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Abstract. We propose a method to analyze the relationship between
the shape of functional regions of the cortex and cognitive measures, such
as reading ability and vocabulary knowledge. Functional regions on the
cortical surface can vary not only in size and shape but also in topology
and position relative to neighboring regions. Standard diffeomorphism-
based shape analysis tools do not work well here because diffeomorphisms
are unable to capture these topological differences, which include region
splitting and merging across subjects. State-of-the-art cortical surface
shape analyses compute derived regional properties (scalars), such as
regional volume, cortical thickness, curvature, and gyrification index.
However, these methods cannot compare the full extent of topological
or shape differences in cortical regions. We propose icosahedral spatial
pyramid matching (ISPM) of region borders computed on the surface
of a sphere to capture this variation in regional topology, position, and
shape. We then analyze how this variation corresponds to measures of
cognitive performance. We compare our method to other approaches and
find that it is indeed informative to consider aspects of shape beyond
the standard approaches. Analysis is performed using a subset of 27
test/retest subjects from the Human Connectome Project in order to
understand both the effectiveness and reproducibility of this method.

1 Introduction

Much work has been done to understand what parts of the brain are responsible
for which functions. This localization of function is important for fundamen-
tal understanding of how the brain works and for neurosurgical tasks such as
planning regions to target or avoid during the removal of tumors [2]. While local-
ization of function is generally consistent across individuals, there is variability
in the shape of functional regions.

Glasser et al. showed in [3] that certain cortical regions can have multiple
topological variants that are present in a significant percentage of the population.



Fig. 1: Four examples of the variety of 55b, FEF, and PEF configurations. Each
example is the cortical surface of a subject’s left hemisphere projected onto a
sphere.

In particular, they highlight the 55b region, a lightly myelinated area of the
premotor cortex that separates the frontal eye field (FEF) and premotor eye
field (PEF). However, there is a consistent variant in which 55b is split into
two disjoint pieces, with FEF in between the split sections. A second variant
exists in which 55b can be shifted relative to FEF, so that FEF is now between
55b and PEF. See Figure 1 for examples of the variety in 55b, FEF, and PEF
configurations. Furthermore, it is possible that a region is missing in a subject.
As an example, PEF is missing in the bottom-right subject in Figure 1.

The presence of these and other topological variations in a large subset of
individuals leads to the question of whether these variants are related to any sort
of change in cognitive or social ability, psychological well-being, or personality.
To answer this question, we first need a statistical shape analysis method that
can (1) compare shapes with differing topology and (2) handle the possibility of
missing shapes, that is, the method allows the null set to be a valid shape.

Existing shape correspondence methods require shapes to be prealigned and
need to find a one-to-one mapping for each point around the shape [10]. Dif-
feomorphic methods such as large deformation diffeomorphic metric mapping
(LDDMM) [1] and spherical demons [12] assume that a diffeomorphism exists
that can deform one shape into the other. Neither shape correspondence nor dif-
feomorphic methods can compare one region to a region split into two separate
pieces.



Other shape analysis methods allow topologically different shapes, but do
not allow missing shapes. Leventon et al. [6] represent shapes as level sets of the
signed distance from the shape boundary. This method does not have a unique
representation for a shape and cannot handle the null set. Another approach is
the Gromov-Hausdorff metric [9], which provides a valid distance metric between
shapes and allows multiple topologies, but does not allow for a shape to be the
null set.

Another metric that we could use is the Jaccard distance that measures the
difference between the size of union and the size of intersection of two sets. This
metric allows one of the shapes to be the null set, but it does not differentiate
between nonoverlapping sets that are near versus far away from each other. Both
of these cases will have the same distance of 0.

We propose a new distance metric on shapes defined as regions on a sphere,
called icosahedral spatial pyramid matching (ISPM). This metric is an exten-
sion of spatial pyramid matching (SPM) [5, 13] defined for images. ISPM can
measure distances between shapes that are not topologically equivalent and dif-
ferences in configurations of shapes relative to each other. Our goal is to analyze
relationships between the shapes of cortical regions and cognitive measures. How-
ever, standard correlation or regression approaches are not applicable, since our
shapes do not live in a Euclidean vector space, but rather a non-trivial met-
ric space defined through the ISPM metric. Instead, we use a statistic called
distance correlation [11], which measures the dependency between two random
values sampled from metric spaces.

2 Methods

ISPM computes spatial pyramid matching (SPM) on a mesh of a spherical sur-
face using labeled borders of parcellated regions as features. We will review
d-dimensional image space SPM here and then describe how we adapt the com-
putation to an icosahedral mesh of a spherical surface. Once we can compute
distances between shape complexes on a sphere, we show how to use distance cor-
relation in order to find relationships between shape and cognitive performance
measures.

2.1 Spatial Pyramid Matching

SPM [5] is a measure of similarity of features between two images, A and B, using
the pyramid match kernel (PMK) from [4] while preserving spatial information
on a rectangular d-dimensional image grid. SPM starts by separating each image
into C channels, one channel per feature type, where each channel contains the
spatial locations where that feature type is found in the image.

We then construct a pyramid of L resolution levels, where the finest resolution
is level L, and the number of bins in a level, D, decreases by a factor of 2 in
each direction at each level.



For each resolution level, l, in the pyramid, a spatial histogram is computed
for each channel, c, that counts how many times that feature appears within the
spatial extent covered by each bin. The amount a feature “matches” at a par-
ticular level of resolution can be measured by the intersection of the histograms
I(H l
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) for Ac and Bc. Histogram intersection is used here because it has

the useful property of being positive-definite, as shown in [4]. The intersection
of a channel histogram at a particular level is
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To avoid counting the same contribution at more than one level, we look at
the number of new matches, N l, at each level:
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The pyramid match kernel is the weighted combination of these new matches
across all levels:
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l=0
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The spatial pyramid matching is the normalized combination of these kernels
across the different channels:

KS(A,B) =

∑C
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Because histogram intersection is used, and κc sums these intersections with
a weight that is decreasing as the grid coarsens, the pyramid match kernel is
positive-definite, as shown in [4]. The positive-definiteness continues to be main-
tained when summing across channels, and thus KS is a Mercer kernel since κc
is one. Since KS(A,A) = 1 for all images, A, we convert this similarity kernel to
a distance metric, dS(A,B), scaling by 0.5 to keep 0 ≤ dS(A,B) ≤ 1 as follows:

dS(A,B) =
1

2
(KS(A,A) +KS(B,B) − 2KS(A,B))

= 1 −KS(A,B). (6)

2.2 Icosahedral Spatial Pyramid Matching

We adapt SPM from a d-dimensional image grid to an icosahedral mesh approx-
imation of a spherical surface so that we can compute the similarity of cortical
surface features. One way to produce a regular mesh of a spherical surface is to
start with an icosahedron, subdivide each triangle face into 4 smaller triangles,



project the new vertices onto the sphere and repeat until the desired level of
approximation of the sphere has been achieved.

We use this process in reverse to generate our sequence of pyramid levels.
We start with triangles on the finest mesh, merging them with the 3 neighboring
triangles that share a common edge into larger triangles. Whereas the SPM
pyramid reduces the number of bin cells by a factor of 2d at each level, ISPM
reduces the number of bin faces by a factor of 4 at each level and the number of
vertices by a factor of 2. We implemented this pyramid generation as a histogram
resampling method added to the Connectome Workbench tool [8].

Once the pyramid is constructed, we proceed as for SPM, computing the
histogram at each level by counting the number of features of a particular type
that fall within a spatial bin and then summing across feature channels. We use
the same weighting scheme as above to combine across pyramid levels. Since we
are using a decreasing weighting scheme and summing positive-definite kernels,
we preserve the Mercer kernel property, and ISPM is a distance metric.

We use the icosohedral mesh instead of a cuboid or uv mesh so that each bin
in each spatial histogram has nearly equal area, and so that we have a simple
way to generate the pyramid of histograms. If different features like structure
tensors [13] are used instead of the region membership used here, then care must
be taken to rotate the features appropriately as they are moved around on the
surface of the sphere.

2.3 Distance Correlation

We want to look at whether there is a relationship between the shape of func-
tional regions and cognitive measures, but we only have distances between shape
complexes, not an individual measurement of shape. Therefore, we ask the ques-
tion: If two subjects have similar (or dissimilar) shapes of functional regions,
do they also have similar (or dissimilar) cognitive measures? We address this
question by using the distance correlation, dCor [11], between two distance ma-
trices, which tests the joint independence of two random variables of arbitrary
dimension. The dCor is zero when the random variables are independent and
otherwise ranges between 0 and 1. The dCor t test has a null hypothesis that
the two variables are independent (i.e., dCor = 0). A small p-value of this test
rejects this null hypothesis and indicates that the dCor is significantly different
from 0, with dCor representing the amount of dependence.

Lyons [7] extended the theory of distance correlation to metric spaces and
showed that it is necessary and sufficient for the metric space to be of the strong
negative type to test independence. Because we were careful to ensure ISPM is
a distance metric, we are able to use dCor to test independence. This property
also holds for the Jaccard distance metric we evaluate in the results section.

To compare cognitive measures to the ISPM distances, we compute the pair-
wise distance between each subject’s value of that cognitive measure. To analyze
k cognitive measures concurrently, we can construct a k-vector of the measures
and compute the pair-wise Euclidean distances between these vectors. One of the
many attractive properties of the distance correlation is that it is scale-invariant.



Thus, we do not need to center or scale the variables prior to computing the
distance correlation. Instead, dcor.ttest from the energy package in R performs
a U-centering of each of the distance matrices and then provides a bias-corrected
dCor and p-value. After bias correction, the dCor values are shifted, and may
fall slightly below 0.

3 Results

To gain insight into whether the shape and topological variability of cortical
regions is related to cognitive performance, we looked at the distance correlation
between the ISPM of cortical regions and several cognitive measures. We also
compared the ISPM distance metric performance to that of a more commonly
used metric, the Jaccard index (JI). Finally, we looked at whether the ISPM
metric is more informative than using measures like cortical thickness or surface
area of cortical regions.

Because we were specifically interested in looking at topological variability
of region configuration, we needed to start with a cortical region parcellation
that allows for topological variation. The Glasser 2016 multi modal parcellation
(MMP) finds high-quality subject-specific parcellations using an areal classifier
that defines 180 regions per hemisphere based on features such as myelin maps,
resting state fMRI, and cortical folding patterns. Regions are constrained to be in
proximity to the group parcellation, but are not constrained to be topologically
equivalent. The Glasser parcellations are publicly available for 27 subjects who
are in the Test/ReTest subgroup of the Human Connectome Project (HCP)
Young Adult dataset. Each subject was scanned twice and the subject scans
were processed independently through the HCP pipelines. The cortical surfaces
of each hemisphere were inflated onto a sphere where each vertex in channel,
c, is labelled 1 if that vertex followed the border of a parcellation region c. We
computed ISPM for each hemisphere and then summed them to get a total
distance between subjects. We compared dCor and p-values for the Test and
ReTest data sets to get a sense of the consistency of these results.

We chose four cognitive measures for analysis. The picture vocabulary test
(PVT), reading test (Read), processing speed (Speed), and fluid cognition com-
posite score (Fluid). PVT and Read were chosen to evaluate relationships be-
tween language-related areas and language ability, whereas Speed and Fluid
where chosen since they are representative of more global relationships between
all brain regions and cognitive ability. We used the age-adjusted version of cogni-
tive measures whenever possible. All p-values shown were corrected for multiple
comparisons with FDR.

We started by looking at the relationship between the ISPM of the cortical
regions and each of these cognitive measures separately and then combined into
a 4-vector (All). As shown in Table 1, we see that the distance correlation of
0.21 between ISPM and fluid cognition is consistently significant, but there is
more variability in Test/ReTest in reading and processing speed.



We compared our results to a more standard metric for the comparison of

segmentations, the Jaccard index, dJ(A,B) = |A∪B|−|A∩B|
|A∪B| . Although JI is often

used to compare segmentation results, this is the first time it has been used
in shape analysis of cortical regions. We see in Table 1 that although JI did
correlate significantly with fluid cognition, the distance correlation between JI
and fluid cognition decreased to 0.15 for Test, 0.18 for ReTest. Other results
were less significant or not significant compared to ISPM. As we expect, JI and
ISPM were strongly related where the dCor of JI and ISPM was 0.905 with a
p-value < 2.2e-16.

We computed the surface area and mean cortical thickness of each of the 360
regions. We then compared the distances between each subject’s 360-d thickness
vector and the same cognitive measures as above. We repeated this comparison
for the 360-d surface area vector. As you can see in Table 1, there were some
significant correlations between surface area and fluid cognition and also correla-
tions with the four combined measures for the ReTest dataset. The correlations
were smaller and less consistent than the JI and ISPM results, with the excep-
tions of a significant correlation between surface area and Read in the ReTest
data set, and a stronger correlation of the surface area vs all four combined mea-
sures than JI and ISPM had for the ReTest dataset. The dCor of mean cortical
thickness and ISPM was 0.275 with a p-value of 6.28e-4, while the dCor of surface
area and ISPM was 0.445 with a p-value < 2.2e-16. These results demonstrate
that considering aspects of shape beyond cortical thickness and surface area is
informative. ISPM appears to be more discriminative than JI in this regard.

4 Conclusion

We propose a novel method of analyzing shapes on a spherical surface using
two distance metrics, the Jaccard index and our icosahedral spatial pyramid
matching metric. This measure is particularly useful to capture topological shape
variants such as region splitting, region location changes relative to neighbors,
and missing regions. Even though we only had 27 subjects, our distance corre-
lation analysis finds statistically significant dependencies between the shape of
functional cortical regions and fluid intelligence.

It would be interesting to perform a more extensive statistical analysis in-
volving the Glasser MMP individual parcellations for all HCP subjects when this
data become publicly available. Also, our ISPM method provides an interesting
distance metric on shapes and complexes of shapes that can open up avenues for
other types of statistical analysis involving shape metrics, e.g., Fréchet means.
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Table 1: Distance correlation between average cortical thickness (Thick), surface
area (Area), Jaccard index (JI) or ISPM and cognitive measures.
* p-value < 0.05. ** p-value < 0.01. *** p-value < 0.001.

Test Name Test dCor Test P-Value ReTest dCor ReTest P-Value

Thick vs PVT -0.042 1 0.008 1
Thick vs Read -0.003 1 0.058 0.573
Thick vs Speed 0.109 0.279 0.024 0.958
Thick vs Fluid 0.053 0.836 0.107 0.314
Thick vs All 0.043 0.836 0.066 0.573

Area vs PVT -0.012 1 0.053 0.392
Area vs Read 0.001 1 0.135 0.029*
Area vs Speed 0.048 0.732 0.088 0.161
Area vs Fluid 0.099 0.431 0.165 0.00967**
Area vs All 0.060 0.732 0.162 0.00967**

JI vs PVT 0.037 0.575 0.081 0.276
JI vs Read 0.099 0.106 0.070 0.294
JI vs Speed 0.102 0.106 0.022 0.787
JI vs Fluid 0.154 0.0156* 0.179 6.95e-3**
JI vs All 0.182 5.61e-3** 0.134 0.0436*

ISPM vs PVT 0.071 0.227 0.086 0.229
ISPM vs Read 0.128 0.039* 0.042 0.509
ISPM vs Speed 0.117 0.0494* 0.044 0.509
ISPM vs Fluid 0.212 3.26e-4*** 0.211 7.37e-4***
ISPM vs All 0.239 7.36e-5*** 0.144 0.0267*
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1. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation
metric mappings via geodesic flows of diffeomorphisms. International journal of
computer vision 61(2), 139–157 (2005)

2. Duffau, H.: A two-level model of interindividual anatomo-functional variability of
the brain and its implications for neurosurgery. Cortex 86, 303–313 (2017)

3. Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub,
E., Ugurbil, K., Andersson, J., Beckmann, C.F., Jenkinson, M., et al.: A multi-
modal parcellation of human cerebral cortex. Nature 536(7615), 171–178 (2016)

4. Grauman, K., Darrell, T.: The pyramid match kernel: Discriminative classification
with sets of image features. In: Computer Vision, 2005. ICCV 2005. Tenth IEEE
International Conference on. vol. 2, pp. 1458–1465. IEEE (2005)

5. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In: 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06). vol. 2, pp.
2169–2178. IEEE (2006)

6. Leventon, M.E., Grimson, W.E.L., Faugeras, O.: Statistical shape influence in
geodesic active contours. In: 5th IEEE EMBS International Summer School on
Biomedical Imaging. IEEE (2002)



7. Lyons, R.: Distance covariance in metric spaces. The Annals of Probability 41(5),
3284–3305 (2013)

8. Marcus, D., Harwell, J., Olsen, T., Hodge, M., Glasser, M., Prior, F., Jenkinson,
M., Laumann, T., Curtiss, S., Van Essen, D.: Informatics and data mining tools
and strategies for the human connectome project. Frontiers in neuroinformatics 5,
4 (2011)

9. Mémoli, F.: Gromov–Wasserstein distances and the metric approach to object
matching. Foundations of Computational Mathematics 11(4), 417–487 (2011)

10. Oguz, I., Cates, J., Datar, M., Paniagua, B., Fletcher, T., Vachet, C., Styner,
M., Whitaker, R.: Entropy-based particle correspondence for shape populations.
International journal of computer assisted radiology and surgery 11(7), 1221–1232
(2016)
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