
Vol.:(0123456789)

Machine Learning (2023) 112:1433–1463
https://doi.org/10.1007/s10994-023-06329-6

1 3

An accelerated proximal algorithm for regularized
nonconvex and nonsmooth bi‑level optimization

Ziyi Chen1 · Bhavya Kailkhura2 · Yi Zhou1

Received: 12 October 2022 / Revised: 9 February 2023 / Accepted: 11 March 2023 /
Published online: 7 April 2023
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023

Abstract
Many important machine learning applications involve regularized nonconvex bi-level
optimization. However, the existing gradient-based bi-level optimization algorithms can-
not handle nonconvex or nonsmooth regularizers, and they suffer from a high computation
complexity in nonconvex bi-level optimization. In this work, we study a proximal gradient-
type algorithm that adopts the approximate implicit differentiation (AID) scheme for non-
convex bi-level optimization with possibly nonconvex and nonsmooth regularizers. In par-
ticular, the algorithm applies the Nesterov’s momentum to accelerate the computation of
the implicit gradient involved in AID. We provide a comprehensive analysis of the global
convergence properties of this algorithm through identifying its intrinsic potential function.
In particular, we formally establish the convergence of the model parameters to a critical
point of the bi-level problem, and obtain an improved computation complexity Õ(�3.5�−2)
over the state-of-the-art result. Moreover, we analyze the asymptotic convergence rates of
this algorithm under a class of local nonconvex geometries characterized by a Łojasiewicz-
type gradient inequality. Experiment on hyper-parameter optimization demonstrates the
effectiveness of our algorithm.

Keywords Bilevel optimization · Nesterov’s momentum · Nonconvex regularization ·
Proximal algorithm

Editor: Lijun Zhang.

 * Ziyi Chen
 u1276972@utah.edu

 Bhavya Kailkhura
 kailkhura1@llnl.gov

 Yi Zhou
 yi.zhou@utah.edu

1 Electrical and Computer Department, University of Utah, 50 Central Campus Dr 2110,
Salt Lake City 84112, UT, USA

2 Lawrence Livermore National Lab, 7000 East Avenue, Livermore 10587, CA, USA

http://orcid.org/0000-0002-5110-3400
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06329-6&domain=pdf

1434 Machine Learning (2023) 112:1433–1463

1 3

1 Introduction

Bi-level optimization has become an important and popular optimization framework that
covers a variety of emerging machine learning applications, e.g., meta-learning (Franc-
eschi et al., 2018; Bertinetto et la., 2018; Rajeswaran et al., 2019; Ji et al., 2020), hyper-
parameter optimization (Franceschi et al., 2018; Shaban et al., 2019; Feurer & Hutter,
2019), reinforcement learning (Konda and Tsitsiklis, 2000; Hong et al., 2020), etc. A
standard formulation of bi-level optimization takes the following form.

where the upper- and lower-level objective functions f and g are both jointly continuously
differentiable. To elaborate, bi-level optimization aims to minimize the upper-level com-
positional objective function f (x, y∗(x)) , in which y∗(x) is the minimizer of the lower-level
objective function g(x, y).

Solving the above bi-level optimization problem is highly non-trivial as the prob-
lem involves two nested minimization problems. In the existing literature, many algo-
rithms have been developed for bi-level optimization. In the early works, Hansen
et al. (1992); Shi et al. (2005); Moore (2010) reformulated the bi-level problem into
a single-level problem with constraints on the optimality conditions of the lower-level
problem, yet this reformulation involves a large number of constraints that are hard to
address in practice. More recently, gradient-based bi-level optimization algorithms have
been developed, which leverage either the approximate implicit differentiation (AID)
scheme (Domke, 2012; Pedregosa, 2016; Gould et al., 2016; Liao et al., 2018; Ghadimi
and Wang, 2018; Grazzi et al., 2020; Lorraine et al., 2020) or the iterative differen-
tiation (ITD) scheme (Domke, 2012; Maclaurin et al., 2015; Franceschi et al., 2017,
2018; Shaban et al., 2019; Grazzi et al., 2020) to estimate the gradient of the upper-
level function. In particular, the AID scheme is more popular due to its simplicity and
computation efficiency. Specifically, bi-level optimization algorithm with AID (referred
to as BiO-AID) has been analyzed for (strongly)-convex upper- and lower-level func-
tions (Liu et al., 2020), which do not cover bi-level problems in modern machine learn-
ing that usually involve nonconvex upper-level objective functions. On the other hand,
recent studies have analyzed the convergence of BiO-AID with nonconvex upper-level
function and strongly convex lower-level function, and established the convergence of a
certain type of gradient norm to zero (Ji et al., 2021; Ghadimi and Wang, 2018; Hong
et al., 2020).

However, the existing gradient-based nonconvex bi-level optimization algorithms
have limitations in several perspectives. First, most existing algorithms are not appli-
cable to bi-level problems that involve possibly nonsmooth and nonconvex regulariz-
ers in the upper-level function, while Huang and Huang (2021) involves only convex
regularizer. For example, in the application of data hyper-cleaning, one can improve the
learning performance by adding a nonsmooth and nonconvex regularizer to push the
weights of the clean samples towards 1 while push those of the contaminated samples
towards 0 (see Sect. 6 for more details). Second, the convergence guarantees of these
algorithms typically ensure a weak gradient norm convergence (except (Dagréou et al.,
2022) which requires strong global PŁ geometry assumption on both f (x, ⋅) and f (⋅, y)),
which does not necessarily imply the desired convergence of the model parameters. Fur-
thermore, these algorithms suffer from a high computation complexity in nonconvex

min
x∈ℝd

f (x, y∗(x)), where y∗(x) ∈ argmin
y∈ℝp

g(x, y),

1435Machine Learning (2023) 112:1433–1463

1 3

bi-level optimization. The overarching goal of this work is to develop an efficient and
convergent proximal-type algorithm for solving regularized nonconvex and nonsmooth
bi-level optimization problems and address the above important issues. We summarize
our contributions as follows.

1.1 Our contributions

We propose a proximal BiO-AIDm algorithm (see Algorithm 1) and study its convergence
properties. This algorithm is a proximal variant of the BiO-AID algorithm for solving the
following class of regularized nonsmooth and nonconvex bi-level optimization problems.

where the upper-level objective function f is nonconvex, the lower-level objective func-
tion g is strongly convex for any fixed x, and the regularizer h is possibly nonsmooth and
nonconvex. In particular, our algorithm applies the Nesterov’s momentum to accelerate the
computation of the implicit gradient involved in the AID scheme.

We first analyze the global (non-asymptotic) convergence properties of proximal BiO-
AIDm under standard Lipschitz and smoothness assumptions on the objective functions.
The key to our analysis is to show that proximal BiO-AID admits an intrinsic potential
function H(xk, yk) that takes the form

where y(T)(x, y�) is obtained by applying the Nesterov’s accelerated gradient descent to
minimize g(x, ⋅) with initial point y′ for T iterations. In particular, we prove that such a
potential function is monotonically decreasing along the optimization trajectory, i.e.,
H(xk+1, yk+1) < H(xk, yk) , which implies that proximal BiO-AIDm can be viewed as a
descent-type algorithm and is numerically stable. Based on this property, we formally
prove that every limit point of the model parameter trajectory {xk}k generated by proximal
BiO-AIDm is a critical point of the regularized bi-level problem. Furthermore, when the
regularizer is convex, we show that proximal BiO-AIDm requires a computation complex-
ity of Õ(�3.5�−2) (number of gradient, Hessian-vector product and proximal evaluations)
for achieving a critical point x that satisfies ‖G(x)‖ ≤ � , where � denotes the problem con-
dition number and G(x) denotes the proximal gradient mapping. As shown in Table 1, this
is the first global convergence and complexity result of proximal BiO-AIDm in regularized
nonsmooth and nonconvex bi-level optimization, and it improves the state-of-the-art com-
plexity of BiO-AID (for smooth nonconvex bi-level optimization) by a factor of Õ(

√
�).

Besides investigating the global convergence properties, we further establish the asymp-
totic function value convergence rates of proximal BiO-AIDm under a local Łojasiewicz-
type nonconvex geometry, which covers a broad spectrum of local nonconvex geometries.
Specifically, we characterize the asymptotic convergence rates of proximal BiO-AIDm
in the full spectrum of the Łojasiewicz geometry parameter � . We prove that as the local
geometry becomes sharper (i.e., with a larger �), the asymptotic convergence rate of proxi-
mal BiO-AIDm boosts from sublinear convergence to superlinear convergence. The proof
of these local asymptotic convergence rates requires proving two properties that have not
been proved in the existing literature to our knowledge. The major property is that the

min
x∈ℝd

f (x, y∗(x)) + h(x), where y∗(x) = argmin
y∈ℝp

g(x, y),

H(x, y�) ∶= Φ(x) + h(x) +
7

8
‖y(T)(x, y�) − y∗(x)‖2,

1436 Machine Learning (2023) 112:1433–1463

1 3

aforementioned potential function H is decreasing. Another property is the Lipschitz prop-
erty of y(T) , which is challenging to prove due to momentum acceleration.

1.2 Related work

Bi-level Optimization Algorithms Bi-level optimization has been studied for dec-
ades (Bracken & McGill, 1973), and various types of bi-level algorithms have been pro-
posed, including but not limited to single-level penalized methods (Shi et al., 2005;
Moore, 2010), and gradient-based methods via AID or ITD-based hypergradient estima-
tion (Domke, 2012; Pedregosa, 2016; Franceschi et al., 2018; Ghadimi and Wang, 2018;
Hong et al., 2020; Liu et al., 2020; Li et al., 2020; Grazzi et al., 2020; Ji et al., 2021; Lor-
raine et al., 2020; Ji and Liang, 2021). Huang and Huang (2021) proposed a Bregman dis-
tance-based method. In particular, (Ghadimi and Wang, 2018; Hong et al., 2020; Ji et al.,
2021; Yang et al., 2021; Chen et al., 2021a; Guo and Yang, 2021; Huang and Huang, 2021)
characterized the complexity analysis for their proposed methods for bi-level optimization
problem under different types of loss geometries. Ji and Liang (2021) studied the lower
complexity bounds for bi-level optimization under (strongly) convex geometry and pro-
posed a nearly-optimal accelerated algorithm. All the existing analysis of nonconvex bi-
level optimization algorithms either focuses on the gradient norm convergence or requires
strong global PŁ geometry assumption on both f (x, ⋅) and f (⋅, y) (Dagréou et al., 2022). In
this paper, we formally establish the parameter and function value convergence of proximal
BiO-AID in regularized nonconvex and nonsmooth bi-level optimization.

Applications of Bi-level Optimization Bi-level optimization has been widely applied
to meta-learning (Snell et al., 2017; Franceschi et al., 2018; Rajeswaran et al., 2019;
Zügner and Günnemann, 2019; Ji et al., 2020; Ji, 2021), hyperparameter optimiza-
tion (Franceschi et al., 2017; Shaban et al., 2019), reinforcement learning (Konda and
Tsitsiklis, 2000; Hong et al., 2020), and data poisoning (Mehra et al., 2020). For exam-
ple, Snell et al. (2017) reformulated the meta-learning objective function under a shared
embedding model into a bi-level optimization problem. Rajeswaran et al. (2019) proposed
a bi-level optimizer named iMAML as an efficient variant of model-agnostic meta-learning
(MAML) (Finn et al., 2017), and analyzed the convergence of iMAML under the strongly
convex inner-loop loss. Fallah et al. (2020) characterized the convergence of MAML and

Table 1 List of existing complexity results for bi-level algorithms. (✓ in the columns “non-smooth” and
“momentum accelerated” respectively means the objective function is non-smooth and the algorithm has
momentum acceleration, and × means the opposite)

References & Algorithms Upper level Lower level Non- Momentum Computation
function function smooth accelerated complexity

Ghadimi and Wang (2018) Nonconvex Strongly × × O(�4�−2)

Bilevel Approximation convex
Ji et al. (2021) Nonconvex Strongly × × O(�4�−2)

Bio-AID convex
Ji et al. (2021) Nonconvex Strongly × × Õ(�4�−2)

Bio-ITD convex
This work Nonconvex Strongly ✓ ✓ Õ(�3.5�−2)

Proximal Bio-AIDm convex

1437Machine Learning (2023) 112:1433–1463

1 3

first-order MAML under nonconvex loss functions. Ji et al. (2020) studied the convergence
behaviors of almost no inner loop (ANIL) (Raghu et al., 2019) under different inner-loop
loss geometries of the MAML objective function. Recently Mehra et al. (2020) devised bi-
level optimization based data poisoning attacks on certifiably robust classifiers.

Nonconvex Kurdyka-Łojasiewicz Geometry A broad class of regular functions
has been shown to satisfy the local nonconvex KŁ geometry (Bolte et al., 2007), which
affects the asymptotic convergence rates of gradient-based optimization algorithms. The
KŁ geometry has been exploited to study the convergence of various first-order algorithms
for solving minimization problems, including gradient descent (Attouch & Bolte, 2009),
alternating gradient descent (Bolte et al., 2014), distributed gradient descent (Zhou et al.,
2016; Zhou et al., 2018), accelerated gradient descent (Li et al., 2017). It has also been
exploited to study the convergence of second-order algorithms such as Newton’s method
(Noll and Rondepierre, 2013; Frankel et al., 2015) and cubic regularization method (Zhou
et al., 2018).

2 Problem formulation and preliminaries

In this paper, we consider the following regularized nonconvex bi-level optimization
problem:

 where both the upper-level objective function f and the lower-level objective function g are
jointly continuously differentiable, and the regularizer h is possibly nonsmooth and non-
convex. We note that adding a regularizer to the bi-level optimization problem allows us to
impose desired structures on the solution, and this is important for many machine learning
applications. For example, in the application of data hyper-cleaning (see the experiment
in Sect. 6 for more details), one aims to improve the learning performance by adding a
regularizer to push the weights of the clean samples towards 1 while push the weights of
the contaminated samples towards 0. Such a regularizer often takes a nonsmooth and non-
convex form.

To simplify the notation, throughout the paper we define the function Φ(x) ∶= f (x, y∗(x)) .
We also adopt the following standard assumptions regarding the regularized bi-level opti-
mization problem (P).

Assumption 1 The functions in the regularized bi-level optimization problem (P) satisfy:

1. Function g(x, ⋅) is �-strongly convex for all x and function Φ(x) = f (x, y∗(x)) is noncon-
vex;

2. Function h is proper and lower-semicontinuous (possibly nonsmooth and nonconvex);
3. Function (Φ + h)(x) is bounded below and has bounded sub-level sets.

In Assumption 1, the regularizer h can be any nonsmooth and nonconvex function so
long as it is a closed function. This covers most of the regularizers that we use in practice,
including any proper convex functions (can be nonsmooth, e.g., �1 norm), �p norm with
p > 0 (can be nonconvex and nonsmooth), �0-norm regularizer h(x) = �‖x‖0 (𝜆 > 0 and
‖x‖0 denotes the number of nonzero entries of vector x), low rank regularizer (Yao et al.,

1438 Machine Learning (2023) 112:1433–1463

1 3

2015), and the regularizer −� min(|�i|, a) used for our experiment (see Sect. 6 for detail). In
addition to Assumption 1, we also impose the following Lipschitz continuity and smooth-
ness conditions on the objective functions, which are widely considered in the existing lit-
erature (Ghadimi and Wang, 2018; Ji et al., 2020). In the following assumption, we denote
z ∶= (x, y).

Assumption 2 The functions f(z) and g(z) in the bi-level problem (P) satisfy:

1. Function f(z) is M-Lipschitz. Gradients ∇f (z) and ∇g(z) are Lf-Lipschitz and Lg-Lipschitz
respectively.

2. Jacobian ∇x∇yg(z) and Hessian ∇2
y
g(z) are �-Lipschitz and �-Lipschitz, respectively.

Assumptions 1 and 2 imply that the mapping y∗(x) is �g-Lipschitz, where 𝜅g = Lg∕𝜇 > 1
denotes the condition number of the lower level function g. Similarly, we denote �f = Lf∕�
for the upper level function f (Lin et al., 2020; Chen et al., 2021b), Note that �f ≥ 1 does
not necessarily hold and thus �f is not a condition number.

Lastly, note that the problem (P) is rewritten as the regularized minimization problem
minx∈ℝd Φ(x) + h(x) , which can be nonsmooth and nonconvex. Therefore, our optimiza-
tion goal is to find a critical point x∗ of the function Φ(x) + h(x) that satisfies the opti-
mality condition 0 ∈ �(Φ + h)(x∗) . Here, � denotes the following generalized notion of
subdifferential.

Definition 1 (Subdifferential and critical point, (Rockafellar & Wets, 2009)) The Frechét
subdifferential �̂F of a function F at x ∈ domF is the set of u ∈ ℝ

d defined as

and the limiting subdifferential �F at x ∈ dom F is the graphical closure of �̂F defined as:

The set of critical points of F is defined as {x ∶ 0 ∈ �F(x)}.

3 Proximal bi‑level optimization with AID

In this section, we introduce the proximal bi-level optimization algorithm with momen-
tum accelerated approximate implicit differentiation (referred to as proximal BiO-AIDm).
Recall that Φ(x) ∶= f (x, y∗(x)) . The main challenge for solving the regularized bi-level
optimization problem (P) is the computation of the gradient ∇Φ(x) , which involves higher-
order derivatives of the lower-level function. Fortunately, this gradient can be effectively
estimated using the popular AID scheme as we elaborate below.

First, it is shown in (Ji et al., 2021) that ∇Φ(x) takes the following analytical form.

�𝜕F(x) =
�
u ∶ lim inf

z≠x,z→x

F(z) − F(x) − u⊤(z − x)

‖z − x‖ ≥ 0
�
,

�F(x)=
{
u∶ ∃(xk,F(xk))→ (x,F(x)), �̂F(xk)∋uk→u

}
.

∇Φ(xk) = ∇xf (xk, y
∗(xk)) − ∇x∇yg(xk, y

∗(xk))v
∗

k
,

1439Machine Learning (2023) 112:1433–1463

1 3

where v∗
k
 corresponds to the solution of the linear system ∇2

y
g(xk, y

∗(xk))v = ∇yf (xk, y
∗(xk)) .

In particular, y∗(xk) is the minimizer of the strongly convex function g(xk, ⋅) , and it can be
effectively approximated by running T Nesterov’s accelerated gradient descent updates on
g(xk, ⋅) and obtaining the output yk+1 as the approximation. With this approximated mini-
mizer, the AID scheme estimates the gradient ∇Φ(xk) as follows:

where v̂∗
k
 is the solution of the approximated linear system ∇2

y
g(xk, yk+1)v = ∇yf (xk, yk+1) ,

which can be efficiently solved by standard conjugate-gradient solvers. For simplicity of
the discussion, we assume that v̂∗

k
 is exactly computed in the main body of the paper. In

Appendix F, we discuss how to obtain an inexact solution to this linear system via con-
jugate-gradient solver, and provide a comprehensive analysis of the impact of such inex-
actness on the overall computation complexity of the proposed algorithm. Moreover, the
Jacobian-vector product involved in (1) can be efficiently computed using the existing auto-
matic differentiation packages (Domke, 2012; Grazzi et al., 2020).

Based on the estimated gradient ∇̂Φ(xk, yk+1) , we can then apply the standard proximal
gradient algorithm (a.k.a. forward-backward splitting) (Lions & Mercier, 1979) to solve the
regularized optimization problem (P). This algorithm is referred to as proximal BiO-AIDm
and is summarized in Algorithm 1. Specifically, in each outer loop k, we first run T accel-
erated gradient descent steps with Nesterov’s momentum with initial point yk to minimize
g(xk, ⋅) and find an approximated minimizer yk+1 = y(T)(xk, yk) ≈ y∗(xk) , where we use the
notation y(T)(xk, yk) to emphasize the dependence on xk and yk . Then, this approximated
minimizer is utilized by the AID scheme to estimate ∇Φ(xk) . Finally, we apply the proxi-
mal gradient algorithm to minimize the regularized objective function Φ(x) + h(x) . Here,
the proximal mapping of any function h at v is defined as

(1)(AID): ∇̂Φ(xk) = ∇xf (xk, yk+1) − ∇x∇yg(xk, yk+1)̂v
∗

k
,

proxh(v) ∶= argmin
u∈ℝd

�
h(u) +

1

2
‖u − v‖2

�
.

1440 Machine Learning (2023) 112:1433–1463

1 3

Under Assumptions 1 and 2, the following lemma characterizes the smoothness of Φ
and the estimation error ‖∇̂Φ(xk) − ∇Φ(xk)‖ of AID scheme.

Lemma 1 Let Assumptions 1.1 and 2 hold. Then, function Φ is differentiable and the gradi-
ent ∇Φ is LΦ-Lipschitz with LΦ = Lf +

2Lf Lg+�M
2

�
+

�LgM+Lf L
2
g
+�MLg

�2
+

�L2
g
M

�3
 (Lemma 2 of Ji

(2021)). Moreover, the gradient estimate obtained by the AID scheme satisfies (Lemma
2.2a of Ghadimi and Wang (2018))

where Γ = 4L2
f
+

4�2 M2

�2
+

4M2�2�2
g

�2
+ 4L2

f
�2
g
.

4 Global convergence and complexity of proximal BiO‑AID

In this section, we study the global convergence properties of proximal BiO-AIDm for gen-
eral regularized nonconvex and nonsmooth bi-level optimization.

First, note that the main update of proximal BiO-AIDm in Algorithm 1 follows from
the proximal gradient algorithm, which has been proven to generate a convergent optimi-
zation trajectory to a critical point in general nonconvex optimization (Attouch & Bolte,
2009). Hence, one may expect that proximal BiO-AIDm should share the same conver-
gence guarantee. However, this is not obvious as the proof of convergence of the proxi-
mal gradient algorithm heavily relies on the fact that it is a descent-type algorithm, i.e.,
the objective function is strictly decreasing over the iterations. As a comparison, the main
update of proximal BiO-AIDm applies an approximated gradient ∇̂Φ(xk) , which is cor-
related with both the upper- and lower-level objective functions through the AID scheme
and destroys the descent property of the proximal gradient update, and hence conceals the
proof of convergence.

The following key result proves that proximal BiO-AIDm does admit an intrinsic poten-
tial function that is monotonically decreasing over the iterations. Therefore, it is indeed a
descent-type algorithm, which is the first step toward establishing the global convergence.

Proposition 1 Let Assumptions 1 and 2 hold and define the potential function

Choose hyperparameters � =
1

Lg
 , � ≤ 1

2
(LΦ + Γ + �2

g
)−1 , � =

√
�g−1√
�g+1

 and T ≥ ln(8(1+�g))

ln((1−�−0.5
g

)−1)
 .

Then, the parameter sequence {xk}k generated by Algorithm 1 satisfies, for all k = 1, 2, ...,

To elaborate, the potential function H consists of two components: the upper-level
objective function Φ(x) + h(x) and a regularization term ‖y(T)(x, y�) − y∗(x)‖2 that tracks

‖∇̂Φ(xk) − ∇Φ(xk)‖2 ≤ Γ‖yk+1 − y∗(xk)‖2.

(2)H(x, y�) ∶= Φ(x) + h(x) +
7

8
‖y(T)(x, y�) − y∗(x)‖2.

H(xk+1, yk+1) ≤H(xk, yk) −
1

4�
‖xk+1 − xk‖2

−
1

8

�
‖yk+1 − y∗(xk)‖2 + ‖yk+2 − y∗(xk+1)‖2

�
.

1441Machine Learning (2023) 112:1433–1463

1 3

the optimality gap of the lower-level optimization. Hence, the potential function H fully
characterizes the optimization goal of the entire bi-level optimization. Intuitively, if
{xk}k converges to a certain critical point x∗ and y(T)(xk, yk) converges to y∗(x∗) , then it
can be seen that H(xk, yk) will converge to the local optimum (Φ + h)(x∗) . Finding such a
function is not straightforward, since the coefficient 7

8
 in the potential function (2) has to

be elaborately selected to guarantee the monotonic decreasing property. (See the proof
of Proposition 1 in Appendix A for the detail of coefficient selection.)

Based on the above characterization of the potential function, we obtain the follow-
ing global convergence result of proximal BiO-AIDm in general regularized nonconvex
optimization.

Theorem 2 Under the same conditions as those of Proposition 1, the parameter sequence
{xk, yk}k generated by Algorithm 1 satisfies the following properties.

1. ‖xk+1 − xk‖
k
→ 0 , ‖yk+1 − y∗(xk)‖

k
→ 0;

2. The function value sequence {(Φ + h)(xk)}k converges to a finite limit H∗ > −∞;
3. The sequence {(xk, yk)}k is bounded and has a compact set of limit points. Moreover,

(Φ + h)(x∗) ≡ H∗ for any limit point x∗ of {xk}k;
4. Every limit point x∗ of {xk}k is a critical point of the upper-level function (Φ + h)(x).

Theorem 2 provides a comprehensive characterization of the global convergence
properties of proximal BiO-AIDm in regularized nonconvex and nonsmooth bi-level
optimization. Specifically, item 1 shows that the parameter sequence {xk}k is asymptoti-
cally stable, and yk+1 asymptotically converges to the corresponding minimizer y∗(xk) of
the lower-level objective function g(xk, ⋅) . In particular, in the unregularized case (i.e.,
h = 0), this result reduces to the existing understanding that the gradient norm ‖∇Φ(x)‖
converges to zero (Ji et al., 2021; Ghadimi and Wang, 2018; Hong et al., 2020), which
does not imply the convergence of the parameter sequence. Item 2 shows that the func-
tion value sequence converges to a finite limit, which is also the limit of the potential
function value sequence {H(xk, yk)}k . Moreover, items 3 and 4 show that the parameter
sequence {xk}k converges to only critical points of the objective function, and these limit
points are in a flat region where the corresponding function value is the constant H∗ .
Note that due to the nonconvexity of Φ , H∗ is not necessarily the optimal value, i.e., it
is possible that H∗ > minx∈ℝd (Φ + h)(x) . To summarize, Theorem 2 formally proves that
proximal BiO-AIDm will eventually converge to critical points in nonsmooth and non-
convex bi-level optimization.

In addition to the above global convergence result, Proposition 1 can be further lever-
aged to characterize the computation complexity of proximal BiO-AIDm for finding a criti-
cal point in regularized nonconvex bi-level optimization. Specifically, when the regularizer
h is convex, we can define the following proximal gradient mapping associated with the
objective function Φ(x) + h(x).

The proximal gradient mapping is a standard metric for evaluating the optimality of reg-
ularized nonconvex optimization problems (Nesterov, 2013). It can be shown that x is a

(3)G(x) =
1

�

(
x − prox�h

(
x − �∇Φ(x)

))
.

1442 Machine Learning (2023) 112:1433–1463

1 3

critical point of Φ(x) + h(x) if and only if G(x) = 0 , and it reduces to the normal gradient in
the unregularized case. Hence, we define the convergence criterion as finding a near-criti-
cal point x that satisfies ‖G(x)‖ ≤ � for some pre-determined accuracy 𝜖 > 0 . We obtain the
following global convergence rate and complexity of proximal BiO-AIDm.

Corollary 1 Suppose h is convex and the conditions of Proposition 1 hold. Then, the
sequence {xk}k generated by Algorithm 1 satisfies the following convergence rate.

Moreover, to achieve min0≤k≤K ‖G(xk)‖ ≤ � , we run the algorithm with
K = 32�−2(LΦ + Γ + �2

g
)
(
H(x0) − infx(Φ + h)(x)

) outer iterations and T =
ln(8(1+�g))

ln((1−�−0.5
g

)−1)
 inner itera-

tions, and the overall computation complexity is KT =
32 ln(8(1+�g))

�2 ln((1−�−0.5
g

)−1)
(LΦ + Γ + �2

g
)

(
H(x

0
) − infx(Φ + h)(x)

).

The dependence of the above computation complexity on � and 𝜅 ∶= max(𝜅f , 𝜅g) > 1 is
no larger than O(�3.5(ln �)�−2) . This strictly improves the computation complexity
O(�4�−2) of BiO-AID that only applies to smooth nonconvex bi-level optimization (Ji
et al., 2021). To elaborate the reason, in our algorithm, the T Nesterov’s accelerated gradi-
ent descent steps applied to miny g(xt, y) achieve the convergence rate
‖yt+1 − y∗(xt)‖ ≤ (1 + �g)(1 − �−0.5

g
)T‖yt − y∗(xt)‖ , which is faster than

‖yt+1 − y∗(xt)‖ ≤ (1 − �−1
g

)T‖yt − y∗(xt)‖ of standard gradient descent since 1 − 𝜅−0.5
g

< 1 − 𝜅−1
g

 .
Therefore, to ensure that ‖yt+1 − y∗(xt)‖ ≤ 1

4
‖yt − y∗(xt)‖ , Nesterov’s accelerated gradient

descent requires T =
ln(8(1+�g))

ln((1−�−0.5
g

)−1)
= O(

√
�g ln �g) steps, which is much less than T = O(�g)

required by standard gradient descent. On the other hand, the number of outer iterations K
is the same for both algorithms. Therefore, Nesterov’s accelerated gradient descent yields
smaller computation complexity KT than that of standard gradient descent. In addition, (Ji
et al., 2021) only uses smooth upper-level function f while we have non-smooth regularizer
h which requires to analyze nonconvex proximal gradient mapping (3). To the best of our
knowledge, this is the first convergence rate and complexity result of momentum acceler-
ated algorithm for solving regularized nonsmooth and nonconvex bi-level optimization
problems. We note that another momentum accelerated bi-level optimization algorithm has
been studied in (Ji and Liang, 2021), which only applies to unregularized (strongly) convex
bi-level optimization problems.

5 Convergence rates under local nonconvex geometry

In the previous section, we have proved that the optimization trajectory generated by proxi-
mal BiO-AIDm approaches a compact set of critical points. Hence, we are further moti-
vated to exploit the local function geometry around the critical points to study its local
(asymptotic) convergence guarantees, which is the focus of this section. In particular, we
consider a broad class of Łojasiewicz-type geometry of nonconvex functions.

(4)min
0≤k≤K ‖G(xk)‖ ≤

�
32

K�

�
H(x0) − inf

x
(Φ + h)(x)

�
.

1443Machine Learning (2023) 112:1433–1463

1 3

5.1 Local Kurdyka–Łojasiewicz geometry

General nonconvex functions typically do not have a global geometry. However, they may
have certain local geometry around the critical points that determines the local conver-
gence rate of optimization algorithms. In particular, the Kurdyka-Łojasiewicz (KŁ) geom-
etry characterizes a broad spectrum of local geometries of nonconvex functions (Bolte
et al., 2007, 2014), and it generalizes various conventional global geometries such as the
strong convexity and Polyak-Łojasiewicz geometry. Next, we formally introduce the KŁ
geometry.

Definition 2 (KŁ geometry, Bolte et al. (2014)) A proper and lower semi-continu-
ous function F is said to have the KŁ geometry if for every compact set Ω ⊂ domF on
which F takes a constant value FΩ ∈ ℝ , there exist 𝜀, 𝜆 > 0 such that for all x̄ ∈ Ω and all
x ∈ {z ∈ ℝ

m ∶ distΩ(z) < 𝜀,FΩ < F(z) < FΩ + 𝜆} , the following condition holds:

where �′ is the derivative of � ∶ [0, �) → ℝ+ that takes the form �(t) = c

�
t� for certain con-

stant c > 0 and KŁ parameter � ∈ (0, 1] , and dist�F(x)(0) = minu∈�F(x) ‖u − 0‖ denotes the
point-to-set distance.

As an intuitive explanation, when function F is differentiable, the KŁ inequality in (5)
can be rewritten as F(x) − FΩ ≤ O(‖∇F(x)‖ 1

1−�) , which can be viewed as a type of local
gradient dominance condition and generalizes the Polyak-Łojasiewicz (P{\L}) condition
(with parameter � =

1

2
) (Łojasiewicz, 1963; Karimi et al., 2016). In the existing literature,

a large class of functions has been shown to have the local KŁ geometry, e.g., sub-analytic
functions, logarithm and exponential functions and semi-algebraic functions (Bolte et al.,
2014). Moreover, the KŁ geometry has been exploited to establish the convergence of
many gradient-based algorithms in nonconvex optimization, e.g., gradient descent (Attouch
& Bolte, 2009; Li et al., 2017), accelerated gradient method (Zhou et al., 2020), alternating
minimization (Bolte et al., 2014) and distributed gradient methods (Zhou et al., 2016).

5.2 Convergence rates of proximal BiO‑AIDm under KŁ geometry

In this subsection, we obtain the following asymptotic function value convergence rates of
the proximal BiO-AIDm algorithm under different parameter ranges of the KŁ geometry.
Throughout, we define k0 ∈ ℕ

+ to be a sufficiently large integer.

Theorem 3 Let Assumptions 1 and 2 hold and and assume that the potential function H
defined in (2) has KŁ geometry. Then, under the same choices of hyper-parameters as
those of Proposition 1, the potential function value sequence {H(xk, yk)}k converges to its
limit H∗ (see its definition in Theorem 2) at the following rates.

1. If KŁ geometry holds with � ∈
(
1

2
, 1
)
 , then H(xk, yk) ↓ H∗ super-linearly as

(5)�
�
(
F(x) − FΩ

)
⋅ dist�F(x)(0) ≥ 1,

1444 Machine Learning (2023) 112:1433–1463

1 3

2. If KŁ geometry holds with � =
1

2
 , then H(xk, yk) ↓ H∗ linearly as (for some constant

C > 0)

3. If KŁ geometry holds with � ∈
(
0,

1

2

)
 , then H(xk, yk) ↓ H∗ sub-linearly as

Intuitively, a larger KŁ parameter � implies that the local geometry of the potential func-
tion H is sharper, which implies an orderwise faster convergence rate as shown in Theo-
rem 3. In particular, when the KŁ geometry holds with � =

1

2
 , the proximal BiO-AIDm

algorithm converges at a linear rate, which matches the convergence rate of bi-level opti-
mization under the stronger geometry that both the upper and lower-level objective func-
tions are strongly convex (Ghadimi and Wang, 2018). To the best of our knowledge, the
above result provides the first function value converge rate analysis of proximal BiO-
AIDm in the full spectrum of the nonconvex local KŁ geometry. The proof of Theorem 3
involves two novel techniques. The first novel technique is to establish the monotoni-
cally decreasing potential function H(x, y�) in Proposition 1. This monotonic decreasing
property guarantees that the sequence {(xk, yk)}k generated by Algorithm 1 will enter the
neighborhood of critical point (x∗, y∗(x∗)) where the KŁ property of H holds, which is
essential to prove the function value convergence rates in Theorem 3. Another technical
novelty is to prove the Lipschitz property of the mapping y(T)(x, y) in Lemma 2, which
is the key to establish the asymptotic convergence rates in Theorem 3. To the best of our
knowledge, this Lipschitz property has not been established in the existing literature for
the mapping defined by Nesterov’s accelerated gradient descent steps, and it is challenging
to prove due to momentum acceleration. To address this challenge, we recursively write
y(t) as y(t)(x, y) = (1 + �)Gx(y

(t−1)(x, y)) − �Gx(y
(t−2)(x, y)) , where Gx(y) ∶= y − �∇yg(x, y) is

the gradient descent mapping. We then leverage the Lipschitz property of Gx (Hardt et al.,
2016) to establish the Lipschitz property of y(t) via induction on t.

6 Experiment

We apply our bi-level optimization algorithm to solve a regularized data cleaning problem
(Shaban et al., 2019) with the MNIST dataset (LeCun et al., 1998) and a linear classifica-
tion model. We generate a training dataset Dtr with 20k samples, a validation dataset Dval
with 20k samples, and a test dataset with 10k samples. In particular, we corrupt the train-
ing data by randomizing a proportion p ∈ (0, 1) of their labels, and the goal of this appli-
cation is to identify and avoid using these corrupted training samples. The corresponding
bi-level problem is written as follows.

(6)H(xk, yk) − H∗ ≤ O

(
−

(
1

2(1 − �)

)k−k0
)
, ∀k ≥ k0;

(7)H(xk, yk) − H∗ ≤ O
(
(1 + C)−(k−k0)

)
, ∀k ≥ k0;

(8)H(xk, yk) − H∗ ≤ O
(
(k − k0)

−
1

1−2�

)
, ∀k ≥ k0,

1445Machine Learning (2023) 112:1433–1463

1 3

where xi, yi denote the data and label of the i-th sample, respectively, �(⋅) denotes the sig-
moid function, L is the cross-entropy loss, and 𝜌, 𝛾 > 0 are regularization hyperparameters.
The regularizer �‖w‖2 makes the lower-level objective function strongly convex. In par-
ticular, we add the nonconvex and nonsmooth regularizer −� min(|�i|, a) to the upper-level
objective function. (See Appendix G for the analytical solution to its proximal mapping)
Intuitively, it encourages |�i| to approach the large positive constant a so that the training
sample coefficient �(�i) is close to either 0 or 1 for corrupted and clean training samples,
respectively. In this experiment we set a = 20 . Therefore, such a regularized bi-level data
cleaning problem belongs to the problem class considered in this paper.

We compare the performance of our proximal BiO-AIDm with several bi-level opti-
mization algorithms, including proximal BiO-AID (without accelerated AID), BiO-AID
(without accelerated AID) and BiO-AIDm (with accelerated-AID). In particular, for BiO-
AID and BiO-AIDm, we apply them to solve the unregularized data cleaning problem (i.e.,
� = 0). This serves as a baseline that helps understand the impact of regularization on the
test performance. In addition, we also implement all these algorithms by replacing the AID
scheme with the ITD scheme to demonstrate their generality.

Hyperparameter setup We consider choices of corruption rates p = 0.1, 0.2, 0.4 , reg-
ularization parameters �

20000
= 0, 0.001, 0.1, 100 and � = 10−3 . We run each algorithm for

K = 50 outer iterations with stepsize � = 0.5 and T = 5 inner gradient steps with stepsize
� = 0.1 . For the algorithms with momentum accelerated AID/ITD, we set the momentum
parameter � = 1.0.

(9)

min
𝜆

1

�Dval�
�

(xi,yi)∈Dval

L
�
w∗(𝜆)⊤xi, yi

�
−

𝛾

�Dtr�
�

(xi,yi)∈Dtr

min(�𝜆i�, a),

where w∗(𝜆) = argmin
w

1

�Dtr�
�

(xi ,yi)∈Dtr

𝜎(𝜆i)L
�
w⊤xi, yi

�
+ 𝜌‖w‖2,

Fig. 1 Comparison of bi-level optimization algorithms under data corruption rate p = 0.1 (top row),
p = 0.2 (middle row) and p = 0.4 (bottom row). The proximal algorithms in the right 2 columns correspond
to � = 5 . The y-axis corresponds to the upper-level objective function value, and the x-axis corresponds to
the overall computation complexity (number of inner gradient descent steps)

1446 Machine Learning (2023) 112:1433–1463

1 3

6.1 Optimization performance

We first investigate the effect of momentum acceleration on the optimization performance.
In Fig. 1, we plot the upper-level objective function value versus the computational com-
plexity for different bi-level algorithms under �

20000
= 0.001 and different data corruption

rates. In these figures, we separately compare the non-proximal algorithms and the proxi-
mal algorithms, as their upper-level objective functions are different (non-proximal algo-
rithms are applied to solve the unregularized bi-level problem). It can be seen that all the
bi-level optimization algorithms with momentum accelerated AID/ITD schemes consist-
ently converge faster than their unaccelerated counterparts. The reason is that the momen-
tum scheme accelerates the convergence of the inner gradient descent steps, which yields a
more accurate implicit gradient and thus accelerates the convergence of the outer iterations.
In addition, all the curves decrease almost in straight lines, which match the polynomial

Table 2 Comparison of test accuracy (test loss). (Regularizer coefficient �

20000
= 0 corresponds to four non-

proximal algorithms including Bio-AID(m) and Bio-ITD(m), and �

20000
= 0.001, 0.1, 100 correspond to the

proximal variants of the four algorithms. The best test accuracies and test losses of each corruption rate p
are bolded)

Corruption Regularizer (Prox) (Prox) (Prox) (Prox)
rate coefficient Bio-AID Bio-AIDm Bio-ITD Bio-ITDm

p = 0.1
�

20000
= 0 71.00% 73.80% 71.10% 73.80%

(1.4934) (1.1090) (1.4971) (1.1102)
�

20000
= 0.001 71.00% 73.90% 71.30% 73.90%

(1.4896) (1.1072) (1.4922) (1.1056)
�

20000
= 0.1 72.60% 73.20% 75.20% 78.40%

(1.3041) (1.0435) (1.2814) (0.9120)
�

20000
= 100 71.20% 74.00% 71.20% 74.00%

(1.4850) (1.1029) (1.4850) (1.1029)
p = 0.2

�

20000
= 0 61.40% 63.80% 61.50% 63.80%

(1.7959) (1.3520) (1.8001) (1.3534)
�

20000
= 0.001 61.40% 63.70% 61.70% 64.10%

(1.7916) (1.3502) (1.7919) (1.3457)
�

20000
= 0.1 63.40% 64.10% 68.60% 73.80%

(1.5979) (1.2949) (1.4558) (1.0270)
�

20000
= 100 61.50% 63.70% 61.50% 63.70%

(1.7870) (1.3446) (1.7870) (1.3446)
p = 0.4

�

20000
= 0 47.50% 49.20% 47.50% 49.10%

(2.4652) (1.8713) (2.4715) (1.8739)
�

20000
= 0.001 47.50% 49.00% 47.60% 49.50%

(2.4603) (1.8691) (2.4587) (1.8622)
�

20000
= 0.1 48.20% 49.50% 55.90% 61.80%

(2.2292) (1.9759) (1.9255) (1.3707)
�

20000
= 100 47.40% 48.40% 47.40% 48.40%

(2.4549) (2.1566) (2.4549) (2.1566)

1447Machine Learning (2023) 112:1433–1463

1 3

dependence of our computational complexity O(�3.5(ln �)�−2) on � (see Corollary 1), as we
plot both axes on log-scale.

6.2 Test performance

To understand the impact of momentum and the nonconvex regularization on the test per-
formance of the model, we report the test accuracy and test loss of the models trained
by all the algorithms in Table 2. It can be seen that the bi-level optimization algorithms
with momentum accelerated AID/ITD (columns 2 & 4 of Table 2) achieve significantly
better test performance than their unaccelerated counterparts (columns 1 & 3 of Table 2).
This demonstrates the advantage of introducing momentum to accelerate the AID/ITD
schemes. Furthermore, we observe that the test loss decreases and then increases as the
regularizer coefficient � increases. Therefore, adding such a regularizer with proper coef-
ficient � improves test performance via distinguishing the sample coefficients �(�i) between
corrupted and clean training samples. In particular, proximal BiO-ITDm with �

20000
= 0.1

achieves the best test performance within each corruption rate p, which again demonstrates
advantage of the regularizer and momentum acceleration as bolded in Table 2. Lastly, a
larger corruption rate p leads to a lower test performance, which is reasonable.

7 Conclusion

In this paper, we provided a comprehensive analysis of the proximal BiO-AIDm algorithm
with momentum acceleration for solving regularized nonconvex and nonsmooth bi-level
optimization problems. Our key finding is that this algorithm admits an intrinsic mono-
tonically decreasing potential function, which fully tracks the bi-level optimization pro-
gress. Based on this result, we established the first global convergence rate of proximal
BiO-AIDm to a critical point in regularized nonconvex optimization, which is faster than
that of BiO-AID. We also characterized the asymptotic convergence behavior and rates of
the algorithm under the local KŁ geometry. We anticipate that this new analysis framework
can be extended to study the convergence of other bi-level optimization algorithms, includ-
ing stochastic bi-level optimization. In particular, it would be interesting to explore how
bi-level optimization algorithm design affects the form of the potential function and leads
to different convergence guarantees and rates in nonconvex bi-level optimization.

Appendix A: Proof of proposition 1

Proposition 1 Let Assumptions 1 and 2 hold and define the potential function

Choose hyperparameters � =
1

Lg
 , � ≤ 1

2
(LΦ + Γ + �2

g
)−1 , � =

√
�g−1√
�g+1

 and T ≥ ln(8(1+�g))

ln((1−�−0.5
g

)−1)
 .

Then, the parameter sequence {xk}k generated by Algorithm 1 satisfies, for all k = 1, 2, ...,

(2)H(x, y�) ∶= Φ(x) + h(x) +
7

8
‖y(T)(x, y�) − y∗(x)‖2.

1448 Machine Learning (2023) 112:1433–1463

1 3

Proof Based on the smoothness of the function Φ(x) established in Lemma 1, we have

On the other hand, by the definition of the proximal gradient step of xk , we have

which further simplifies to

Adding up (A3) and (A1) yields that

where the last inequality utilizes Lemma 1. Next, note that yk+2 = y(T)(xk+1, yk+1) is gener-
ated by minimizing the strongly convex function g(xk+1, ⋅) through T gradient descent steps
with Nesterov’s momentum with the initial point yk+1 . Hence, with � =

1

Lg
 and � =

√
�g−1√
�g+1

(see Theorem 2.2.3 of (Nesterov, 2013)), we obtain that

where (i) uses the fact that y∗ is �g-Lipschitz (proved in Proposition 1 of (Chen et al.,
2021b)) and T ≥ ln(8(1+�g))

ln((1−�−0.5
g

)−1)
.

Adding up (A5) and (A4) yields that

H(xk+1, yk+1) ≤H(xk, yk) −
1

4�
‖xk+1 − xk‖2

−
1

8

�
‖yk+1 − y∗(xk)‖2 + ‖yk+2 − y∗(xk+1)‖2

�
.

(A1)Φ(xk+1) ≤ Φ(xk) + ⟨∇Φ(xk), xk+1 − xk⟩ +
LΦ

2
‖xk+1 − xk‖2.

(A2)h(xk+1) +
1

2�
‖xk+1 − xk + �∇̂Φ(xk, yk+1)‖2 ≤ h(xk) +

1

2�
‖�∇̂Φ(xk, yk+1)‖2,

(A3)h(xk+1) ≤ h(xk) −
1

2�
‖xk+1 − xk‖2 − ⟨xk+1 − xk, ∇̂Φ(xk, yk+1)⟩.

(A4)

Φ(xk+1) + h(xk+1)

≤ Φ(xk) + h(xk) −
�
1

2�
−

LΦ

2

�
‖xk+1 − xk‖2 + ⟨xk+1 − xk,∇Φ(xk) − ∇̂Φ(xk, yk+1)⟩

≤ Φ(xk) + h(xk) −
�
1

2�
−

LΦ

2

�
‖xk+1 − xk‖2 + ‖xk+1 − xk‖‖∇Φ(xk) − ∇̂Φ(xk, yk+1)‖

≤ Φ(xk) + h(xk) −
�
1

2�
−

LΦ

2
−

Γ

2

�
‖xk+1 − xk‖2 + 1

2Γ
‖∇Φ(xk) − ∇̂Φ(xk, yk+1)‖2.

≤ Φ(xk) + h(xk) −
�
1

2�
−

LΦ

2
−

Γ

2

�
‖xk+1 − xk‖2 + 1

2
‖yk+1 − y∗(xk)‖2,

(A5)

‖yk+2 − y∗(xk+1)‖2
≤ (1 + �g)(1 − �

−0.5
g

)T‖yk+1 − y∗(xk+1)‖2
≤ (1 + �g)(1 − �

−0.5
g

)T
�
2‖yk+1 − y∗(xk)‖2 + 2‖y∗(xk) − y∗(xk+1)‖2

�

(i)≤1

4
‖yk+1 − y∗(xk)‖2 +

�2
g

4
‖xk+1 − xk‖2,

1449Machine Learning (2023) 112:1433–1463

1 3

where (i) uses the stepsize � ≤ 1

2
(LΦ + Γ + �2

g
)−1 . Defining the potential function

H(xk, yk) ∶= Φ(xk) + h(xk) +
7

8
‖y(T)(xk, yk) − y∗(xk)‖2 = Φ(xk) + h(xk) +

7

8
‖yk+1 − y∗(xk)‖2

and rearranging the above inequality yields that

Appendix B: Proof of theorem 2

Theorem 2 Under the same conditions as those of Proposition 1, the parameter sequence
{xk, yk}k generated by Algorithm 1 satisfies the following properties.

1. ‖xk+1 − xk‖
k
→ 0 , ‖yk+1 − y∗(xk)‖

k
→ 0;

2. The function value sequence {(Φ + h)(xk)}k converges to a finite limit H∗ > −∞;
3. The sequence {(xk, yk)}k is bounded and has a compact set of limit points. Moreover,

(Φ + h)(x∗) ≡ H∗ for any limit point x∗ of {xk}k;
4. Every limit point x∗ of {xk}k is a critical point of the upper-level function (Φ + h)(x).

Proof We first prove the item 1. Summing Proposition 1 over k = 0, 1, ...,K − 1 , we obtain
that for all K ∈ ℕ+,

where (i) uses H(x, y) ≥ (Φ + h)(x) and the item 3 of Assumption 1 that Φ + h is lower
bounded.

Letting K → ∞ , we further obtain that

Hence, we conclude that ‖xk+1 − xk‖ → 0, ‖yk+1 − y∗(xk)‖ → 0 , which proves the item 1.

Φ(xk+1) + h(xk+1) + ‖yk+2 − y∗(xk+1)‖2

≤Φ(xk) + h(xk) −
�
1

2�
−

LΦ

2
−

Γ

2
−

�2
g

4

�
‖xk+1 − xk‖2 + 3

4
‖yk+1 − y∗(xk)‖2

(i)≤Φ(xk) + h(xk) −
1

4�
‖xk+1 − xk‖2 + 3

4
‖yk+1 − y∗(xk)‖2

H(xk+1, yk+1) ≤H(xk, yk) −
1

4�
‖xk+1 − xk‖2

−
1

8

�
‖yk+1 − y∗(xk)‖2 + ‖yk+2 − y∗(xk+1)‖2

�
.

(B6)

K−1�
k=0

1

4𝛽
‖xk+1 − xk‖2 + 1

8

�‖yk+1 − y∗(xk)‖2 + ‖yk+2 − y∗(xk+1)‖2
�

≤ H(x0, y0) − H(xK , yK)

(i)≤H(x0, y0) − inf
x
(Φ + h)(x)

< +∞,

(B7)
∞�
k=0

1

4𝛽
‖xk+1 − xk‖2 + 1

8

�‖yk+1 − y∗(xk)‖2 + ‖yk+2 − y∗(xk+1)‖2
�
< +∞.

1450 Machine Learning (2023) 112:1433–1463

1 3

Next, we prove the item 2. We have shown in Proposition 1 that {H(xk, yk)}k is
monotonically decreasing. Since H(xk, yk)≥ Φ(xk) + h(xk) ≥ infx� Φ(x�) + h(x�) , which
is bounded below, we conclude that {H(xk, yk)}k has a finite limit H∗ > −∞ , i.e.,
limk→∞(Φ + h)(xk) +

7

8
‖yk+1 − y∗(xk)‖2 = H∗ . Moreover, since we already showed that

‖yk+1 − y∗(xk)‖ → 0 , we further conclude that limk→∞(Φ + h)(xk) = H∗.
Next, we prove the item 3. {xk}k is bounded since Φ(xk) + h(xk) ≤ H(xk, yk) ≤ H(x0, y0)

and Φ + h has compact sub-level set. Note that

where (i) uses the �g-Lipschitz continuity of y∗ (Proved in Proposition 1 of (Chen et al.,
2021b)). Since ‖yk − y∗(xk−1)‖ → 0 and ‖xk−1‖ is bounded, the above inequality implies
that {xk, yk}k is bounded and thus has compact set of limit points.

Next, we bound the subdifferential of the function Φ + h . By the optimality condition
of the proximal gradient update of xk and the summation rule of subdifferential, we obtain
that

The above equation further implies that

Then, we obtain that

where (i) follows from Lemma 1. Since we have shown that
‖xk+1 − xk‖ → 0, ‖yk+1 − y∗(xk)‖ → 0 , the above inequality implies that

Next, consider any limit point x∗ of {xk}k so that xk(j)
j
→ x∗ along a subsequence. By the

proximal update of xk(j) , we have

(B8)
‖yk‖ ≤ ‖yk − y∗(xk−1)‖ + ‖y∗(xk−1) − y∗(0)‖ + ‖y∗(0)‖

(i)≤ ‖yk − y∗(xk−1)‖ + �g‖xk−1‖ + ‖y∗(0)‖,

0 ∈ �h(xk+1) +
1

�

(
xk+1 − xk + �∇̂Φ(xk, yk+1)

)
.

1

�

(
xk − xk+1

)
+ ∇Φ(xk+1) − ∇̂Φ(xk, yk+1) ∈ �(Φ + h)(xk+1).

(B9)

dist�(Φ+h)(xk+1)
(0)

≤ 1

�
‖xk − xk+1‖ + ‖∇Φ(xk+1) − ∇̂Φ(xk, yk+1)‖

≤ 1

�
‖xk − xk+1‖ + ‖∇Φ(xk+1) − ∇Φ(xk)‖ + ‖∇Φ(xk) − ∇̂Φ(xk, yk+1)‖

(i)≤ �
1

�
+ LΦ

�
‖xk − xk+1‖ +

√
Γ‖yk+1 − y∗(xk)‖,

(B10)

1

�

(
xk − xk+1

)
+ ∇Φ(xk+1) − ∇̂Φ(xk, yk+1) ∈ �(Φ + h)(xk+1),

and
1

�

(
xk − xk+1

)
+ ∇Φ(xk+1) − ∇̂Φ(xk, yk+1) → 0.

1451Machine Learning (2023) 112:1433–1463

1 3

Rearranging the above inequality yields that

Taking limsup on both sides of the above inequality and noting that {xk}k is bounded,
∇Φ is Lipschitz, ‖xk+1 − xk‖ → 0 , xk(j)

j
→ x∗ and ‖yk(j) − y∗(xk(j)−1)‖

j
→ 0 , we con-

clude that lim supj h(xk(j)) ≤ h(x∗) . Since h is lower-semicontinuous, we know that
lim infj h(xk(j)) ≥ h(x∗) . Combining these two inequalities yields that limj h(xk(j)) = h(x∗) .
By continuity of Φ , we further conclude that limj(Φ + h)(xk(j)) = (Φ + h)(x∗) . Since we
have shown that the entire sequence {(Φ + h)(xk)}k converges to a certain finite limit H∗ ,
we conclude that (Φ + h)(x∗) ≡ H∗ for all the limit points x∗ of {xk}k . This proves the item
3.

Finally, we prove the item 4. To this end, we have shown that for every subse-
quence xk(j)

j
→ x∗ , we have that (Φ + h)(xk(j))

j
→ H∗= (Φ + h)(x∗) and there exists

uk ∈ �(Φ + h)(xk) such that uk → 0 (by (B10)). Recall the definition of limiting subdiffer-
ential, we conclude that every limit point x∗ of {xk}k is a critical point of (Φ + h)(x) , i.e.,
0 ∈ �(Φ + h)(x∗).

Appendix C: Proof of corollary 1

Corollary 1 Suppose h is convex and the conditions of Proposition 1 hold. Then, the
sequence {xk}k generated by Algorithm 1 satisfies the following convergence rate.

h(xk(j)) +
1

2�
‖xk(j) − xk(j)−1‖2 + ⟨xk(j) − xk(j)−1, ∇̂Φ(xk(j)−1, yk(j))⟩

≤ h(x∗) +
1

2�
‖x∗ − xk(j)−1‖2 + ⟨x∗ − xk(j)−1, ∇̂Φ(xk(j)−1, yk(j))⟩.

h(xk(j)) +
1

2�
‖xk(j) − xk(j)−1‖2

≤ h(x∗) +
1

2�
‖x∗ − xk(j)−1‖2

+ ⟨x∗ − xk(j), ∇̂Φ(xk(j)−1, yk(j)) − ∇Φ(xk(j)−1) + ∇Φ(xk(j)−1)⟩
≤ h(x∗) +

1

2�
‖x∗ − xk(j)−1‖2 + ⟨x∗ − xk(j),∇Φ(xk(j)−1)⟩

+ ‖x∗ − xk(j)‖‖∇̂Φ(xk(j)−1, yk(j)) − ∇Φ(xk(j)−1)‖
≤ h(x∗) +

1

2�
‖x∗ − xk(j)−1‖2 + ⟨x∗ − xk(j),∇Φ(xk(j)−1)⟩

+
√
Γ‖x∗ − xk(j)‖‖yk(j) − y∗(xk(j)−1)‖.

(4)min
0≤k≤K ‖G(xk)‖ ≤

�
32

K�

�
H(x0) − inf

x
(Φ + h)(x)

�
.

1452 Machine Learning (2023) 112:1433–1463

1 3

Moreover, to achieve min0≤k≤K ‖G(xk)‖ ≤ � , we run the algorithm with
K = 32�−2(LΦ + Γ + �2

g
)
(
H(x0) − infx(Φ + h)(x)

)
 outer iterations and T =

ln(8(1+�g))

ln((1−�−0.5
g

)−1)

inner iterations, and the overall computation complexity is KT =
32 ln(8(1+�g))

�2 ln((1−�−0.5
g

)−1)

(LΦ + Γ + �2

g
)
(
H(x

0
) − infx(Φ + h)(x)

).

Proof
where (i) uses xk+1 ∈ prox�h

(
xk − �∇̂Φ(xk, yk+1)

)
 and the non-expansiveness of proximal

mapping since h is convex, (ii) uses the property that y∗ is �g-Lipschitz continuous, and (iii)
uses the stepsize � ≤ 1

2
(LΦ + Γ + �2

g
)−1 . Hence, we have

where (i) uses eq. (B6) and the stepsize � ≤ 1

2
(LΦ + Γ + �2

g
)−1 which implies that 16Γ ≤ 8

�
 .

Hence,

To achieve min0≤k≤K ‖G(xk)‖ ≤ � , it sufficies that K ≥ 32

��2

(
H(x0) − infx(Φ + h)(x)

)
 (the

maximum possible stepsize � =
1

2
(LΦ + Γ + �2

g
)−1). Since each inner loop and each outer

loop of Algorithm 1 involves less than 7 evaluations of gradients, Hessian-vector products
and proximal mappings in total, the computational complexity is
KT =

32 ln(8(1+�g))

�2 ln((1−�−0.5
g

)−1)
(LΦ + Γ + �2

g
)
(
H(x0) − infx(Φ + h)(x)

)
.

‖G(xk+1)‖ =
1

�
‖xk+1 − prox�h(xk+1 − �∇Φ(xk+1))‖

(i)≤ 1

�
��xk+1 − xk − �

�
∇Φ(xk+1) − ∇̂Φ(xk, yk+1)

���
≤ 1

�
��xk+1 − xk

��+��∇Φ(xk+1) − ∇Φ(xk)
��+��∇Φ(xk) − ∇̂Φ(xk, yk+1)

��
(ii)≤ �

1

�
+ LΦ

�
‖xk+1 − xk‖ +

√
Γ‖yk+1 − y∗(xk)‖

(iii)≤ 2

�
‖xk+1 − xk‖ +

√
Γ‖yk+1 − y∗(xk)‖

K−1�
k=0

‖G(xk+1)‖2

≤ 2

K−1�
k=0

�
4

�2
‖xk+1 − xk‖2 + Γ‖yk+1 − y∗(xk)‖2

�

≤max
�
32

�
,16Γ

�K−1�
k=0

�
1

4�
‖xk+1−xk‖2+ 1

8

�‖yk+1−y∗(xk)‖2+‖yk+2−y∗(xk+1)‖2
��

(i)≤ 32

�

�
H(x0) − inf

x
(Φ + h)(x)

�
,

min
0≤k≤K ‖G(xk)‖ ≤

���� 1

K

K−1�
k=0

‖G(xt+1)‖2 ≤
�

32

K�

�
H(x0) − inf

x
(Φ + h)(x)

�
.

1453Machine Learning (2023) 112:1433–1463

1 3

Appendix D: Auxiliary lemmas for proving theorem 3

We first inspect the mapping y(T)(x, y) defined as T Nesterov’s accelerated gradient descent
steps for minimizing g(x, ⋅) with initial point y. Define the gradient descent operator
Gx(y) = y − �∇yg(x, y) . Note that g(x, ⋅) is Lg-smooth and �-strongly convex, and our learn-
ing rate � =

1

Lg
≤ 2

Lg+�
 . Hence, based on Lemma 3.6 in (Hardt et al., 2016), Gx(⋅) is a con-

traction mapping with Lipschitz constant 1 − �Lg�

Lg+�
=

�g

�g+1
 . Also, it can be easily seen that

Gx(y) is 1-Lipschitz as a function of x since ‖Gx� (y) − Gx(y)‖
= �‖∇yg(x, y) − ∇yg(x

�, y)‖ ≤ �Lg‖x� − x‖ = ‖x� − x‖ . With the operator Gx , the mapping
y(t) can be recursively defined as follows.

We can prove the above mapping y(t) satisfies following lemma.

Lemma 2 Under Assumptions 1 & 2, y(T)(⋅, ⋅) is a (2.5T+1 − 1.5)-Lipschitz continuous map-
ping, that is, for any two points z ∶= (x, y) and z� ∶= (x�, y�),

Proof We will prove this Lemma by induction.
Based on eq. (D11), y(0) is 1-Lipschitz, so this Lemma holds for T = 0.
Based on eq. (D12), the following inequality holds, which implies that this Lemma also

holds for T ≥ 1

Suppose this Lemma holds for any T ≤ t − 1 (t ≥ 2). Then, based on eq. (D13),

(D11)y(0)(x, y) = y;

(D12)y(1)(x, y) = Gx(y);

(D13)y(t)(x, y) = (1 + �)Gx(y
(t−1)(x, y)) − �Gx(y

(t−2)(x, y));t ≥ 2.

‖y(T)(z�) − y(T)(z)‖ ≤ (2.5T+1 − 1.5)‖z� − z‖.

(D14)
‖y(1)(z�) − y(1)(z)‖ ≤‖Gx� (y

�) − Gx(y
�)‖ + ‖Gx(y

�) − Gx(y)‖
≤‖x� − x‖ + �g

�g + 1
‖y� − y‖ ≤ √

2‖z� − z‖

(D15)

‖y(t)(z�) − y(t)(z)‖
≤ (1 + �)‖Gx� (y

(t−1)(z�)) − Gx(y
(t−1)(z))‖ + �‖Gx� (y

(t−2)(z�)) − Gx(y
(t−2)(z))‖

≤ (1 + �)
�‖Gx� (y

(t−1)(z�)) − Gx(y
(t−1)(z�))‖ + ‖Gx(y

(t−1)(z�)) − Gx(y
(t−1)(z))‖�

+ �‖Gx� (y
(t−2)(z�)) − Gx(y

(t−2)(z�))‖ + �‖Gx(y
(t−2)(z�)) − Gx(y

(t−2)(z))‖
≤ (1 + �)‖x� − x‖ + (1 + �)

�g

�g + 1
‖y(t−1)(z�) − y(t−1)(z)‖

+ �‖x� − x‖ + �
�g

�g + 1
‖y(t−2)(z�) − y(t−2)(z)‖

(i)≤3‖z� − z‖ + 2(2.5t − 1.5)‖z� − z‖ + (2.5t−1 − 1.5)‖z� − z‖
≤ �

2.4(2.5t) − 1.5
�‖z� − z‖ ≤ (2.5t+1 − 1.5)‖z� − z‖.

1454 Machine Learning (2023) 112:1433–1463

1 3

where (i) uses � =

√
�g−1√
�g+1

≤ 1 , ‖x� − x‖ ≤ ‖z� − z‖ and the assumption that y(T)(⋅, ⋅) is

2.5T+1 − 1.5-Lipschitz for any T ≤ t − 1 . Hence, this Lemma also holds for T = t and thus
for all T ∈ ℕ.

Lemma 3 Under Assumptions 1 and 2, function ‖y(T)(z) − y∗(x)‖2 is differentiable with
regard to z ∶= (x, y).

Proof It sufficies to prove that y∗(x) and y(T)(z) are differentiable.
First, we prove the differentiability of y∗(x) ∶= argminyg(x, y) , which satisfies the sta-

tionary condition that ∇yg[x, y
∗(x)] = 0 . Note that for all x ∈ ℝ

d , ∇2
y
g[x, y∗(x)] is invertible

as g(x, ⋅) is strongly-convex. Therefore, the implicit function theorem implies that y∗(x) is
differentiable with ∇y∗(x) = −

(
∇2

y
g[x, y∗(x)]

)−1
∇y∇xg[x, y

∗(x)].
Next, we will prove that y(t)(x, y) is differentiable for 0 ≤ t ≤ T via induction. Note that

y(0)(x, y) = y is differentiable. Then, suppose there exists T ′ such that y(t) is differentiable
for all 0 ≤ t ≤ T � − 1 , and it sufficies to prove that y(T �) is differentiable.

Note that the gradient descent operator Gx(y) = y − �∇yg(x, y) is differentiable with
gradients

Therefore, based on chain rule, y(t)(x, y) = (1 + �)Gx(y
(t−1)(x, y)) − �Gx(y

(t−2)(x, y)) has the
following gradients

which based on the above discussion implies that y(T) is differentiable and thus concludes
the proof.

Lemma 3 ensures that the potential function H(x, y�) ∶= Φ(x) + h(x) +
7

8

‖y(T)(x, y�) − y∗(x)‖2 is subdifferentiable since Φ + h is subdifferentiable. Furthermore,
to prove Theorem 3 under KŁ geometry, we obtain the following bound on the subdif-
ferential of the potential function H. Throughout, we denote z ∶= (x, y) , z� ∶= (x�, y�) and
zk ∶= (xk, yk).

Lemma 4 Let Assumptions 1 and 2 hold and consider the potential function H defined in
(2). Then, H is subdifferentiable. Furthermore, under the same choices of hyper-parame-
ters as those of Proposition 1, the subdifferential of H satisfies the following bound:

∇1Gx(y) ∶= ∇xGx(y) = −�∇x∇yg(x, y), ∇2Gx(y) ∶= ∇yGx(y) = I − �∇2
y
g(x, y).

∇xy
(t)(x, y) =(1 + �)∇1Gx(y

(t−1)(x, y)) + (1 + �)∇2Gx(y
(t−1)(x, y))∇xy

(t−1)(x, y)

− �∇1Gx(y
(t−2)(x, y)) − �∇2Gx(y

(t−2)(x, y))∇xy
(t−2)(x, y),

∇yy
(t)(x, y) =(1 + �)∇2Gx(y

(t−1)(x, y))∇yy
(t−1)(x, y)

− �∇2Gx(y
(t−2)(x, y))∇yy

(t−2)(x, y),

dist�zH(zk+1)
(0) ≤ 2

�
‖xk+1 − xk‖ +

√
Γ‖yk+1 − y∗(xk)‖

+ 2
�
2.5T+1 + �g

�‖yk+2 − y∗(xk+1)‖.

1455Machine Learning (2023) 112:1433–1463

1 3

Proof Recall the potential function H(z) ∶= Φ(x) + h(x) +
7

8
‖y(T)(x, y) − y∗(x)‖2 . Note

that Φ + h is subdifferentiable, and ‖y(T)(z) − y∗(x)‖2 is differentiable based on Lemma 3.
Hence, by the subdifferetial rule we have

where the second “ = ” uses �y(Φ + h)(x) = {0}.
Next, we derive an upper bound for the subdifferentials �z(‖y(T)(z) − y∗(x)‖2) . Take any

Frechet subdifferential u ∈ �̂z(‖y(T)(z) − y∗(x)‖2) , we obtain from its definition that

where (i) uses Lemma 2 that y(T)(⋅, ⋅) is a (2.5T+1 − 1.5)-Lipschitz continuous mapping and
that y∗ is �g-Lipschitz (proved in Proposition 1 of (Chen et al., 2021b)), (ii) uses �g ≥ 1 ,
2
√
2 ≤ 3 and ‖x� − x‖ ≤ ‖z� − z‖ , and the equality in (iii) is achieved by letting z� = z + �u

with � → 0+ . Hence, we conclude that ‖u‖ ≤ 2
�
2.5T+1 + �g

�‖y(T)(z) − y∗(x)‖ . Since
�z(‖y(T)(x, y) − y∗(x)‖2) is the graphical closure of �̂z(‖y(T)(z) − y∗(x)‖2) , we have that

Next, using the subdifferential decomposition (D16), we obtain that

(D16)
𝜕zH(z) ⊃ 𝜕z(Φ + h)(x) +

7

8
𝜕z(‖y(T)(z) − y∗(x)‖2)

= 𝜕(Φ + h)(x) × {0} +
7

8
𝜕z(‖y(T)(z) − y∗(x)‖2),

0 ≤ lim inf
z�≠z,z�→z

‖y(T)(z�) − y∗(x�)‖2 − ‖y(T)(z) − y∗(x)‖2 − u⊤(z� − z)

‖z� − z‖
= lim inf

z�≠z,z�→z

1

‖z� − z‖
�
[y(T)(z�) − y∗(x�) + y(T)(z) − y∗(x)]⊤

[y(T)(z�) − y∗(x�) − y(T)(z) + y∗(x)] − u⊤(z� − z)

�

≤ lim inf
z�≠z,z�→z

�
1

‖z� − z‖
�‖y(T)(z�) − y∗(x�)‖ + ‖y(T)(z) − y∗(x)‖�

�‖y(T)(z�) − y(T)(z)‖ + ‖y∗(x) − y∗(x�)‖� − u⊤(z� − z)

‖z� − z‖
�

(i)≤ lim inf
z�≠z,z�→z

��‖y(T)(z�) − y∗(x�)‖ + ‖y(T)(z) − y∗(x)‖�
�
2.5T+1 + 𝜅g

‖x� − x‖
‖z� − z‖

�

−
u⊤(z� − z)

‖z� − z‖
�

(ii)≤ 2
�
2.5T+1 + 𝜅g

�‖y(T)(z) − y∗(x)‖ − lim sup
z�≠z,z�→z

u⊤(z� − z)

‖z� − z‖
(iii)
= 2

�
2.5T+1 + 𝜅g

�‖y(T)(z) − y∗(x)‖ − ‖u‖,

(D17)dist�z(‖y(T)(z)−y∗(x)‖2)(0) ≤ 2
�
2.5T+1 + �g

�‖y(T)(z) − y∗(x)‖.

(D18)

dist�zH(zk+1)
(0)

≤ dist�(Φ+h)(xk+1)
(0) +

7

8
dist�z(‖y(T)(zk+1)−y∗(xk+1)‖2)(0)

(i)≤ �
1

�
+ LΦ

�
‖xk − xk+1‖ +

√
Γ‖yk+1 − y∗(xk)‖

+ 2
�
2.5T+1 + �g

�‖y(T)(zk+1) − y∗(xk+1)‖
(ii)≤ 2

�
‖xk−xk+1‖+

√
Γ‖yk+1−y∗(xk)‖+2

�
2.5T+1+�g

�‖yk+2−y∗(xk+1)‖,

1456 Machine Learning (2023) 112:1433–1463

1 3

where (i) uses (B9) &(D17), (ii) uses the hyperparameter choice that � ≤ 1

2
(LΦ + Γ + �2

g
)−1

in Proposition 1.

Appendix E: Proof of theorem 3

Theorem 3 Let Assumptions 1 and 2 hold and and assume that the potential function H
defined in (2) has KŁ geometry. Then, under the same choices of hyper-parameters as
those of Proposition 1, the potential function value sequence {H(xk, yk)}k converges to its
limit H∗ (see its definition in Theorem 2) at the following rates.

1. If KŁ geometry holds with � ∈
(
1

2
, 1
)
 , then H(xk, yk) ↓ H∗ super-linearly as

2. If KŁ geometry holds with � =
1

2
 , then H(xk, yk) ↓ H∗ linearly as (for some constant

C > 0)

3. If KŁ geometry holds with � ∈
(
0,

1

2

)
 , then H(xk, yk) ↓ H∗ sub-linearly as

Proof Recall that we have shown in the proof of Theorem 2 that: 1) {H(xk, yk)}k
decreases monotonically to the finite limit H∗ ; 2) for any limit point x∗ of {xk}k ,
H(x∗, y∗(x∗)) = (Φ + h)(x∗) has the constant value H∗ . Hence, the KŁ inequality holds after
a sufficiently large number of iterations, i.e., there exists k0 ∈ ℕ

+ such that the following
holds for all k ≥ k0.

Rearranging the above inequality and utilizing (D18), we obtain that for all k ≥ k0,

For simplicity, denote dk ∶= H(xk, yk) − H∗ as the function value gap. Then, for a suffi-
ciently large k such that (E19) holds, we have

(6)H(xk, yk) − H∗ ≤ O

(
−

(
1

2(1 − �)

)k−k0
)
, ∀k ≥ k0;

(7)H(xk, yk) − H∗ ≤ O
(
(1 + C)−(k−k0)

)
, ∀k ≥ k0;

(8)H(xk, yk) − H∗ ≤ O
(
(k − k0)

−
1

1−2�

)
, ∀k ≥ k0,

�
�(H(xk, yk) − H∗)dist�zH(xk ,yk)

(0) ≥ 1.

(E19)

�
�(H(xk, yk) − H∗)

≥ 1

dist�zH(xk ,yk)
(0)

≥ �
2

�
‖xk−1−xk‖+

√
Γ‖yk−y∗(xk−1)‖+2

�
2.5T+1+�g

�‖yk+1−y∗(xk)‖
�−1

.

1457Machine Learning (2023) 112:1433–1463

1 3

where (i) uses the equality that ��(s) = cs�−1 based on Definition 2, (ii) uses (E19), (iii)
uses the inequality that (a + b + c)2 ≤ 3a2 + 3b2 + 3c2 , and (iv) uses Proposition 1. Rear-
ranging the above inequality yields that

where C ∶=
[
cmax

(
48

𝛽
, 24Γ, 24(5T+1 + 𝜅2

g
)
)]−1

> 0 is a constant.
Next, we prove the convergence rates case by case.
(Case I) If � ∈

(
1

2
, 1
)
 , then since dk ≥ 0 , (E20) implies that dk−1 ≥ Cd

2(1−�)

k
 , which is

equivalent to that

Since dk ↓ 0 , C−
1

2�−1 dk0 ≤ e−1 for sufficiently large k0 ∈ ℕ
+ . Hence, the above inequality

implies that for k ≥ k0,

Since � ∈
(
1

2
, 1
)
 implies that 1

2(1−𝜃)
> 1 , the above inequality implies that dk ↓ 0 (i.e.

H(xk, yk) ↓ H∗) at the super-linear rate given by (6).
(Case II) If � =

1

2
 , then (E20) implies that

which further implies that dk ↓ 0 (i.e. H(xk, yk) ↓ H∗) at the linear rate given by (7).
(Case III) If � ∈

(
0,

1

2

)
 , then denote �(s) =

1

1−2�
s−(1−2�) and consider the following two

subcases.
If dk−1 ≤ 2dk , then

c−2d
2(1−�)

k

(i)
=
�
�
�(dk)

�−2
(ii)≤�

2

�
‖xk−1 − xk‖ +

√
Γ‖yk − y∗(xk−1)‖ + 2

�
2.5T+1 + �g

�‖yk+1 − y∗(xk)‖
�2

(iii)≤ 12

�2
‖xk−1 − xk‖2 + 3Γ‖yk − y∗(xk−1)‖2 + 24(5T+1 + �

2
g
)‖yk+1 − y∗(xk)‖2

≤ max
�
48

�
, 24Γ, 24(5T+1 + �

2
g
)

�

�
1

4�
‖xk−1 − xk‖2 + 1

8

�‖yk − y∗(xk−1)‖2 + ‖yk+1 − y∗(xk)‖2
��

(iv)≤ max
�
48

�
, 24Γ, 24(5T+1 + �

2
g
)

��
H(xk−1, yk−1) − H(xk, yk)

�

≤ max
�
48

�
, 24Γ, 24(5T+1 + �

2
g
)

��
dk−1 − dk

�
,

(E20)dk−1 ≥ dk + Cd
2(1−�)

k
,

C
−

1

2�−1 dk ≤
(
C
−

1

2�−1 dk−1

) 1

2(1−�)

.

(E21)C
−

1

2�−1 dk ≤
(
C
−

1

2�−1 dk0

)[1

2(1−�)

]k−k0

≤ exp
(
−

[
1

2(1 − �)

]k−k0)
.

dk ≤ (1 + C)−1dk−1,

1458 Machine Learning (2023) 112:1433–1463

1 3

where (i) uses dk ≤ dk−1 and −2(1 − 𝜃) < −1 , (ii) uses (E20), and (iii) uses C > 0 ,
dk−1 ≤ 2dk and 2(1 − 𝜃) > 1.

If dk−1 > 2dk , then for k ≥ k0

where (i) uses dk−1 > 2dk and −(1 − 2𝜃) < 0 , and (ii) uses −(1 − 2𝜃) < 0 , 1−2
−(1−2𝜃)

1−2𝜃
> 0 and

dk ≤ dk0.
Combining the above two subcases yields that

where U ∶= min
(
2−2(1−𝜃)C(1 − 2𝜃),

(
1 − 2−(1−2𝜃)

)
d
−(1−2𝜃)

k0

)
> 0 . Iterating the above ine-

quality yields that

Then by substituting �(s) =
1

1−2�
s−(1−2�) , the inequality above implies that that dk ↓ 0 (i.e.

H(xk, yk) ↓ H∗) at the sub-linear rate given by (8).

Appendix F: Computing inexact solution to the linear system
∇2

y
g(xk , yk+1)v = ∇yf (xk , yk+1).

In the approximate gradient ∇̂Φ(xk, yk+1) defined in (1), we assume access to the exact
solution v̂∗

k
 of the approximated linear system ∇2

y
g(xk, yk+1)v = ∇yf (xk, yk+1) for simplicity.

In this section, we will consider using standard conjugate-gradient (CG) solvers to obtain
an inexact solution, and prove that such inexactness almost does not increase the order of
computation complexity.

Denote ṽ∗
k
 as the inexact solution obtained by N iterations of CG with initialization 0.

Then, the approximation error of CG can be derived as follows.

�(dk) − �(dk−1) =�
dk−1

dk

−� �(s)ds = �
dk−1

dk

s−2(1−�)ds
(i)≥d−2(1−�)

k−1
(dk−1 − dk)

(ii)≥C
(dk

dk−1

)2(1−�)(iii)≥ 2−2(1−�)C

�(dk) − �(dk−1) =
1

1 − 2�

(
d
−(1−2�)

k
− d

−(1−2�)

k−1

)(i)≥ 1

1 − 2�

(
d
−(1−2�)

k
− (2dk)

−(1−2�)
)

≥1 − 2−(1−2�)

1 − 2�
d
−(1−2�)

k

(ii)≥ 1 − 2−(1−2�)

1 − 2�
d
−(1−2�)

k0

𝜓(dk) − 𝜓(dk−1) ≥ min
[
2−2(1−𝜃)C,

1 − 2−(1−2𝜃)

1 − 2𝜃
d
−(1−2𝜃)

k0

]
=

U

1 − 2𝜃
> 0, k ≥ k0

�(dk) ≥ �(dk0) +
U

1 − 2�
(k − k0) ≥ U

1 − 2�
(k − k0)

(F23)‖ṽ∗
k
− v̂∗

k
‖ (i)≤ 2

√
�g

�√�g − 1
√
�g + 1

�N‖v̂∗
k
‖ (ii)≤ 2M

√
�g

�
(1 − �

−1∕2
g

)N ,

1459Machine Learning (2023) 112:1433–1463

1 3

where (i) uses eq. (17) of (Grazzi et al., 2020) with initialization 0 and (ii) uses
‖v̂∗

k
‖ = ‖[∇2

y
g(xk, yk+1)]

−1∇yf (xk, yk+1)‖ ≤ M

�
 (since g(x, ⋅) is �-strongly convex and f is

M-Lipscithz.)
Then, replacing the exact solution v̂∗

k
 with the inexact solution ṽ∗

k
 in the approximate gradi-

ent (1) we define the new approximate gradient and update rule as follows

The approximation error of the above approximate gradient has the following upper bound.

where (i) uses eqs. (1) & (F24) and Lemma 1, and (ii) uses eq. (F23) and
‖∇x∇yg(xk, yk+1)‖ ≤ Lg (since ∇g(z) is Lg-smooth). Compared with the gradient error
bound in Lemma 1, the above bound has the additional term 2M�1.5

g
(1 − �

−1∕2
g)N and the

coefficient Γ is increased to 5Γ∕4 . Hence, using ∇̃Φ instead of Φ in the proof of Proposi-
tion 1, eq. (A4) changes as follows

Adding the above inequality to eq. (A5), we have

Define the potential function H̃(x, y�) ∶= Φ(x) + h(x) + ‖y(T)(x, y�) − y∗(x)‖2 . Then the
above inequality can be rewritten into

Telescoping the above inequality, we obtain that

(F24)∇̃Φ(xk) = ∇xf (xk, yk+1) − ∇x∇yg(xk, yk+1)̃v
∗

k
.

‖∇̃Φ(xk) − ∇Φ(xk)‖2 ≤ 5‖∇̃Φ(xk) − ∇̂Φ(xk, yk+1)‖2 + 5

4
‖∇̂Φ(xk, yk+1) − ∇Φ(xk)‖2

(i)≤ 5‖∇x∇yg(xk, yk+1)‖‖ṽ∗k − v̂∗
k
‖ + 5Γ

4
‖yk+1 − y∗(xk)‖2

(ii)≤ 10M�
1.5
g
(1 − �

−1∕2
g

)N +
5Γ

4
‖yk+1 − y∗(xk)‖2,

Φ(xk+1) + h(xk+1)

≤ Φ(xk) + h(xk) −
�
1

2�
−

LΦ

2
−

Γ

2

�
‖xk+1 − xk‖2 + 1

2Γ
‖∇Φ(xk) − ∇̃Φ(xk)‖2.

≤ Φ(xk) + h(xk) −
�
1

2�
−

LΦ

2
−

Γ

2

�
‖xk+1 − xk‖2

+
5

8
‖yk+1 − y∗(xk)‖2 + 5MΓ−1

�
1.5
g
(1 − �

−1∕2
g

)N .

Φ(xk+1) + h(xk+1) + ‖yk+2 − y∗(xk+1)‖2

≤ Φ(xk) + h(xk) −
1

4�
‖xk+1 − xk‖2

+
7

8
‖yk+1 − y∗(xk)‖2 + 5MΓ−1

�
1.5
g
(1 − �

−1∕2
g

)N .

H̃(xk+1, yk+1) ≤H̃(xk, yk) −
1

4�
‖xk+1 − xk‖2

−
1

8
‖yk+1 − y∗(xk)‖2 + 5MΓ−1

�
1.5
g
(1 − �

−1∕2
g

)N .

1460 Machine Learning (2023) 112:1433–1463

1 3

which is a slight modification of eq. (B6) with the additional term 5KMΓ−1�1.5
g
(1 − �

−1∕2
g)N .

Therefore, near the end of the proof of Corollary 1 in Appendix C, replacing eq. (B6) with
eq. (F25), we obtain the following new convergence rate

To achieve min0≤k≤K ‖G(xk)‖ ≤ � , we simply replace the number of outer iterations
K ≥ 32

��2

(
H(x0) − infx(Φ + h)(x)

)
 with K ≥ 64

��2

(
H(x0) − infx(Φ + h)(x)

)
 , and set

N ≥ ln(10M(Γ�)−1�1.5
g

)

− ln(1−�
−1∕2
g)

 . All the other hyperparameter choices are not changed. Since there are

K outer iterations and each outer iteration contains T inner gradient descent steps for mini-
mizing g(x, ⋅) and N CG steps, the overall computation complexity is K(T + N) , whose
dependence on � and 𝜅 ∶= max(𝜅f , 𝜅g) > 1 is no larger than O(�3.5 ln(��−1))�−2 . This
dependence is almost the same as O(�3.5(ln �)�−2) given by Corollary 1 with difference of
logarithm level.

Appendix G: The proximal mapping of the regularizer
in the experiment

All the AID-type and ITD-type algorithms implemented in the experiment require comput-
ing the following proximal mapping with stepsize 𝛽 > 0.

In the experiment in Sect. 6, we use the non-smooth and nonconvex regularizer
h(�) = −

�

�Dval�
∑

(xi,yi)∈Dval
min(��i�, a) , for which the i-th entry of the above proximal map-

ping [prox�h(�)]i has analytical solution in the following two cases.
(Case 1) If a >

𝛽𝛾

|Dval| , then

(F25)

K−1�
k=0

1

4�
‖xk+1 − xk‖2 + 1

8
‖yk+1 − y∗(xk)‖2

≤ H̃(x0, y0) − inf
x
(Φ + h)(x) + 5KMΓ−1

�
1.5
g
(1 − �

−1∕2
g

)N ,

min
0≤k≤K ‖G(xk)‖ ≤

�
32

K�

�
H(x0) − inf

x
(Φ + h)(x)

�
+ 5MΓ−1�1.5

g
(1 − �

−1∕2
g)N .

prox�h(�) ∶= argmin
u∈ℝd

�
h(u) +

1

2�
‖u − �‖2

�
.

[prox𝛽h(𝜆)]i ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−a; − a < 𝜆i < −

�
a −

𝛽𝛾

�Dval�
�

𝜆i −
𝛽𝛾

�Dval� ; −
�
a −

𝛽𝛾

�Dval�
� ≤ 𝜆i < 0

𝜆i +
𝛽𝛾

�Dval� ;0 ≤ 𝜆i < a −
𝛽𝛾

�Dval�
a;a −

𝛽𝛾

�Dval� ≤ 𝜆i < a

𝜆i;�𝜆i� ≥ a

.

1461Machine Learning (2023) 112:1433–1463

1 3

(Case 2) If a ≤ ��

|Dval| , then

Author contributions ZC is the main contributor who wrote theoretical proof and experiments. Co-authors
BK and YZ proposed the ideas, joined the discussion and helped polish the paper.

Funding The work of Ziyi Chen and Yi Zhou was supported in part by U.S. National Science Foundation
under the Grant. Nos. CCF-2106216 and DMS-2134223.

Data availability We used the publicly available MNIST dataset.

Code availability All the codes are made publicly available on GitHub at https:// github. com/ chang y12/
Accel erated- Proxi mal- Algor ithm- for- Regul arized- Bi- level- Optim izati on.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

Attouch, H., & Bolte, J. (2009). On the convergence of the proximal algorithm for nonsmooth functions
involving analytic features. Mathematical Programming, 116(1–2), 5–16.

Bertinetto, L. , Henriques, J.F. , Torr, P., Vedaldi, A. (2018). Meta-learning with differentiable closed-form
solvers. In Proceeding of International Conference on Learning Representations (ICLR).

Bolte, J., Daniilidis, A., & Lewis, A. (2007). The Łojasiewicz inequality for nonsmooth subanalytic func-
tions with applications to subgradient dynamical systems. SIAM Journal on Optimization, 17,
1205–1223.

Bolte, J., Sabach, S., & Teboulle, M. (2014). Proximal alternating linearized minimization for nonconvex
and nonsmooth problems. Mathematical Programming, 146(1–2), 459–494.

Bracken, J., & McGill, J. T. (1973). Mathematical programs with optimization problems in the constraints.
Operations Research, 21(1), 37–44.

Chen, T. , Sun, Y., Yin, W. (2021a). A single-timescale stochastic bilevel optimization method. arXiv: 2102.
04671.

Chen, Z. , Zhou, Y. , Xu, T., Liang, Y. (2021b). Proximal gradient descent-ascent: Variable convergence
under kłgeometry. In Proceeding of International Conference on Learning Representations (ICLR).

Dagréou, M. , Ablin, P. , Vaiter, S., Moreau, T. (2022). A framework for bilevel optimization that enables
stochastic and global variance reduction algorithms. Advances in neural information processing sys-
tems (neurips).

Domke, J. (2012). Generic methods for optimization-based modeling. In Proceeding of Artificial Intelli-
gence and Statistics (AISTATS) (pp. 318–326).

Fallah, A. , Mokhtari, A., Ozdaglar, A. (2020). On the convergence theory of gradient-based model-agnostic
meta-learning algorithms. In Proceeding International Conference on Artificial Intelligence and Statis-
tics (AISTATS) (pp. 1082–1092).

Feurer, M., & Hutter, F. (2019). Hyperparameter optimization. Automated machine learning (pp. 3–33).
Berlin & Heidelberg: Springer.

Finn, C. , Abbeel, P., Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of deep networks.
In Proceeding of International Conference on Machine Learning (ICML) (pp. 1126–1135).

Franceschi, L. , Donini, M. , Frasconi, P., Pontil, M. (2017). Forward and reverse gradient-based hyperpa-
rameter optimization. In Proceeding of International Conference on Machine Learning (ICML) (pp.
1165–1173).

[prox𝛽h(𝜆)]i ∶=

⎧
⎪⎨⎪⎩

−a; − a < 𝜆i < 0

a;0 ≤ 𝜆i < a

𝜆i;�𝜆i� ≥ a

.

https://github.com/changy12/Accelerated-Proximal-Algorithm-for-Regularized-Bi-level-Optimization
https://github.com/changy12/Accelerated-Proximal-Algorithm-for-Regularized-Bi-level-Optimization
http://arxiv.org/abs/2102.04671
http://arxiv.org/abs/2102.04671

1462 Machine Learning (2023) 112:1433–1463

1 3

Franceschi, L. , Frasconi, P. , Salzo, S. , Grazzi, R., Pontil, M. (2018). Bilevel programming for hyperparam-
eter optimization and meta-learning. In Proceeding of International Conference on Machine Learning
(ICML) (pp. 1568–1577).

Frankel, P., Garrigos, G., & Peypouquet, J. (2015). Splitting methods with variable metric for Kurdyka–
Łojasiewicz functions and general convergence rates. Journal of Optimization Theory and Applica-
tions, 165(3), 874–900.

Ghadimi, S., & Wang, M. (2018). Approximation methods for bilevel programming. arXiv: 1802. 02246.
Gould, S., Fernando, B., Cherian, A., Anderson, P., Cruz, R.S., Guo, E. (2016). On differentiating param-

eterized argmin and argmax problems with application to bi-level optimization. arXiv: 1607. 05447.
Grazzi, R. , Franceschi, L. , Pontil, M., Salzo, S. (2020). On the iteration complexity of hypergradient com-

putation. In Proc. International Conference on Machine Learning (ICML).
Guo, Z., & Yang, T. (2021). Randomized stochastic variance-reduced methods for stochastic bilevel

optimization. arXiv: 2105. 02266.
Hansen, P., Jaumard, B., & Savard, G. (1992). New branch-and-bound rules for linear bilevel program-

ming. SIAM Journal on Scientific and Statistical Computing, 13(5), 1194–1217.
Hardt, M. , Recht, B., Singer, Y. (2016). Train faster, generalize better: Stability of stochastic gradient

descent. In Proceeding of International Conference on Machine Learning (ICML) (pp. 1225–1234).
Hong, M. , Wai, H. T. , Wang, Z., Yang, Z. (2020). A two-timescale framework for bilevel optimization:

Complexity analysis and application to actor-critic. arXiv: 2007. 05170.
Huang, F., & Huang, H. (2021). Enhanced bilevel optimization via bregman distance. arXiv: 2107. 12301.
Ji, K. (2021). Bilevel optimization for machine learning: Algorithm design and convergence analysis

(Unpublished doctoral dissertation). The Ohio State University.
Ji, K. , Lee, J.D. , Liang, Y., Poor, H.V. (2020). Convergence of meta-learning with task-specific adapta-

tion over partial parameters. arXiv: 2006. 09486.
Ji, K., & Liang, Y. (2021). Lower bounds and accelerated algorithms for bilevel optimization. arXiv:

2102. 03926.
Ji, K. , Yang, J., Liang, Y. (2020). Multi-step model-agnostic meta-learning: Convergence and improved

algorithms. arXiv: 2002. 07836.
Ji, K. , Yang, J., Liang, Y. (2021). Bilevel optimization: Convergence analysis and enhanced design. In

Proc. International Conference on Machine Learning (ICML), (pp. 4882–4892).
Karimi, H. , Nutini, J., Schmidt, M. (2016). Linear convergence of gradient and proximal-gradient

methods under the polyak-łojasiewicz condition. In Proceeding of Joint European Conference on
Machine Learning and Knowledge Discovery in Databases (ECML PKDD) (pp. 795–811).

Konda, V.R., & Tsitsiklis, J.N. (2000). Actor-critic algorithms. In Proceeding of Advances in Neural
Information Processing Systems (NeurIPS) (pp. 1008–1014).

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Li, J. , Gu, B., Huang, H. (2020). Improved bilevel model: Fast and optimal algorithm with theoretical
guarantee. arXiv: 2009. 00690.

Li, Q. , Zhou, Y. , Liang, Y., Varshney, P.K. (2017). Convergence analysis of proximal gradient with
momentum for nonconvex optimization. In Proceeding of International Conference on Machine
Learning (ICML) (vol.70, pp. 2111–2119).

Liao, R. , Xiong, Y. , Fetaya, E. , Zhang, L. , Yoon, K. , Pitkow, X. & Zemel, R. (2018). Reviving
and improving recurrent back-propagation. In Proceeding of International Conference on Machine
Learning (ICML).

Lin, T. , Jin, C., Jordan, M.I. (2020). On gradient descent ascent for nonconvex-concave minimax prob-
lems. In Proceeding of International Conference on Machine Learning (ICML).

Lions, P. L., & Mercier, B. (1979). Splitting algorithms for the sum of two nonlinear operators. SIAM
Journal on Numerical Analysis, 16(6), 964–979.

Liu, R. , Mu, P. , Yuan, X. , Zeng, S., Zhang, J. (2020). A generic first-order algorithmic framework for
bi-level programming beyond lower-level singleton. In Proceeding of International Conference on
Machine Learning (ICML).

Łojasiewicz, S. (1963). A topological property of real analytic subsets A topological property of real
analytic subsets. Coll. du CNRS, Les equations aux derivees partielles, 117:87–89.

Lorraine, J. , Vicol, P., Duvenaud, D. (2020). Optimizing millions of hyperparameters by implicit differ-
entiation. In Proceeding of International Conference on Artificial Intelligence and Statistics (AIST-
ATS) (pp. 1540–1552).

Maclaurin, D. , Duvenaud, D., Adams, R. (2015). Gradient-based hyperparameter optimization through
reversible learning. In Proceeding of International Conference on Machine Learning (ICML) (pp.
2113–2122).

http://arxiv.org/abs/1802.02246
http://arxiv.org/abs/1607.05447
http://arxiv.org/abs/2105.02266
http://arxiv.org/abs/2007.05170
http://arxiv.org/abs/2107.12301
http://arxiv.org/abs/2006.09486
http://arxiv.org/abs/2102.03926
http://arxiv.org/abs/2102.03926
http://arxiv.org/abs/2002.07836
http://arxiv.org/abs/2009.00690

1463Machine Learning (2023) 112:1433–1463

1 3

Mehra, A. , Kailkhura, B. , Chen, P.Y., Hamm, J. (2020). How robust are randomized smoothing based
defenses to data poisoning? arXiv: 2012. 01274.

Moore, G. M. (2010). Bilevel programming algorithms for machine learning model selection. Berlin &
Heidelberg: Rensselaer Polytechnic Institute.

Nesterov, Y. (2013). Introductory lectures on convex optimization: A basic course (Vol. 87). Berlin, Hei-
delberg: Springer.

Noll, D., & Rondepierre, A. (2013). Convergence of linesearch and trust-region methods using the
Kurdyka–Łojasiewicz inequality. Computational and Analytical Mathematics (pp. 593–611).

Pedregosa, F. (2016). Hyperparameter optimization with approximate gradient. In Proceeding of Inter-
national Conference on Machine Learning (ICML) (pp. 737–746).

Raghu, A. , Raghu, M. , Bengio, S., Vinyals, O. (2019). Rapid learning or feature reuse? towards under-
standing the effectiveness of MAML. Proceeding of International Conference on Learning Represen-
tations (ICLR).

Rajeswaran, A. , Finn, C. , Kakade, S.M., Levine, S. (2019). Meta-learning with implicit gradients. Pro-
ceeding of Advances in Neural Information Processing Systems (NeurIPS) (pp. 113–124).

Rockafellar, R. T., & Wets, R. J. B. (2009). Variational analysis (Vol. 317). Berlin, Heidelberg: Springer.
Shaban, A. , Cheng, C.A. , Hatch, N., Boots, B. (2019). Truncated back-propagation for bilevel optimization.

Proc. International Conference on Artificial Intelligence and Statistics (AISTATS) (pp. 1723–1732).
Shi, C., Lu, J., & Zhang, G. (2005). An extended kuhn-tucker approach for linear bilevel programming.

Applied Mathematics and Computation, 162(1), 51–63.
Snell, J. , Swersky, K., Zemel, R. (2017). Prototypical networks for few-shot learning. Proc. advances in

neural information processing systems (neurips).
Yang, J. , Ji, K., Liang, Y. (2021). Provably faster algorithms for bilevel optimization. ArXiv: 2106. 04692.
Yao, Q. , Kwok, J.T., Zhong, W. (2015). Fast low-rank matrix learning with nonconvex regularization. 2015

ieee international conference on data mining (pp. 539–548).
Zhou, Y., Liang, Y., Yu, Y., Dai, W., & Xing, E. P. (2018). Distributed Proximal Gradient Algorithm for

Partially Asynchronous Computer Clusters. Journal of Machine Learning Research (JMLR), 19(19),
1–32.

Zhou, Y. , Wang, Z. , Ji, K. , Liang, Y., Tarokh, V. (2020). Proximal gradient algorithm with momentum and
flexible parameter restart for nonconvex optimization. Proc. International Joint Conference on Artifi-
cial Intelligence (IJCAI) (pp. 1445–1451).

Zhou, Y. , Wang, Z., Liang, Y. (2018). Convergence of cubic regularization for nonconvex optimiza-
tion under kl property. Proc. Advances in Neural Information Processing Systems (NeurIPS) (pp.
3760–3769).

Zhou, Y. , Yu, Y. , Dai, W. , Liang, Y., Xing, E. (2016). On convergence of model parallel proximal gradient
algorithm for stale synchronous parallel system. Proc. International Conference on Artificial Intelli-
gence and Statistics (AISTATS) (vol.51, pp. 713–722).

Zügner, D., & Günnemann, S. (2019). Adversarial attacks on graph neural networks via meta learning. Proc.
International Conference on Learning Representations (ICLR).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

http://arxiv.org/abs/2012.01274
http://arxiv.org/abs/2106.04692

	An accelerated proximal algorithm for regularized nonconvex and nonsmooth bi-level optimization
	Abstract
	1 Introduction
	1.1 Our contributions
	1.2 Related work

	2 Problem formulation and preliminaries
	3 Proximal bi-level optimization with AID
	4 Global convergence and complexity of proximal BiO-AID
	5 Convergence rates under local nonconvex geometry
	5.1 Local Kurdyka–Łojasiewicz geometry
	5.2 Convergence rates of proximal BiO-AIDm under KŁ geometry

	6 Experiment
	6.1 Optimization performance
	6.2 Test performance

	7 Conclusion
	Appendix A: Proof of proposition 1
	Appendix B: Proof of theorem 2
	Appendix C: Proof of corollary 1
	Appendix D: Auxiliary lemmas for proving theorem 3
	Appendix E: Proof of theorem 3
	Appendix F: Computing inexact solution to the linear system .
	Appendix G: The proximal mapping of the regularizer in the experiment
	References

