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Topology

Invariance to Deformations
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Create nodes



Topological Mapping

Create edges



Topological Mapping

Nerve complex
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Li et al, Science Translational Medicine, 2015



Mapping

Torres et al, PLOS Biology, 2016



Mapping
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Mapping

RNA hairpin folding data
Joint with G. Bowman, X. Huang, Y. Yao, J. Sun, L. Guibas, V.

Pande, J. Chem. Physics, 2009



Mapping

Diagram of gene expression profiles for breast cancer
M. Nicolau, A. Levine, and G. Carlsson, PNAS 2011



Mapping

Comparison with hierarchical clustering



Different platforms - importance of coordinate free approach



Mapping

Serendipity - copy number variation reveals parent child
relations



Mapping

Discover what you don't know. Discover what you don't know. 

About the Data 

Example: Quality Control 

Data handling is not an error-free process; mislabeling control samples can lead to incorrect 
assumptions in your analysis. Within minutes, Ayasdi Iris identified a sub-structure separated from the 
rest of the network.  Initially thought to be a specific treatment with stark differences in cell effects, a 
deeper look at the well locations showed that these were mislabeled control samples. 
 

In an experiment testing cell 
exposure to various bacterial 
strains, cells were separated in a 
96-well plate, the labeling of which 
was done by hand in the lab. 

 
8,022 cell samples 
8187 measurements 

Exploration of this sub-group, 
revealed these data points 
were mislabeled. 
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Topological Modeling

y=1-x
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Topological Modeling - Coloring by Function Values

World Values Survey - 2000 U.S. Respondents
11 Questions on Trust in Institutions



Topological Modeling - Coloring by Function Values

Color by response to left/right preference



Topological Modeling - Coloring by Function Values

Coloring by sum of trust in all 11 institutions



Topological Modeling - Coloring by Function Values

Color by response to “Do you feel you have control over your
life?”



Topological Modeling - Coloring by Function Values

Response to “Should employers favor native born employees in
difficult economic times?”



Topological Modeling - Coloring by Function Values

Response to “How much faith do you have in the U.N.?”
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I Suppose we are given outcome of interest, such as
“survival”, “revenue”, “fraud”, “Democrat/Republican”,
etc.

I Coloring by average value of outcome on data points in
node is useful

I Frequently discover “hot spots” of concentration of high
values of the outcome

I Extremely useful information
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Topological Modeling - Hot Spot Analysis

Discover what you don't know. Discover what you don't know. 

About the Data 

Example: Model Verification 

Network of patients colored by the predicted survival (upper left, blue indicates good predicted survival) 
and actual survival (lower right, blue indicates good survival) – a group of patients was identified with 
good predicted survival but bad outcomes.  Further analysis showed that missing data was misleading 
the model used to make survival predictions. 

When patients come to an 
emergent care facility, doctors 
need to assess priority and predict 
probability of survival with medical 
intervention. 

Patient is quickly assessed for 
information about their condition: 
temperature, blood pressure, yes/
no questions. 

Predicted survival 

Actual survival 



Topological Modeling - Hot Spot Analysis

Program Downgrades
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Program Downgrades



Topological Modeling - Hot Spot Analysis

Credit Risk Analysis



Topological Modeling - Feature Selection

I It is often useful to consider a topological model of the
space of columns rather than rows in a data set

I Density is an interesting feature in this space - one often
needs to compensate for overrepresented features

I Centrality also interesting - least central features may be of
most interest

I Hot spot analysis in columns is also useful
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Topological Modleing - Feature Selection
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CCAR Stress Test Analysis Model
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Measuring Shape

Two different lassos capture same obstacle



Measuring Shape

Solve by introducing homotopy relation



Measuring Shape

Second different lasso



Measuring Shape

Adding two lassos together



Measuring Shape

Multiplying a lasso by 2
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Measuring Shape

Counts the number of “i-dimensional holes”
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One dimensional barcode:
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Measuring the Shape of Data - Barcodes

1=2



Application to Natural Image Statistics

With V. de Silva, T. Ishkanov, A. Zomorodian



Natural Images

An image taken by black and white digital camera can be
viewed as a vector, with one coordinate for each pixel

Each pixel has a “gray scale” value, can be thought of as a real
number (in reality, takes one of 255 values)

Typical camera uses tens of thousands of pixels, so images lie in
a very high dimensional space, call it pixel space, P
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Natural Images

D. Mumford: What can be said about the set of images I ⊆ P
one obtains when one takes many images with a digital camera?



Natural Images

Solution (Lee, Mumford, Pedersen): Study local structure of
images statistically, where there is less variation

Specifically, study 3× 3 patches in the image.

Study high density high contrast patches
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Primary Circle

PRIMARY CIRCLE



Three Circle Model

5× 104 points, k = 15,T = 25

One-dimensional barcode, suggests β1 = 5

What’s the explanation for this?
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Three Circle Model

Red and green circles do not touch, each touches black circle
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β1 = 5
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Three Circle Model

Does the data fit with this model?



Three Circle Model

SECONDARY CIRCLE



Three Circle Model

PRIMARY

SECONDARY SECONDARY



Database

k small

k large

T = 5% T = 25%



Three Circle Model

IS THERE A TWO DIMENSIONAL SURFACE IN
WHICH THIS PICTURE FITS?



Klein Bottle

4.5× 106 points, k = 100, T = 10

Betti 0 = 1

Betti 1 = 2

Betti 2 = 1

Betti 0 = 1

Betti 1 = 2

Betti 2 = 1



Klein Bottle

K - KLEIN BOTTLE



Klein Bottle

i 0 1 2

βi(K) 1 2 1

Agrees with the Betti numbers we found from data
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Identification Space Model



Klein Bottle

P

P Q

Q

R

R

S

S

Identification Space Model



Klein Bottle

Do the three circles fit naturally inside K?



Klein Bottle

PRIMARY CIRCLE

P

PQ

Q



Klein Bottle

SECONDARY
    CIRCLES

R

R

S

S
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Natural Image Statistics

Klein bottle makes sense in quadratic polynomials in two
variables, as polynomials which can be written as

f = q(λ(x))

where

1. q is single variable quadratic

2. λ is a linear functional

3.
∫
D f = 0

4.
∫
D f 2 = 1



Kleinlet Compression

I This understanding of density can be applied to develop
compression schemes

I Earlier work, based on primary circle, called “Wedgelets”,
done by Baraniuk, Donoho, et al.

I Extension to Klein bottle dictionary of patches natural
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Jose Perea - Duke University Klein Bottle and Texture Discrimination
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Evolution

Theorem: Let T be a tree, perhaps with lengths assigned to
the edges. Then for any finite subspace of T , the persistent
homology vanishes for every i > 0. This means there are no
bars in higher degrees.



Evolution

Barcodes indicating the presence of “horizontal evolution”



Evolution

I Can study persistence barcodes of metric spaces of trees
arising in evolution

I Presence of large loops can suggests standard model is
incomplete

I Signal of presence of alternate mechanisms, such as
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I Can also estimate various rates from the barcodes, by
performing simulations
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I Each barcode βk(−) is Lipschitz with constant one from
metric spaces with Gromov-Hausdorff metric to B

I B is also an infinite algebraic variety, suitably defined

I One obtains an infinite coordinatization of B using
functions ξij , i > 0, j ≥ 0

I Feature generation for this kind of data
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Thank you!


