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Abstract—Unsupervised domain adaptation (UDA) is a popular
machine learning technique that allows one to train models
over diverse data collected from different domains. However,
this technique requires the learner to collect a large number of
properly labeled data samples, which can be costly and unrealistic
in many applications. In this work, we propose a decentralized
assisted learning framework for UDA. In this framework, a
learner has only a limited number of labeled data samples
collected from a certain source domain and aims to train a
classifier for the target domain. To improve domain adaptation
performance, it seeks assistance by interacting with an external
service provider, who possesses many labeled data samples
collected from a related source domain. We develop an assisted
UDA algorithm that avoids data sharing and can significantly
improve the learner’s domain adaptation performance within
a few rounds of interaction. Experiments using deep neural
networks on benchmark datasets demonstrate the effectiveness
of this algorithm.

I. INTRODUCTION

The effectiveness of modern machine learning is highly
dependent on the availability of a large, high-quality set of
labeled data samples, meaning that the data is free of noise
and its distribution is closely aligned with that of the test
data samples [1], [2]. However, these requirements are often
difficult to meet in practice due to two main factors: (i)
collecting and annotating such a large amount of data is often
costly and time-consuming, so one usually only has access
to a limited number of labeled samples; (ii) there is often a
significant distribution shift between training and test samples,
leading to high generalization error for the learning algorithms.

To address these issues, unsupervised domain adaptation
(UDA) has become a popular technique that has been ex-
tensively studied in the literature. For example, [3] proposed
an adversarial model for UDA. This model consists of a
feature extractor, a label predictor, and a domain classifier.
By minimizing the label prediction loss and maximizing the
domain classification loss simultaneously, the model can learn
transferable features from the labeled source data that can be
adapted to the unlabeled target data (i.e., the test samples)
and achieve domain-invariant learning. Additionally, other
works have developed multi-source UDA approaches [4]–[8],
in which the goal is to learn features that are transferable to
the unlabeled target data when labeled samples are available
from multiple source domains. Please refer to Fig. 1 for an
illustration of UDA-type of models.

However, ensuring good performance in unsupervised do-
main adaptation often requires access to a large, centralized set
of labeled data samples from various source domains, which
can be unachievable in practical application scenarios. In the
era of big data, the proliferation of data collection methods
and machine learning techniques have brought opportunities
for modeling with external assistance [9], [10]. The UDA
model with poor performance may improve significantly with
assistance from a service provider with an external dataset. The
challenges of this learning scenario include the followings: 1)
the external dataset may have a different distribution from local
datasets; 2) assistance from a service provider may be costly
due to high service fees charged for frequent exchanges of
information and updates; 3) decentralized learning algorithms
are required due to the absence of a central server.

A. Main Contribution

To address the above challenges, we propose a decentralized
assisted learning framework for UDA. In this framework, we
consider a scenario where the learner has a limited number
of labeled samples collected from a single-source domain and
aims to use these labeled samples to train a classifier on a
different target domain. We assume that an external service
provider, such as a data company or organization, may possess
labeled samples from a related but different source domain.
In this case, the learner can seek assistance from the service
provider to improve domain adaptation performance without
data sharing, through a few rounds of communication. We
present an assisted UDA algorithm and evaluate it using deep
neural network models on benchmark datasets, demonstrating
its effectiveness.

B. Other Related Work

Many distributed or decentralized methods have gained
popularity in recent years to improve the machine learning
performance of a learner with limited data and computation
resources. Two such methods are assisted learning and feder-
ated learning, whose related work are summarized below.

Assisted Learning (AL): AL [10]–[12] is a decentralized
learning framework that allows organizations to autonomously
improve their learning quality within only a few assistance
rounds. Previous research on AL has focused on vertically
partitioned data, in which entities hold data with different
feature variables collected from the same cohort of subjects. In



contrast, this work considers horizontally partitioned data, in
which clients hold local data with the same feature variables
but from different subjects. Our setting is therefore closely
aligned with a recent AL framework developed in [13] for as-
sisting organizations with horizontally partitioned data, which
demonstrated that a learner organization (e.g., small labs)
could significantly and steadily improve its learning perfor-
mance through interaction with an external service provider
(e.g., large institutes) within a few rounds. In this work, we
will develop an AL approach for a learner performing domain
adaptation learning to receive assistance from a provider to
leverage multiple source domains.

Federated Learning (FL): FL [14]–[17] is a distributed
learning framework that allows for the joint learning of a
model through the averaging of locally learned model param-
eters without the need for training data to be transmitted. It
utilizes the resources of large numbers of edge devices, also
known as “clients,” to achieve a global objective coordinated
by a central server. Vertical Federated Learning methods
involve splitting sub-networks for local clients to jointly opti-
mize a global model [18]–[21], but require frequent batchwise
synchronization of backward gradients to converge [21].

II. ASSISTED UNSUPERVISED DOMAIN ADAPTATION

In this section, we introduce our assisted unsupervised
domain adaptation framework. We first present the problem
formulation, review the existing centralized multi-source do-
main adaptation approach, and then present our proposed
assisted domain adaptation algorithm.

A. Problem Formulation

We consider a learning scenario in which a learner (denoted
as L) seeks to train a classification model for predicting
unlabeled test sample D(T) collected from a target domain T.
However, the learner only has a limited number of labeled data
D(S) collected from a related source domain S. Using these
labeled data for direct domain adaptation may result in poor
performance. To improve domain adaptation performance, the
learner L seeks assistance from an external service provider
(denoted as P), who possesses a large number of labeled data
D(S′) collected from a source domain S′ closely related to the
learner’s domains S and T. As L needs to purchase service
provided by P, it is desirable for their interactions to follow the
assisted learning protocols outlined in [13], which specify that
(i) no data sharing should occur and (ii) learner should achieve
a high-performance gain within a few interaction rounds. It is
also assumed that both L and P have sufficient computational
resources.

Centralized Multi-Source UDA. Consider an ideal case
where L has access to P’s data. A simple solution is to apply
the standard multi-source UDA approach with centralized data.
Here, we briefly review this approach, which serves as the
basis for developing our assisted UDA algorithm later.

Specifically, given labeled data samples D(S),D(S′) from
two different source domains, multi-source UDA aims to learn
invariant features that are transferable to the unlabeled target

data samples D(T). In [8], the authors proposed a multi-
source DA model, as shown in Fig. 1, which consists of a
feature extractor θf , a label predictor θy , and two domain
classifiers θd1, θd2. The learning objective function consists of
a label classification loss L(θf , θy;D(S, S′)) that aims to train
a label prediction model {θf , θy} using the labeled source data
samples D(S, S′) := D(S) ∪ D(S′), and a domain classifica-
tion loss L(θf , θd1;D(S, T))+L(θf , θd2;D(S′, T)) that aims
to extract domain-invariant features between domains (S, T)
and (S′, T) by letting the feature extractor θf compete with
the domain classifiers θd1, θd2. Specifically, the optimization
aims to minimize the label classification loss over {θf , θy},
and minimize (respectively maximize) the domain classification
loss over {θd1, θd2} (respectively θf ) simultaneously. This is
summarized in the following minimax problem.

min
θf ,θy

(
L
(
θf , θy;D(S, S′)

)
−

max
{
min
θd1

L
(
θf , θd1;D(S, T)

)
,min

θd2
L
(
θf , θd2;D(S′, T)

)})
(1)
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Fig. 1. The model architecture of centralized multi-source UDA [8], con-
sisting of a feature extractor, a label predictor, and two domain classifiers. A
gradient reversal layer is applied to the back-propagation through the domain
classifiers.

B. Assisted Unsupervised Domain Adaptation

The aforementioned centralized multi-source UDA requires
that L has access to all of P’s data, which can be unrealistic in
practical scenarios. In this subsection, we propose an assisted
learning algorithm for unsupervised domain adaptation that
enables P to assist L to improve its UDA performance without
data sharing via a few interaction rounds.

Specifically, we consider the scenario that L holds labeled
source data D(S) (limited population) and unlabeled target
data D(T). Meanwhile, P holds a large labeled source data
D(S′). We assume the data domains S, T, S′ are closely
related. To perform assisted UDA without data sharing, L
holds a local UDA model (the same as used in [3]) that consists
of a feature extractor θf , a label predictor θy , and a domain
classifier θd, whereas P holds a local classification model that
consists of a feature extractor θf and a label predictor θy .
Notably, P does not need a domain classifier because it does



Algorithm 1 AssistUDA
Input: Initialization model (θ0f , θ

0
y, θ

0
d), learning rate η, assis-

tance rounds R, number of local training iterations K (for
Learner) and K ′ (for Provider).
for assistance rounds r = 1, . . . , R do

Learner L:
▶ Initialize (θf

(L)
0 , θy

(L)
0 , θd

(L)
0 ) = (θr−1

f , θr−1
y , θr−1

d ).
▶ Train local model by the standard UDA loss

minθf ,θy
(
L(θf , θy;D(S)) − minθd L(θf , θd;D(S, T))

)
.

Obtain a trajectory of UDA models
{θf (L)

t , θy
(L)
t , θd

(L)
t }Kt=1.

▶ Sample a subset of label prediction models
{θf (L)

t , θy
(L)
t }t∈T , compute their corresponding classifica-

tion loss {L(θf (L)
t , θy

(L)
t ;D(S))}t∈T and send to P.

——————————————————————
Provider P:
▶ Initialize (θf

(P)
0 , θy

(P)
0 ) = (θf

(L)
t∗

, θy
(L)
t∗

) where

t∗ = argmin
t∈T

L(θf (L)
t , θy

(L)
t ;D(S,S′)).

▶ Train local model by minθf ,θy L(θf , θy;D(S′)).
Obtain a trajectory of label prediction models
{θf (P)

t , θy
(P)
t }K′

t=1.
▶ Sample a subset of label prediction models

{θf (P)
t , θy

(P)
t }t∈T ′ , compute their corresponding classifica-

tion loss {L(θf (P)
t , θy

(P)
t ;D(S′))}t∈T ′ . Send these results

and t∗ to L.
——————————————————————
Learner L:
▶ Output model (θrf , θ

r
y, θ

r
d) where

(θrf , θ
r
y) = argmin

(θf ,θy)∈{(θf (P)
t ,θy

(P)
t )}t∈T ′

L(θf , θy;D(S,S′)),

and θrd = θd
(L)
t∗ .

end
Output: Label prediction model determined by (θRf , θ

R
y ).

not have access to the target data D(T). The overall learning
problem is summarized as follows

min
θf ,θy

(
L
(
θf , θy;D(S, S′)

)
−min

θd
L
(
θf , θd;D(S, T)

))
, (2)

which approximates (1) under the assumption that S and S′ are
closely related. We summarize our assisted UDA algorithm
(named AssistUDA) in Algorithm 1.

To elaborate, the learning process consists of R rounds, each
having the following interaction steps between the learner L
and the service provider P.

1) First, L starts a local learning process by initializing
its feature extractor θf

(L)
0 , label predictor θy

(L)
0 , and

domain classifier θd
(L)
0 from the models obtained from

the last round. Then, L applies any standard optimizer
(e.g., SGD, Adam) with a proper learning rate η to train
local models by minimizing the standard UDA loss for
K iterations using the local source and target datasets

D(S),D(T). During the training, L stores label prediction
models {θf (L)

t , θy
(L)
t } sampled from the training trajec-

tory, denoted by t ∈ T ⊂ {1, 2, ...,K}. Lastly, L sends
these models and their corresponding classification losses
{L(θf (L)

t , θy
(L)
t ;D(S))}t∈T to P.

2) Upon receiving the information from L, P
first evaluates the global classification loss
L(·;D(S, S′)) = L(·;D(S)) + L(·;D(S′)) of the
received set of models {(θf (L)

t , θy
(L)
t )}t∈T and picks

the one that achieves the minimum global classification
loss as the initialization model (θf

(P)
0 , θy

(P)
0 ). Notably,

{L(θf (L)
t , θy

(L)
t ;D(S))}t∈T is already provided by

L and {L(θf (L)
t , θy

(L)
t ;D(S′))}t∈T can be evaluated

from the local data of P. After that, P applies
any standard optimizer with a proper learning rate
η to train its feature extractor and label predictor
by minimizing the label classification loss for
K ′ iterations using the local source dataset D(S′).
During the training, P stores label prediction models
{θf (P)

t , θy
(P)
t } generated in a subset of the training

iterations t ∈ T ′ ⊂ {1, 2, ...,K ′}. Lastly, P sends
these label prediction models and their corresponding
classification losses {L(θf (P)

t , θy
(P)
t ;D(S′))}t∈T ′ to L.

3) Once L receives the information sent by P, it evaluates the
global classification loss L(·;D(S, S′)) of the received
set of models {(θf (P)

t , θy
(P)
t }t∈T ′ and picks the one that

achieves the minimum global classification loss as the
output model of this assistance round.

Remark. The proposed AssistUDA algorithm does not
require data sharing between the learner and the provider.
In the local training steps, both the learner and the provider
will store a subset of generated label prediction models and
evaluate their corresponding classification losses on their re-
spective local source data. Then, these sampled models and
their losses are sent to the other side. These information
are used to help identify the best model that achieves the
minimum global classification loss on the combined source
data samples. Our experiments have shown that storing a few
models generated in the local training is sufficient to achieve
good performance. Also, note that (2) does not contain the
loss term L(θf , θd2;D(S′, T)) in (1), but it is still expected
to improve the learner’s performance by leveraging the large-
sized external data from S′, particularly when there is moder-
ate divergence between the domains S and S′.

III. EXPERIMENTS

A. Experiment Setup

Baselines. In this section, we conduct deep learning ex-
periments to demonstrate the effectiveness of our proposed
AssistUDA algorithm. We test the performance of AssistUDA
by comparing it with two baseline methods: 1) centralized
multi-source UDA, in which L has access to the centralized
data D(S, T, S′) (i.e., all the local datasets possessed by L
and P) and performs multi-source UDA [8]. Its performance
can be regarded as the upper limit; 2) single-source UDA, in



which L performs single-source domain adaption using only
its local data D(S, T). Its performance can be regarded as
the lower limit. In both baseline methods, L adopts the same
UDA model as in AssistUDA, which consists of a feature
extractor, a label predictor and a domain classifier as described
in Subsection II-B.

Datasets. Following [3], [8], we use two sets of datasets,
each of which consists of three datasets from closely related
domains. Specifically, the first set includes MNIST [22],
MNIST-M [7] and SVHN [23], and the second set includes
CIFAR-10 [24], CINIC-10 [25] and CINIC-10-grayscaled.
With these two sets of datasets, we consider the following
four different settings of local datasets of L and P.

TABLE I
LIST OF LOCAL DATASETS OF LEARNER (L) AND PROVIDER (P).

D(S) D(T) D(S′)

Setting 1 SVHN MNIST MNIST-M

Setting 2 SVHN MNIST-M MNIST

Setting 3 CINIC-10-gray CIFAR-10 CINIC-10

Setting 4 CINIC-10-gray CINIC-10 CIFAR-10

Data Distribution. Each of the dataset setting listed
in Table I is further specified by a hyperparameter γ ∈
(0, 1) described as follows. First, all the local datasets
D(S),D(T),D(S′) are balanced, i.e., they contain equal num-
ber of samples from each of the 10 classes. Second, both
L’s target data D(T) and P’s source data D(S′) are set to
have a large sample size, i.e., 46.59k for settings 1 & 2 and
50k for settings 3 & 4. Lastly, the size of L’s source data
D(S) is specified by γ times that of D(S′), and we consider
γ = 0.01, 0.1 so that L has a limited number of source data.

Training hyperparameters. We implement all the algo-
rithms using the standard SGD optimizer with a fixed batch-
size 256 and fine-tuned learning rate. Also, as L’s source data
D(S) is considerably smaller than its target data D(T), we
duplicate it to match the data size in the UDA training. For
centralized multi-source UDA, we define one epoch as one
pass over the data. For our AssistUDA, one epoch corresponds
to one round of interaction between L and P, where all
the local trainings pass the local data once and store the
updated local models for every I = 30 local training iterations.
For single-source UDA, one epoch is defined as two passes
over the data so that it uses roughly the same number of
training samples as that of the other two algorithms. For all
experiments, we perform 10 epochs of training.

B. Experiment Results

Setting 1: SVHN-D(S), MNIST-D(T), MNIST-M-D(S′).
We compare all the aforementioned algorithms under setting
1 (see Table I) with γ = 0.01 (small size D(S)) and γ = 0.1
(large size D(S)), respectively. Fig. 2 plots the results of
training loss (evaluated on D(T)) and test accuracy (evaluated
on 10k MNIST test data samples). It can be seen that our
AssistUDA consistently achieves a comparable performance

to that of the ideal centralized multi-source UDA, and a
significantly improved performance over that of single-source
UDA. In particular, the performance gain is larger when L has
a smaller source dataset (i.e., smaller γ). This shows that our
AssistUDA is an effective algorithm that allows the learner to
seek assistance from the service provider without data sharing.
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Fig. 2. Comparison of Centralized Multi-Source UDA, Single-Source UDA,
and AssistUDA under setting 1 with γ = 0.01 (top) and 0.1 (bottom).

Setting 2: SVHN-D(S), MNIST-M-D(T), MNIST-D(S′).
We further compare these algorithms under setting 2 with
γ = 0.01, 0.1. The results of training loss (evaluated on D(T))
and test accuracy (evaluated on the 9k MNIST-M test data
samples) are shown in Fig. 3, where one can make a similar
conclusion. Specifically, with γ = 0.01, the performance of
our AssistUDA is slightly worse than that of centralized multi-
source UDA, but is much better than that of single-source
UDA. When γ = 0.1 (i.e., D(S) has a larger size), AssistUDA
still achieves a significantly better performance than that of
single-source UDA.

Setting 3: CINIC-10-gray-D(S), CIFAR-10-D(T),
CINIC-10-D(S′). We repeat the above experiments under
setting 3 with γ = 0.01, 0.1. The results of training loss
(evaluated on D(T)) and test accuracy (evaluated on 10k
CIFAR-10 test data samples) are shown in Fig. 4. One can
make the same observations and conclusions as before from
these results, which demonstrate that our AssistUDA works
well on diverse types of datasets.

Setting 4: CINIC-10-gray-D(S), CINIC-10-D(T),
CIFAR-10-D(S′). Lastly, we test these algorithms under
setting 4 with γ = 0.01, 0.1. Fig. 5 shows the results of
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Fig. 3. Comparison of Centralized Multi-Source UDA, Single-Source UDA,
and AssistUDA under setting 2 with γ = 0.01 (top) and 0.1 (bottom).

training loss (evaluated on D(T)) and test accuracy (evaluated
on 18k CINIC-10 test data samples). Note that here the
CINIC-10 test data samples are generated by sampling
uniformly from each class of the original 90k CINIC-10 test
samples. These results lead to the same conclusions and prove
the effectiveness of AssistUDA on different target domains.
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IV. CONCLUSION

We propose a fully decentralized assisted learning frame-
work for unsupervised domain adaptation that avoids data
sharing between a learner and an external service provider.
Our experiments show that the proposed algorithm can assist
the learner to achieve a significantly better model domain
adaptation performance within a few interaction rounds with
the external service provider. We expect that this algorithm can
be used to help small companies and individuals who have the
need to build high-quality machine learning models but lack a
sufficient amount of source data. In the future, an interesting
direction is to extend this framework to the multi-learner and
multi-provider scenarios.
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