorithm
	5.2. The Main Algorithm
	5.3. Correctness of the Algorithm

	6. Performance of the Algorithm
	6.1. Experimentations

	7. Conclusion and Future Work
	References

