Open Source Software for TDA

ACM-BCB Workshop on TDA October 2, 2016

by Svetlana Lockwood

Topological Data Analysis 1. Persistence-Way

- Topological analysis using persistent homology
- Finds topological invariants in data (# of connected components, enclosed voids, etc.)

$$\beta_0 = 1$$

$$\beta_1 = 0$$

$$\beta_2 = 1$$

$$\beta_0 = 1$$

$$\beta_1 = 2$$

$$\beta_2 = 2$$

Topological Data Analysis

1. Persistence-Way

- Topological analysis using persistent homology
- Finds topological invariants in data (# of connected components, enclosed voids, etc.)

$$\beta_0 = 1$$

$$\beta_1 = 0$$

$$\beta_2 = 1$$

$$\beta_0 = 1$$

$$\beta_1 = 2$$

$$\beta_2 = 1$$

2. Mapper-Way

- Apply a filter function to project data onto a lower dimensional space
- Performs partial clustering in the level sets

- A number of free software has appeared recently
- R package "TDA"
- A number of benefits:
 - Familiar R environment
 - Implements 2 types of representation (barcodes & birth-death)
 - R interface to efficient C++ libraries of GUDHI, Dionysus and PHAT

- TDA package for R is developed by
 - Brittany T. Fasy, Jisu Kim, Fabrizio Lecci, Clement Maria, Vincent Rouvreau
- Some of examples from:
 - Fasy, Brittany Terese, Jisu Kim, Fabrizio Lecci, and Clément Maria. "Introduction to the R package TDA." arXiv preprint arXiv:1411.1830 (2014).
 - Kim, Jisu. "Tutorial on the R package TDA."

Goal: to discover underlying shape of data

 Goal: to discover underlying shape of data Data

Ghrist, R., 2008. Barcodes: the persistent topology of data.

Goal: to discover underlying shape of data

Data

Topological Features

Ghrist, R., 2008. Barcodes: the persistent topology of data.

- Goal: to discover underlying shape of data
- (switch to R)

Data

Topological Features

Ghrist, R., 2008. Barcodes: the persistent topology of data.

- Plasmids are mobile elements
- Exchange genetic material
- 831 plasmids (see table)
- Original data: 831 plasmids by 81898 features
- Computed pairwise genetic distance → 831 x 831 matrix
- Want to see if there is any "interesting" structure

(switch to R)

Subgroup	Count
1. Alpha	159
2. Beta	85
3. Gamma	519
4. Delta/epsilon	68
Total plasmids	831

Pictures adapted from http://www.scienceprofonline.com

Other Software For Persistent Homology

Other open source software is available for computing persistent homology

Interface to Matlab/Octave

Software	Installation	Complex	Boundary matrix	Barcodes	Visualization	Data Set Size	Ease of Use
avaPlex	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	small	easy
Perseus	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	small	easy
Dionysus		\checkmark	\checkmark	\checkmark		medium	medium
DIPHA		\checkmark	\checkmark	\checkmark	\checkmark	large	hard
GUDHI		\checkmark	\checkmark	\checkmark		large	hard

arxiv 2015, N. Otter, M. A. Porter, U. Tillmann, P. Grindrod, H. A. Harrington

 Apply a filter function to project data onto a lower dimensional space

- Apply a filter function to project data onto a lower dimensional space
- Performs partial clustering in the level sets using standard clustering algorithms to subsets of the original data

- Apply a filter function to project data onto a lower dimensional space
- Performs partial clustering in the level sets using standard clustering algorithms to subsets of the original data
- data
 Goal: to understand the interaction of the partial clusters formed in this way with each other

- Apply a filter function to project data onto a lower dimensional space
- Performs partial clustering in the level sets using standard clustering algorithms to subsets of the original data
- Goal: to understand the interaction of the partial clusters formed in this way with each other
- A few open source software exists
 - However all have some limitations

 I'll present Python-based version developed by MLWave & examples from https://github.com/MLWave/keplermapper

MLWave

- I'll present Python-based version developed by MLWave & examples from https://github.com/MLWave/keplermapper
- Pros:
 - Simple programming interface
 - Makes use of existing python ML libraries
 - Nice visualizations
- Cons:
 - Limited coloring
 - Not completely automated

Python Mappers: Prerequisites

- I highly recommend installing Anaconda
 - Saves a lot of troubles
 - Comes with SciPy, NumPy, scikit-learn
 - Includes Python IDE and package manager (pip)
- Copy **km.py** from MLWave into Anaconda Lib folder

Intro Mapper Example: MNIST digits *Intro example from MLWave*

- The MNIST database of handwritten digits
- Thousands of digits

Intro Mapper Example: MNIST digits *Intro example from MLWave*

- The MNIST database of handwritten digits
- Thousands of digits
- Each digit is represented by 8x8 pixel image
- Goal: cluster handwritten digits according to their value

(switch to python)

Plasmids Network Overlap – 10%

Plasmids Network Overlap – 30%

Plasmids Network Overlap – 50%

Plasmids Network Overlap – 70%

Plasmids Network Overlap – 90%

Other Mapper Software

- Mapper by Daniel Müllner
- Installation and the list of dependencies
 - <u>http://danifold.net/mapper/installation/</u>
- Website also contains Mapper documentation
- Nice GUI (show)
- More complex

Other Mapper Software

- R package "TDAmapper"
- A walkthrough and a tutorial by *Frederic Chazal and Bertrand Michel* at
 - <u>http://www.lsta.upmc.fr/michelb/Enseignements/TDA</u> /<u>Mapper_solutions.html</u>
- Familiar R environment
- Visualizations are somewhat limited (show)

References

- 1. Fasy, Brittany Terese, Jisu Kim, Fabrizio Lecci, and Clément Maria. "Introduction to the R package TDA." *arXiv preprint arXiv:1411.1830* (2014).
- 2. Kim, Jisu. "Tutorial on the R package TDA."
- 3. Daniel Muller's Mapper <u>http://danifold.net/mapper/installation/</u>
- 4. TDAmapper in R

http://www.lsta.upmc.fr/michelb/Enseignements/TDA/Mapper_solutions.html

- 5. Python Mapper by MLWave <u>https://github.com/MLWave/kepler-</u> mapper
- 6. Ghrist, R., 2008. Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society, 45(1), pp.61-75.

Thank You! Questions?