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ABSTRACT

Supervised learning scenarios, where labels and features
are possibly mismatched, have been an emerging concern
in machine learning applications. For example, researchers
often need to align heterogeneous data from multiple re-
sources to the same entities without a unique identifier in
the socioeconomic study. Such a mismatch problem can
significantly affect the learning performance if it is not ap-
propriately addressed. Due to the combinatorial nature of the
mismatch problem, existing methods are often designed for
small datasets and simple linear models but are not scalable
to large-scale datasets and complex models. In this paper,
we first present a new formulation of the mismatch problem
that supports continuous optimization problems and allows
for gradient-based methods. Moreover, we develop a compu-
tation and memory efficient method to process complex data
and models. Empirical studies on synthetic and real-world
data show significantly better performance of the proposed
algorithms than state-of-the-art methods.

Index Terms— Mismatched Data, Supervised Learning,
Stochastic Gradient Descent (SGD), Permutation Matrix.

1. INTRODUCTION

In several emerging machine learning applications [1–3], the
data labels and features variables are not always correctly
aligned, known as the mismatch supervised learning prob-
lem. Such a problem can arise, for example, in Assisted
Learning [3] where organizations holding heterogeneous fea-
tures collaborate on a task, but their data may not be precisely
aligned according to a data identifier. This is often the case
when the privacy regulation [4] does not allow institutions
such as a medical laboratory and a hospital to precisely link
their data via a unique personal identifier, but only side infor-
mation such as address and age can be utilized.

The mismatch between labels and features hinders the
use of classical supervised learning techniques for predic-
tive modeling. To address the mismatch issue, previous
works have adopted a mismatch regression formulation.
Specifically, suppose that the label vector Y is generated
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from Y = Π∗Xβ∗ + ε, where Y = [y1, ..., yn]> ∈ Rn,
X = [x1, ..., xn]> ∈ Rn×d, Π∗ is an unknown permutation
matrix (where each row and each column contain one entry
of 1, and 0s elsewhere), and ε = [ε1, ..., εn]> ∈ Rn is the
noise term. The mismatch regression problem [5–11] aims
to simultaneously estimate the permutation matrix and linear
regression coefficient from solving the following:

min
β∈Rd,Π∈Pn

L(β,Π) = ‖Y −ΠXβ‖2 , (1)

where Pn is the set of all n × n permutation matrices. The
above optimization problem is NP-hard for d > 1 [6], and
the difficulty comes from the excessively large search space
Pn of size n!. Some theoretical questions, including the re-
covery of Π∗ in terms of the signal-to-noise (SNR) ratio (i.e.,
‖β∗‖2/V ar(εi)), and the necessary condition on the SNR for
approximately recovering β∗ from Eq. (1) have been studied
in [6, 8], respectively.

Developing efficient and effective algorithms for solving
problem (1) is challenging due to its combinatorial nature
(since Pn is discrete). There have been several research pro-
gresses in this line. For instance, a branch-and-bound-based
method that can solve problem (1) with a small sample size
e.g., n = 20, was proposed in [5]. Also, a concave minimiza-
tion reformulation was proposed in [12] to solve problems
with sample size n at the order of 100 with reasonable amount
of time. Algebraic geometry-based algorithms that can solve
problem (1) with low dimension e.g., d = 5, and sample size
approximately 104 were demonstrated in [11], but the compu-
tational cost increases exponentially with d. The above meth-
ods are not scalable to large-scale datasets, and they can only
be applied to simple linear models.

Recently, the work of [13] developed a new formulation
that combines the bilevel optimization and the optimal trans-
port [14] techniques to allow nonlinear modeling. The main
idea is to cast the original problem (1) as an optimal transport
problem [15] with a cost matrix C ∈ Rn×n and a transport
(permutation) plan Π. Then, the parameters are updated by
treating β as an implicit function of Π. From the experimen-
tal study, the proposed bilevel approach significantly outper-
forms all other existing methods. However, a potential down-
side of the bilevel method is that, in each iteration, we need
O(n2) memory and O(dn2) computational cost. Such costs
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are prohibitive given real-world applications. We will refer
to the bilevel approach as the state-of-the-art (SOTA) method
for the rest of the paper.

In this paper, we develop computation and memory effi-
cient methods. We first reformulate the original mixed-integer
problem as a penalized optimization with continuous vari-
ables. The main idea is to first relax the discrete set of per-
mutation matrices to its convex hull to obtain a continuous
problem. Then, based on a critical observation that the per-
mutation matrix is the sparsest among all the convex hulls, we
enforce the optimization variable Π to be sparse by adding
regularization terms. The reformulation enables the direct
use of gradient-based optimization solvers. Moreover, we de-
velop an algorithm to update the parameters using mini-batch
samples, which can be easily integrated into popular program-
ming frameworks.

2. PROBLEM AND FORMULATION

Notations. Let ‖ · ‖, ‖ · ‖1 denote the `2, `1 norms of vectors,
respectively. For a square matrix M , let Mi,· denote its i-th
row and M·,j denote its j-th column.

Suppose that the data {(yi, zi)}ni=1 and {xj}nj=1 are col-
lected from different sources. For instance, {(yi, zi)}ni=1

are the health records from a hospital and {xj}nj=1 are the
purchasing information from a company. Under the pri-
vacy regulations, {xj}nj=1 may not be correctly aligned with
{(yi, zi)}ni=1 in the absence of a unique identifier. To learn
the underlying correspondence between {(yi, zi)}ni=1 and
{xj}nj=1, as well as the supervised relationship, we consider
the following minimization problem of

`(β1, β2,Π) ,
1

n
‖Y − g(Z;β1)−Πf(X;β2)‖2,

over (β1, β2,Π) ∈ Θ, where Θ = Rd1 × Rd2 × Pn is
the joint optimizing space, Pn is the set of n × n per-
mutation matrices, Y = [y1, . . . , yn]> ∈ Rn is the label
vector, Π is a permutation matrix, f : Rd1 → R and
g : Rd2 → R are unknown functions to be learned, and
g(Z;β1) = [g(z1;β1), . . . , g(zn;β1)]> ∈ Rn, f(X;β2) =
[f(x1;β2), . . . , f(xn;β2)]> ∈ Rn.

The above formulation for regression can be tailored to
a classification problem by setting Y to discrete labels and
changing the squared-`2 loss to other losses, e.g., the cross-
entropy loss. For example, with discrete labels Y , in terms of
logistic regression, the loss function is

n∑
i=1

−(yiβ
>
2 Πi,·X + yiβ

>
1 zi) + ln(1 + eβ

>
2 Πi,·X+β>1 zi).

In fact, directly optimizing Π over Pn could potentially
lead to overfitting, since there are exponentially many choices
for Π (i.e., |Pn| = n!). To reduce the excessive freedom,
we restrict Π to the set that the number of permuted entries

is smaller than a pre-specified threshold K, namely to con-
sider Pn,K , {Π ∈ Pn : dH(Π, In) ≤ K} with Hamming
distance dH(A,B) ,

∑
1≤i,j≤n 1(Ai,j 6= Bi,j). Thus, the

above mismatch regression problem becomes:

min `(β1, β2,Π) s.t. (β1, β2,Π) ∈ Ω, (2)

where Ω = Rd1 × Rd2 × Pn,K , and K is a pre-specified
positive integer.

The new problem is challenging to solve since it involves
a discrete variable Π, and the set Pn,K is generally infeasible
to optimize [9, 16]. To address this challenge, we first trans-
form the discrete problem into a continuous one through con-
vexifying. Then, we use a special regularization term to push
Π to be a permutation matrix with the number of permuted
entries less than K.

To obtain a continuous optimization variable, we extend
the discrete search setPn to its convex, namely Brikhoff poly-
tope (also known as the doubly stochastic set), Bn , {Π :
Πij ≥ 0,∀(i, j),

∑n
i=1 Πij = 1,∀j,

∑n
j=1 Πij = 1,∀i}. To

further ensure that Π is a permutation matrix, we propose to
utilize the following `1−2 regularizer

P1−2(Π) ,
n∑
i=1

‖Πi,·‖1 − ‖Πi,·‖2 +

n∑
j=1

‖Π·,j‖1 − ‖Π·,j‖2.

The `1−2 norm was historically studied in the context of com-
pressed sensing [17] to produce sparse vectors under linear
constraints [18, 19].

For the constraint Pn,K , we propose to parameterize it
with the following continuous trace penalty

PK(Π) , [n−K − Tr(Π)]+,

where K ∈ {1, . . . , n} is a pre-specified value, Tr(·) is the
trace operator and [x]+ = max(0, x). Combining the `1−2

and the trace norms above, we propose to add the following
regularization term to the original problem (2)

RK(Π) , P1−2(Π) + PK(Π). (3)

Next, we show in the following that the new penalty term
is zero if and only if the Π is a permutation matrix whose
number of permuted entries is fewer than or equal to K. Due
to the page limit, we include the proof in the appendix.

Theorem 1. A square matrix Π ∈ Bn is a permutation matrix
with the number of permuted entries fewer or equal to K, if
and only if P (Π) = 0.

Based on the above result, we propose a new formulation
of the mismatch regression problem (2) as the minimization
of

L(β1, β2,Π) = `(β1, β2,Π) + λRK(Π), (4)

over β1 ∈ Rd1 , β2 ∈ Rd2 ,Π ∈ Bn, where λ > 0 is a tuning
parameter, and K ∈ {1, 2, . . . , n} is a pre-specified value.
From the computational aspect, the problem can be optimized
with gradient-based methods, which will be elaborated in de-
tail in the next section.
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3. PROPOSED ALGORITHM

We present the pseudocode for solving the problem (4) (re-
gression problems) in Algorithm 1. For solving classification
problems, the algorithms will be similar to Algorithm 1 with
slight modifications. We include the full details in Section C
in the supplement.

The main idea for the proposed Algorithm 1 is to update Π
and β1, β2 in a coordinate-wise fashion. At each iteration, we
first perform mini-batch stochastic gradient descent (SGD)
on Π (Lines 3 - 8). We briefly introduce the intuition of Line
6. In classical SGD, a key component is to find an unbiased
estimate of the true gradient based on few samples. However,
in our case, to calculate the derivative ∂Πi,j `(β1, β2,Π) =
−2(yi − g(zi;β1) − Πi,·f(X;β2))f(xj ;β2), we need to
pass through the full batch of X instead of a mini-batch,
which costs prohibitive memory. To address the challenge,
we utilize the key fact that Π is a probability simplex. Con-
sequently, Πi,·f(X;β2) is a weighted sum of f(X;β2) over
probability simplex Πi,·. Then, a natural way to approx-
imate ∂Πi,j `(β1, β2,Π) is to sample a data index s from
a multinominal distribution of parameter Πi,·, and replace
Πi,·f(X;β2) with f(xs;β2) in calculating the derivative.

The variable Π is no longer a doubly stochastic matrix
after the above update (Lines 3-8). To maintain the doubly
stochastic constraint, we apply the Sinkhorn procedure [20],
which normalizes the matrix by its columns and rows sequen-
tially (Lines 10-12). It was shown in [20] that such an it-
erative procedure can transform a nonnegative matrix into a
doubly stochastic matrix. We only apply the Sinkhorn pro-
cedure once for computational efficiency. Although Π is not
restricted to be doubly stochastic during the training process,
from the experimental study, we observe that β1 and β2 can
still be successfully estimated. Finally, we update β1 and β2

by using SGD based on the mini-batch samples (Line 13). It
can be verified that the memory required for calculating gradi-
ents at each iteration is O(m2), which is much more efficient
than the state-of-the-art method proposed in [13] when the
mini-batch size m is much smaller than sample size n.

4. EXPERIMENTAL STUDY

We evaluates the proposed method in terms of both pre-
dictive and computational (in appendix) performances on
various datasets. For all experiments, the ‘oracle score’ is
the test error obtained by the model trained on the correctly
matched data (in hindsight). We use the root-mean-square-
error (RMSE) and Accuracy as evaluation metrics for regres-
sion and classification tasks, respectively. We set both f and
g to be the same type of functions e.g., both f and g are linear
functions. For the initial values of β1 and β2, we first fit
models based on the original training data, and then initialize
β1 and β2 to be the parameters of the fitted models. We set
the initial Π1 to be the identity matrix throughout this section.

Algorithm 1 Mini-Batch SGD for Problem (4)
Input: Data {(yi, xi, zi)}ni=1, Learning models f and g.

Initialization: Π1 = In, β1
1 ∼ N (0, Id1 ), β1

2 ∼ N (0, Id2 ), learning
rate sequence {αt}Tt=1, tuning parameter λ = 1, mini-batch sizem and
the trace penalty parameter K.

1: for t = 1 to T do
2: Uniformly sample a mini-batch Dt with size m.
3: for i ∈ index(Dt) do
4: for j ∈ index(Dt) do
5: Sample an index s from Multinominal(Πt

i,·)

6: Calculate di,j , 2(g(zi;β
t
1) + f(xs;βt

2) − yi)f(xj ;βt
2)

Calculate the derivative of ∂i,jRK(Πt) // RK(·) is defined in
Eq. (3)

7: end for
8: Π̃t

i,j ← Πt
i,j − αt(di,j + λ∂i,jRK(Πt))

9: end for
10: Π̃t+1 ← max(0, Π̃t)

11: Π̂t+1
·,j ← Π̃t+1

·,j /
∥∥∥Π̃t+1

·,j

∥∥∥
1

for j = 1, . . . , n

12: Πt+1
i,· ← Π̂t+1

i,· /
∥∥∥Π̂t+1

i,·

∥∥∥
1

for i = 1, . . . , n

13: Update βt
1 and βt

2 with Stochastic Gradient Descent based on the
mini-batch Dt

14: end for

† index(·) outputs the indices of a subset of data, e.g.,
index({x1, x5, x9}) = {1, 5, 9}.

Output: Model parameters: βT+1
1 , βT+1

2 .

4.1. Synthetic Data

Following the setting in [13], we generate 1000 training and
1000 test samples from y = β>x+ ε, where x ∼ N (0, Id2),
β ∼ N (0, Id2), and ε ∼ (0, σ2). Here, we do not have the
variable Z. We randomly permute different proportions of
the training data and keep the test data untouched. We use the
linear model and test on four combinations of different feature
dimensions d2, SNRs (i.e., ‖β‖2/σ2), and permutation ratios.

Results are summarized in Table 1. With a permutation
ratio of 10%, the out-sample prediction performance of our
method approaches the oracle score, which indicates the wide
adaptability of the new formulation and the proposed algo-
rithms. When the permutation ratio increases to 50%, our
method achieves far better performance than the state-of-the-
art method. In addition to the linear case, we also test on a
standard nonlinear regression dataset named Friedman 1 [21].
Due to the page limit, we include more experimental details
e.g., non-linear data and partial mismatch scenarios in ap-
pendix.

4.2. Real-world Applications

MIMIC3 Medical Information Mart for Intensive Care III
(MIMIC3 [22]) is a comprehensive clinical database contain-
ing de-identified information. We test on two benchmarks
of the MIMIC3: (i) regression task: predicting the Length
of Stay (LOS) and (ii) classification task: classifying Pheno-
types. For the regression task, we use feature variables from
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Table 1: The out-sample prediction performance of our proposed method and the SOTA approach [13] on synthetic linear data,
MIMIC3, and SP. The second row lists the machine learning models used for regression and classification. LR is the linear
regression, LR/C is the logistic model for classification, and NN is the two-layer neural network for regression. The third row
indicates the SNR of the data generating process (if applicable), the feature dimension, and the permutation ratio. The fourth
row describes the sample size and mini-batch size used for training. The rest rows summarize the average out-sample prediction
performance as measured by RMSE for regression and Accuracy for classification, and standard errors over 20 replicates are
included in the brackets.

Data Synthetic Linear MIMIC3 SP

Model Types LR LR LR LR LR/C NN NN

SNR, Dim, Permu% 50, 5, 10 50, 5, 50 102, 10, 10 102, 10, 50 NA, 16, 50 NA, 16, 75 NA, 31, 30
Sample/Batch size 103/32 103/32 103/64 103/64 105/256 105/256 103/64
Proposed Method 0.28(.05) 0.58(.08) 0.30(.04) 0.88(.07) 0.60(.06) 114(2.2) 1.5(0.31)
SOTA method [13] 0.27(.04) 1.67(.62) 0.31(.03) 2.01(.81) / / /

Oracle Score 0.26(.02) 0.26(.02) 0.29(.02) 0.29(.02) 0.71(.03) 108(1.1) 1.1(.18)

(a) (b)

Fig. 1: The out-sample prediction performance of (a) linear
model on MIMIC3 benchmark predicting the LOS against
iterations; (b) linear model on SP predicting poverty level
against iterations. The shaded regions describe the ±1 stan-
dard errors. The Plain OLS is the test error of the model
trained on the original training data. The partial OLS rep-
resents the test error of the model trained on the data where
labels (Y ) and partial features (Z) have right correspondence.

the laboratory table (X) and the ICU charted event table (Z)
to predict the LOS (Y ). Following the procedures in [23]
with minor modifications, we randomly selected 10000 train-
ing and 10000 test cases, with 16 features (3 from the lab table
and 13 from the ICU charted event table). A unique identifier
can link the official data. Yet, in practice, the laboratory mea-
surements (X) are often not precisely linked to the labels (Y )
and the features (Z) under privacy regulations. To simulate
such a situation, we randomly permute a proportion of the
training data in the Lab table (X). As a result, the training
data X loses correspondence with the training label Y and
the remaining training data Z. Similar procedures are used
to prepare the data for the classification task, and details are
included in appendix. In addition, we use both linear models
and two-layer neural networks. In Figure 1(a), with a per-
mutation ratio of 50%, λ = 100, and linear model, the error
terms quickly decrease and converge to the oracle score with

negligible differences.
Socioeconomic Prediction (SP) In socioeconomic study,

researchers often need to collect and combine data from
multiple sources for further use. For instance, in a series
of work [24], the authors integrate accurate satellite-based
information (e.g., nightlights intensity) and survey data from
some African countries to predict the poverty level. Specif-
ically, a goal is to predict the Consumption Level in Malawi.
Following the procedures in [24] with minor modifications,
we randomly select 800 training and 400 test cases, and in
total, 31 features. The nightlights data (Z) have exact corre-
spondence concerning the label Y (Consumption Level) since
they are collected according to the longitudes and latitudes.
But the survey data (X) is often not precisely aligned with
the real-time nightlights data Z and the label Y due to the
periodic collecting process. We randomly permute a propor-
tion of the training data (X) to simulate such a scenario. The
training data X loses correspondence with the training label
Y and the remaining training data Z. In Fig. 1(b), with a per-
mutation ratio of 30%, λ = 100, and linear models, the error
terms quickly decrease and stay close to the oracle score.

5. CONCLUSION

The mismatch data scenarios have posed challenges that clas-
sical supervised learning techniques cannot address well. We
proposed a new problem formulation by casting the mismatch
supervised learning problem from a discrete-space optimiza-
tion into a continuous optimization problem with properly de-
fined regularizations. Additionally, we developed a computa-
tion and memory efficient method that can scale to complex
data and models. Finally, we demonstrated the effectiveness
of our proposed approach through various experimental stud-
ies. An interesting future direction is to analyze the conver-
gence properties of the developed method. We include the
proofs and additional experimental results in the appendix.
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