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Abstract. This paper presents an efficient, numerically stable algorithm
for parallel transport of tangent vectors in the group of diffeomorphisms.
Previous approaches to parallel transport in large deformation diffeomor-
phic metric mapping (LDDMM) of images represent a momenta field, the
dual of a tangent vector to the diffeomorphism group, as a scalar field
times the image gradient. This “scalar momenta” constraint couples tan-
gent vectors with the images being deformed and leads to computation-
ally costly horizontal lifts in parallel transport. This paper uses the vector
momenta formulation of LDDMM, which decouples the diffeomorphisms
from the structures being transformed, e.g., images, point sets, etc. This
decoupling leads to parallel transport expressed as a linear ODE in the
Lie algebra. Solving this ODE directly is numerically stable and signifi-
cantly faster than other LDDMM parallel transport methods. Results on
2D synthetic data and 3D brain MRI demonstrate that our algorithm is
fast and conserves the inner products of the transported tangent vectors.

1 Introduction

Analysis of anatomical shape changes from longitudinal medical imaging requires
comparing the changes over time of subjects in disparate groups. For instance,
imaging studies have shown that the hippocampi of subjects with Alzheimer’s
disease atrophy significantly more over time than those of healthy aging sub-
jects. Trajectories of anatomical shape change can be estimated from sequences
of images using regression methods in the space of diffeomorphisms. When tra-
jectories are modeled as geodesics, they can be represented by their initial ve-
locity. However, these velocities are defined with respect to different coordinate
systems associated with the baseline image of each subject. As such, they are
not directly comparable. In order to perform statistical analysis of these trajec-
tories, multiple researchers have proposed using parallel transport to bring these
subject-specific trajectories into a common coordinate system for comparison.

One of the preferred techniques for analyzing images in this context is large
deformation diffeomorphic metric mapping (LDDMM) [2], which is a mathe-
matical framework for finding smooth diffeomorphic transformations between
images. The main benefits of LDDMM are that the deformations between im-
ages are smooth and invertible and that a metric allows distances between diffeo-
morphisms to be computed in a meaningful way. Existing methods for parallel



translation within the LDDMM setting work well in practice and have been
used for longitudinal shape analysis [11, 12]. However, these approaches require
computing horizontal lifts at each time step, an expensive computation involv-
ing solving a linear system for the scalar momenta using an iterative conjugate
gradient method [16]. Additionally, these methods approximate each time step
of parallel transport with a short time step evolution of Jacobi fields. Instead
of that approximation, this paper works directly with the parallel translation
equation.

Another method [4, 5] uses a sparse parameterization of the diffeomorphism
by using control points. Other approaches involve using stationary velocity fields
(SVFs) to generate the diffeomorphisms. These methods use Schild’s ladder to
approximate parallel transport along a curve by taking small steps in the associ-
ated tangent space at each time [6]. However, as each rung of Schild’s ladder re-
quires two imperfect, computationally-intensive image registrations, the Schild’s
ladder steps are then further approximated using the Baker-Campbell-Hausdorff
(BCH) formula. This results in fast parallel transport, however, much like the
Jacobi field approximation for LDDMM [16], each time step is an approximation
to the direct parallel transport equation. Also, the SVF formulation is different
from LDDMM in that it does not result in a distance metric on the space of
diffeomorphisms.

This paper uses the vector momenta [13] formulation of LDDMM to decouple
the diffeomorphisms from the image data. This decoupling allows us to work in
the full Lie algebra of the space of diffeomorphisms, and we can then directly
implement the parallel translation equations in terms of right-invariant tangent
vectors to this space of diffeomorphisms. This results in a linear ordinary differ-
ential equation (ODE) that can be solved with a standard, numerically stable
scheme that avoids the need to perform computationally-expensive horizontal
lifts to the constraint of scalar momenta, as is done in [16]. Additionally, we
use the Fourier approximations of vector fields from [17] to gain more numeric
stability as well as a more efficient algorithm.

We perform experiments with 2D synthetic data and 3D brain MRIs in order
to show the effectiveness of our approach and demonstrate that we can transport
realistic vector fields even for quite large deformations. Our results show that
our approach is quite fast, indeed it is two orders of magnitude faster than
the LDDMM image matching that is also performed using the efficient Fourier-
approximated vector fields. Additionally, we demonstrate conservation of the
inner product of the tangent vectors being transported. This approaches nearly
exact conservation as we increase the number of time steps in the numerical
integration scheme.

2 Background on Diffeomorphisms and LDDMM

We provide a brief review of diffeomorphisms, associated Lie group operators and
the LDDMM formulation, highlighting the math relevant to parallel transport
of diffeomorphisms and the links to diffeomorphic image registration.



2.1 Diffeomorphisms

Let Ω = Rd/Zd be a d-dimensional toroidal image domain. A toroidal domain
is the natural setting for defining the Fourier transform and assuming cycli-
cal boundary conditions. A diffeomorphism of Ω is a bijective, C∞ mapping
φ : Ω → Ω whose inverse, φ−1, is also C∞. We will denote the space of all
such diffeomorphisms as Diff(Ω). We are particularly interested in time-varying
diffeomorphisms, φ(t, x) : [0, 1] × Ω → Ω, which can be generated as flows of
time-varying velocity fields v(t, x) : [0, 1] × Ω → Rd. These will be referred to
in this paper as φt(x) and vt(x), where t ∈ [0, 1] and x ∈ Ω. Note that φt(x) is
generated by the flow t 7→ φt ∈ Diff(Ω) by integrating the ODE

dφt
dt

= vt ◦ φt. (1)

We know that Diff(Ω) is an infinite-dimensional Lie group, whose associated
Lie algebra, V = X(Ω), consists of all C∞ vector fields on Ω. For two vector
fields v, w ∈ V, the Lie bracket is defined as [v, w] = Dv · w −Dw · v. Here D is
the first derivative operator and · is element-wise matrix-vector multiplication.

In order to define distances on the manifold Diff(Ω), we need an appropriate
Riemannian metric. Here we use a weak metric

〈v, w〉V =

∫
Ω

〈Lv(x), w(x)〉dx, (2)

where L : V → V is a positive-definite, self-adjoint differential operator. In this
paper, L is chosen to be a Laplacian operator of the form L = (−α∆+I)c where
α > 0, c > 0 and I is the d × d identity matrix. In order to compute the inner
product of vector fields v and w that belong to the tangent space of any other
element φ ∈ Diff(Ω), we need to pull back the velocities to the tangent space at
identity by using a right-invariant metric such as

〈v, w〉TφDiff(Ω) = 〈v ◦ φ−1, w ◦ φ−1〉V . (3)

Then the distance between φ and id becomes

dist(id, φ) =

∫ 1

0

‖vt‖V dt. (4)

2.2 LDDMM Image Registration

For the image registration application, we will be looking at how to find an
optimal diffeomorphism that takes us from image I0 to image I1, where optimal
will mean that the diffeomorphism is as small as possible and that I0 ◦ φ−1

1 is
as close to I1 as possible. The LDDMM formulation will formulate this problem
as an energy-minimization problem. Before we get to the more specific notion
of diffeomorphisms acting on images, we look at the geodesic equations in the
general Lie group setting.



First, we will need to define some fundamental operators from Lie group
theory. We define the adjoint action of Diff(Ω) on X(Ω), Adψ : V → V , as

Adψ(v) =
d

dt

(
ψ ◦ φt ◦ ψ−1

)∣∣
t=0

, (5)

where φ0 = id and dφ
dt |t=0 = v. Note that if φt and ψ commuted, we would simply

end up with φt, thus Adψ is evaluating how well all infinitesimal deformations
commute with ψ. Now we let ψ be time-varying and we define the adjoint action,
ad, of X(Ω) on itself by

aduv =
d

ds
(Adψsv)|s=0 , (6)

where ψ0 = id and dψ
ds |s=0 = u. In the case of the Lie group Diff(Ω), the adjoint

action is given by the formula

aduv = [u, v] = Du · v −Dv · u. (7)

For the energy optimization, we will use results from Arnold [1] and Miller
et al. [9] that show that geodesics are extremal curves that satisfy the Euler-
Poincaré equations for diffeomorphisms (EPDiff):

dvt
dt

= −ad†vtwt, (8)

where ad†, the adjoint of the ad operator, is

ad†vtwt = K
[
(Dvt)

TLwt +D(Lwt)vt + Lwt div vt
]
. (9)

Here div denotes the divergence operator. The process of finding the unique
geodesic path, φt by integrating an initial velocity, v0 ∈ V at t = 0 forward in
time according to (8) is known as geodesic shooting.

Now let’s look more specifically at diffeomorphisms acting on images I ∈
L2(Ω,R), meaning that images are square-integrable functions defined on Ω.
Diffeomorphic image registration is looking for a vt that minimizes an energy
function, E(vt), that measures how well I0 ◦ φ−1

1 matches I1 while preferring
small diffeomorphisms by adding a regularization term.

E(vt) =
1

2σ2
‖I0 ◦ φ−1

1 − I1‖2L2 +

∫ 1

0

‖vt‖2V dt, (10)

where σ2 represents image noise variance.
Vialard et al. [14] and Younes et al. [15] showed that it is only necessary to

estimate the initial velocity, v0. Therefore, we can rewrite (10) as

E(v0) =
1

2σ2
‖I0 ◦ φ−1

1 − I1‖2L2 + ‖v0‖2V , s.t. EPDiff (8) holds. (11)



2.3 Decoupling Diffeomorphisms from Images

In the original LDDMM formulation, Beg et al. [2] showed that the initial vector
fields that are minimizers of the diffeomorphic image registration energy (11) are
of the form v̂0 = K(s∇I0), where s : Ω → R is a scalar field. In other words, the
initial momenta m0 = Lv0 = s∇I0 is constrained to be a scalar field times the
image gradient. The scalar momenta constraint was also used in the derivation
of geodesic shooting by Vialard [14]. This constraint has the practical benefit
that it reduces the size needed to represent the initial conditions, i.e., we can
discretize the scalar field s, rather than the vector field v0. However, Singh et
al. [13] showed that removing the scalar momenta constraint, that is, optimizing
over initial momenta m0 that are vector fields, was more numerically stable and
converged to better local optima of the target energy.

Removing the scalar momenta constraint also has the effect of decoupling the
diffeomorphisms from the images that they are acting on. This decoupling has
advantages in Bayesian formulations of diffeomorphic image registration and at-
las building, as developed by Zhang et al. [19]. In this approach, the decoupling
enables formulation of diffeomorphisms as latent random variable with a prior
that does not depend on the images (data) in any way. Furthermore, elements
of the Lie algebra V are spatially smooth vector fields, and as such, are easier to
deal with numerically than non-smooth momenta fields. Zhang and Fletcher [17]
used this fact to show that initial velocities could be efficiently represented in
the Fourier domain by low-frequency approximations, resulting in much faster
image registration and even better optimization of the LDDMM energy. Sim-
ilarly, we show in the next section that parallel translation benefits from this
same decoupling of the diffeomorphisms from images. By working in the full Lie
algebra of the space of diffeomorphisms, we can directly implement the equations
for parallel translation in terms of right-invariant tangent vectors to Diff(Ω). As
such, we avoid the need to perform computationally-expensive horizontal lifts to
the constraint of scalar momenta, as used in [16]. We are also able to use the
Fourier approximations of vector fields from [17]. The end result is an efficient
and numerically stable algorithm for directly computing parallel transport in
the space of diffeomorphisms.

3 Parallel Transport

In order to do comparisons of trajectories defined by geodesic segments in the
space of diffeomorphisms, we need a way to bring the initial velocities of these
geodesics to the same reference point. One mechanism to do so is called parallel
transport, a generalization of the Euclidean notion of parallel translation of one
vector to the origin of another. When this happens in Euclidean space, the angle
between the vectors is preserved and the magnitude of the vector is preserved.
We will see below that parallel transport along a geodesic on a Riemannian
manifold similarly preserves the inner product of the transported vector to the
tangent vector of the geodesic and also preserves the norms of the transported
vector and the tangent vector.



In this section, we will start from the definition of parallel transport on
general Lie groups and then look more specifically at parallel transport on the
manifold of diffeomorphisms, Diff(Ω). Then we will do a computational com-
plexity analysis of parallel transport. We’ll also talk about details related to
implementing parallel transport of diffeomorphisms on a computer, including
numerical integration details and using a Fourier-approximated Lie algebra to
speed up the discrete computation.

3.1 Parallel Transport Equation

Let’s start by looking generally at right-invariant vector fields v and w on a Lie
group. We can look at how w varies in the direction v by looking at the covariant
derivative ∇vw. Parallel transport of a tangent vector along a curve is defined
by this covariant derivative of the transported vector being zero in the direction
of the velocity of the curve. The covariant derivative for right-invariant vector
fields (c.f. [3]) is given by the equation

∇vw = −1

2

(
ad†vw + ad†wv − advw

)
. (12)

For our application, we want to transport along a curve φt in the space of
diffeomorphisms. Remember that (1) says the change in φt over time is equal to
a time-varying velocity field vt composed with φt. Let’s plug these time-varying
right-invariant vector fields into (12) to get the following:

∇vtwt =
dwt
dt
− 1

2

(
ad†vtwt + ad†wtvt − advtwt

)
, (13)

where the dwt/dt comes from needing to take the total derivative since wt varies
with time. Let’s set this covariant derivative to 0 and substitute the definitions
for advtwt and ad†vtwt from (7) and (9) to get:

dwt
dt

= −1

2
(K
[
(Dvt)

TLwt +D(Lwt)vt + Lwt div vt
]

+K
[
(Dwt)

TLvt +D(Lvt)wt + Lvt divwt
]

−Dvtwt +Dwtvt).

(14)

Notice that this becomes the geodesic equation when wt = vt.

3.2 Computational Complexity Analysis

The computational complexity of solving (14) is O(NM logM) where M is the
number of voxels in the image and N is the number of time steps taken. If we
instead solve (14) in the Fourier-approximated space, the complexity improves
to O(Nm logm), where m is number of frequencies used in the reduced space.
We use m = 163 in the real data experiments below. Note that computing Jacobi
fields in the Lie algebra would be the same complexity. But our method avoids



computing the horizontal lifts needed in order to enforce the scalar momenta
constraint used by other LDDMM parallel transport methods. These horizon-
tal lifts involve solving an M -dimensional system of linear equations using an
iterative conjugate gradient method.

3.3 Implementation Details

In order to gain the performance benefits from performing operations in the
Fourier-approximated Lie algebra (FLASH) [17], we implemented parallel trans-
lation in the Flash C++ environment [18], which is built on top of PyCA [10].
Additionally, we implemented a more accurate numerical integration scheme for
both forward integrating v0 at each time step t = 1/N, 2/N..., 1 and for solving
the parallel translation ODE (13) numerically using N time steps. We provide
both an Euler first-order scheme and a Runge-Kutta fourth-order (RK4) scheme
to perform these integrations, with the RK4 integration happening indepen-
dently for wt and vt. Ideally, since wt and vt are coupled, the integration would
be even more accurate by doing a coupled symplectic integration scheme. Below
we run experiments in order to find a reasonably small N that gives good enough
stability.

4 Experiments

We ran experiments with both synthetic images and real 3D MR images of hu-
man brains to explore the accuracy, stability and speed of our parallel translation
approach. In all of our experiments, we follow the same general setup. First we
use Flash C++ to do image matching between two time points of the first sub-
ject, I0 and In, to find a diffeomorphism between the two images represented by
an initial velocity w0n . Then we do image matching between the first subject, I0
and the template image, T0 to find a diffeomorphism between the subject and the
template represented by the initial velocity v0. At this point, we parallel translate
w0n in the direction of v0 to get the translated diffeomorphism represented by
the initial velocity π(w0n) as shown in Figure 1. The values 〈Lv, v〉, 〈Lv,w〉, and
〈Lw,w〉, while different from each other, should each remain constant through-
out integration. We measure the percent change of these inner products at each
time step of the integration in order to quantify the stability.

4.1 Synthetic Data

We modeled our synthetic data experiments to follow the approach of Lorenzi
and Pennec [7] that was also used by [8]. These experiments consist of 2D images
of size 256 x 256 pixels. The subject’s initial image, I0, at time 0 is composed
of centered black and white semi-circles with a 21 pixel radius surrounded by a
centered grey circle with a 42 pixel radius. Brain atrophy over 3 time steps is
modeled by decreasing the volume of the outer grey circle by 5% of the initial
time point at each time increment, while simultaneously increasing the volume



Fig. 1: Results of parallel translating w0n for each I0 · · · I3 to the template space
T0 to produce the transformed images T1, T2, T3.

of the inner semi-circles by 5%. A second image, T0, which can represent either
a template image, atlas image, or second subject, is composed of the same black
and white semi-circles found in I0, while the outer grey circle has been deformed
into an ellipse by stretching the top and bottom edges an amount equal to 10%
of the diameter of the grey circle in I0 and then rotating the ellipse by 45◦.

The initial velocities v0, w01
, w02

, w03
of the deformations are found with 100

iterations of Flash C++’s image matching using a truncation dimension of 16 and
the parameters α = 3.0, s = 3.0, σ = 0.03, γ = 0.2. The results of transporting
these velocities between I0 and each time point In, n ∈ {1, 2, 3} can be seen in
Figure 1.

Numerical Stability We expect to see that the stability of parallel translation
improves as the number of time steps of numerical integration increase for a
particular integration scheme, or improves for higher order numerical schemes.
Additionally, we want to characterize the stability of translation as the defor-
mations grow larger. Therefore, we compare the percent change relative to the
value at t = 0 of the norms, 〈Lv, v〉 = ‖v‖2, 〈Lw,w〉 = ‖w‖2, and the relative
percent change of the inner product, 〈Lv,w〉, all of which should be 0 since
these inner products remain constant throughout parallel translation. We look
at how the stability changes as we do either 10, 20 or 100 time steps of both
an Euler first-order numerical integration scheme and a Runge-Kutta 4 (RK4)
fourth-order integration scheme. We then do this same comparison for the 5%,
10%, and 15% volume change to see how the implementation behaves as defor-
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Fig. 2: Percent relative change of the inner product over the integration time from
0 to 1. Where relative percent change of x = 〈·, ·〉 is computed by 100∗(xt−x0)/x0

for each time step t. The rows correspond to results for 5%, 10% and 15%
simulated atrophy respectively.

mations grow larger. As you can see in Figure 2, the relative change approaches
0 as expected as the number of integration steps increases and as the numeri-
cal scheme changes from Euler to RK4 where it becomes effectively 0 for 100
steps of RK4. While it is more expensive to compute this many steps of RK4, it
provides excellent preservation of the relationship between v and w throughout
the parallel transport. From these results, we see that 20 iterations of RK4 gives
reasonable performance without being too computationally intensive. Therefore,
we chose to do 20 iterations of RK4 for the real data experiments below. Note
also that the percent relative change for the angle between v and w, 〈Lv,w〉,
increases somewhat as the amount of deformation increases from 5% simulated
atrophy in the top row to 10% atrophy in the center row to the 15% simulated
atrophy in the bottom row. It is expected that the larger deformation leads to
somewhat larger errors.

4.2 Real Data

We looked at performance of our parallel translation in the context of 3D brain
MRIs from the OASIS database in order to see how well it captures known
atrophy associated with the progression of Alzheimer’s disease. We did pairwise
comparison of every combination of 11 healthy subjects and 10 subjects with
Alzheimers. We start with images of size 128 x 128 x 128 that have had the



skulls stripped out, intensities normalized, and are then rigidly co-registered.
For each pair, the subject with Alzheimer’s is I0, and I1 is the same subject’s
scan at a later time, between 2 and 5 years later. the healthy subject’s initial
scan is T0. I0 is deformably registered to each of I1 and T0 using 200 iterations of
image matching from Flash C++ with truncated dimension of 16 and parameters
α = 3.0, s = 3.0, σ = 0.03, γ = 1.0. The results for a typical pair are shown in
Figure 3.

Fig. 3: Axial and coronal views of the results of parallel translating w0 along v0

to the template space T0 to produce the transformed image π(w0). The top row
in each group consists of the original images from a subject with Alzheimer’s,
I0 and I1 as well as the difference image I1 − I0. The bottom row in each group
consists of the original template image from a control subject T0, the parallel
translated image π(w0), and the difference image π(w0)− T0.

One of the benefits of this parallel transport is that it is significantly faster
than the image matching registrations used to produce the diffeomorphisms to
be transported. For our experiments with real data, the image registration of one
pair of 3D images took on the order of 800 seconds while the parallel transport of
3D vector fields from one subject to another took on the order of 8 seconds.Since
parallel transport is consistently 2 orders of magnitude faster than the image
matching, it becomes an essentially free operation for an image analysis pipeline.

Numerical Stability In order to evaluate the numerical stability, we look at
the maximum percent change of the inner products 〈Lv, v〉, 〈Lv,w〉, 〈Lw,w〉 as
w is transported along v. A plot of the maximum percent change across all 106
pairs of subjects can be found in Figure 4. The largest maximum relative change
across all subjects in 〈Lv,w〉 is 8.6%. The associated 〈Lv, v〉 is 0.0009% and the
〈Lw,w〉 is 0.0000% for this same pair of subjects. In order to understand why
this pair had such a large value compared to other pairs, we ran the same pair
for 100 steps of RK4. That experiment resulted in much smaller percent change
of 〈Lv,w〉 = 1.51%, 〈Lv, v〉 = 0.00086%, 〈Lw,w〉 = 0.0000%.
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Fig. 4: Maximum amount of change in inner products for each subject. The left
plot shows the maximum relative change of each subject x = 〈·, ·〉 is computed
by max0≤t≤1 ((xt − x0)/x0). The right plot shows the maximum absolute change
of each subject, computed as max0≤t≤1 (xt − x0).

5 Conclusion

We presented a method to perform parallel translation in the space of diffeo-
morphisms, allowing us to work with the parallel translation equations directly
instead of approximating them. Further, we were able to use FLASH to speed
up computations further by performing them in a smaller Fourier-approximated
space. We demonstrated that our method is numerically stable and that preser-
vation of the inner products throughout parallel translation can be improved in
a predictable manner by increasing the number of integration steps and/or using
the RK4 scheme with a modest associated computational cost.

We look forward to applying this method to studying trajectories of anatom-
ical shape change in a variety of medical image analysis contexts. Also, this
method is one example of how formulating problems directly in the space of
diffeomorphisms and working with that Lie algebra combined with efficiencies
gained from FLASH techniques allows us to perform computations efficiently
and stably. We expect that this same approach could work well for other analy-
sis such as working with Sasaki metrics.
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