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Big Data

» Complexity is a fundamental issue
» Complexity both in structure and format

» Requires an organizing principle
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» Data has shape

» The shape matters
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Linear Regression
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“Y-junction”
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Shape of Data

» How to model data?

» Usually done algebraically - lines, quadratics, etc.

» Capturing all kinds of shape requires different method
> Topological modeling
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Shape of Data

> Normally defined in terms of a distance metric
» Euclidean distance, Hamming, correlation distance, etc.

» Encodes similarity
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Topology

» Formalism for measuring and representing shape
» Pure mathematics since 1700's

» Last ten years ported into the point cloud world



Topology
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Konigsberg Bridges
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Topology

Three key ideas:
» Coordinate freeness
» Invariance under deformation

» Compressed representations
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Coffee cup is the “same” as a doughnut




Topology

Compressed Representations of Geometry
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Topology

Two tasks:

» Represent shape

» Measure shape



Representing Shape

Can one extend topological mapping methods (compressed
representations) from idealized shapes to data?



Representing Shape

Can one extend topological mapping methods (compressed
representations) from idealized shapes to data?

Yes (Singh, Memoli, G. C.)



Topological Mapping

Covering of Circle
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Create nodes




Topological Mapping

Create edges




Topological Mapping

Nerve complex
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Mapping

Now given point cloud data set X, and a covering U.

Build simplicial complex same way, but components replaced by
clusters.
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Mapping

How to choose coverings?

Given a reference map (or filter) f : X — Z, where Z is a
metric space, and a covering U/ of Z, can consider the covering
{f‘an}aeA of X. Typical choices of Z - R, R?, St.

The reference space typically has useful families of coverings
attached to it.
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Typical one dimensional filters:

» Density estimators
Measures of data depth, e.g. >,/ cx d(x, x')?
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Mapping

Typical one dimensional filters:

>

v

v

v

v

Density estimators

Measures of data depth, e.g. >,/ cx d(x, x')?
Eigenfunctions of graph Laplacian for Vietoris-Rips graph
PCA or MDS coordinates

User defined, data dependent filter functions



Mapping

Relationships between diabetic, pre-
diabetic and healthy populations

Glucose level Insulin response

Pre- diabetic Overt Diabetic

Miller-Reaven Diabetes Dataset (3



Mapping

Subtype 3

Li et al, Science Translational Medicine, 2015



Mapping

Mouse Disease Curve Human Disease Curve

Torres et al, PLOS Biology, 2016



Mapping

Louie et al, PLOS Biology, 2016




Mapping

Economic Regime Analysis
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Mapping

RNA hairpin folding data
Joint with G. Bowman, X. Huang, Y. Yao, J. Sun, L. Guibas, V.
Pande, J. Chem. Physics, 2009




Mapping

Diagram of gene expression profiles for breast cancer
M. Nicolau, A. Levine, and G. Carlsson, PNAS 2011



Mapping

Comparison with hierarchical clustering
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Mapping

Serendipity - copy number variation reveals parent child
relations



Mapping

Example: Quality Control

About the Data

In an experiment testing cell
exposure to various bacterial
strains, cells were separated in a
96-well plate, the labeling of which
was done by hand in the lab.

Exploration of this sub-group,
revealed these data points
were mislabeled

8,022 cell samples
8187 measurements

Data handling is not an error-free process; mislabeling control samples can lead to incorrect
assumptions in your analysis. Within minutes, Ayasdi Iris identified a sub-structure separated from the
rest of the network. Initially thought to be a specific treatment with stark differences in cell effects, a
deeper look at the well locations showed that these were mislabeled control samples.

AYASDI
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Topological Modeling

v

Suggests a new kind of modeling

v

Output is no longer a set of algebraic formulae, but a
network

v

Input is a finite set equipped with a distance function

v

Distance function encodes similarity



Topological Modeling




Topological Modeling
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Topological Modeling - Coloring by Function Values

World Values Survey - 2000 U.S. Respondents
11 Questions on Trust in Institutions



Topological Modeling - Coloring by Function Values

Conservative

Color by response to left/right preference



Topological Modeling - Coloring by Function Values

Non-
~ Establishment
5

Establishment

Coloring by sum of trust in all 11 institutions



Topological Modeling - Coloring by Function Values

Color by response to “Do you feel you have control over your
life?"



Topological Modeling - Coloring by Function Values

Response to “Should employers favor native born employees in
difficult economic times?”



Topological Modeling - Coloring by Function Values

Support UN

Response to “How much faith do you have in the U.N.?"
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Topological Modeling - Hot Spot Analysis

» Suppose we are given outcome of interest, such as
“survival”, “revenue”, “fraud”, “Democrat/Republican”,
etc.

» Coloring by average value of outcome on data points in
node is useful

» Frequently discover “hot spots” of concentration of high
values of the outcome

» Extremely useful information



Topological Modeling - Hot Spot Analysis

Example: Model Verification

Predicted surv

About the Data

When patients come to an
emergent care facility, doctors
need to assess priority and predict
probability of survival with medical

Actual survival intervention.

Patient is quickly assessed for
information about their condition:
temperature, blood pressure, yes/
no questions.

Network of patients colored by the predicted survival (upper left, blue indicates good predicted survival)
and actual survival (lower right, blue indicates good survival) — a group of patients was identified with
good predicted survival but bad outcomes. Further analysis showed that missing data was misleading
the model used to make survival predictions.

AYASDI




Topological Modeling - Hot Spot Analysis
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Program Downgrades



Topological Modeling - Hot Spot Analysis

But downgrades
are different

Upgrades are the
same

Credit Risk Analysis
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Topological Modeling - Feature Selection

» It is often useful to consider a topological model of the
space of columns rather than rows in a data set

» Density is an interesting feature in this space - one often
needs to compensate for overrepresented features

» Centrality also interesting - least central features may be of
most interest

» Hot spot analysis in columns is also useful



Topological Modleing - Feature Selection

CCAR Stress Test Analysis Model
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Measuring Shape

» Shape is nebulous concept

> Nevertheless very important to make precise

» Important to be able to “measure” it precisely in an
appropriate sense

» Achieve by counting occurrences of patterns in am
appropriate sense



Measuring Shape




Measuring Shape

Capturing obstacle by “lassoing”
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Capturing obstacle by “lassoing”




Measuring Shape

Two different lassos capture same obstacle




Measuring Shape

Solve by introducing homotopy relation




Measuring Shape

Second different lasso




Measuring Shape

Adding two lassos together




Measuring Shape

Multiplying a lasso by 2
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Measuring Shape

» Algebraic topology performs counts of occurrences of
equivalence classes of geometric patterns

» Naive counting typically give infinite answers

» Counting is done by computing dimensions of algebraic
objects



Measuring Shape

th Betti number”
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Measuring Shape

Counts the number of “/-dimensional holes”
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Measuring Shape

» Betti numbers are computed as dimensions of Boolean
vector spaces (E. Noether)

> bi(X) = dimH:(X)
» H;(X) is functorial, i.e. continuous map f: X — Y
induces linear transformation H;(f) : Hi(X) — Hi(Y)

» Computation is simple linear algebra over fields or integers
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Measuring Shape of Data

> Need to extend homology to more general setting including
point clouds

» Method called persistent homology

» Developed by Edelsbrunner, Letscher, and Zomorodian and
Zomorodian-Carlsson
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» Finite sets are discrete



Measuring Shape of Data

» How to define homology to point clouds sensibly?
> Finite sets are discrete

» Statisticians knew what to do



Measuring Shape of Data

091

08}

07

06

05}

04}

03}

02}

12312 519 4132926 9 310 724 61128172021 218 830251415271622

Dendrogram




Measuring Shape of Data

» Points are connected when they are within a threshhold €




Measuring Shape of Data

» Points are connected when they are within a threshhold €

» Dendrogram gives a profile of the clustering at all €'s
simultaneously



Measuring Shape of Data

» Points are connected when they are within a threshhold €

» Dendrogram gives a profile of the clustering at all €'s
simultaneously

» Doesn't require choosing a threshhold
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Measuring Shape of Data

» How to build spaces from finite metric spaces

» Use the nerve of the covering by balls of a given radius ¢
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» Provides an increasing sequence of simplicial complexes
> Apply H;

» Gives a diagram of vector spaces (Noether's functoriality)

V0—>V1—>V2—>V3—>"~



Measuring Shape of Data

v

Provides an increasing sequence of simplicial complexes
Apply Hi

Gives a diagram of vector spaces (Noether’s functoriality)

v

v

Vo-Vi—=>Vo—> V3 — ...

v

Call such algebraic structures persistence vector spaces
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Measuring the Shape of Data

» Can we classify persistence vector spaces, up to
isomorphism?

» Yes, analogous to classification of ordinary vector spaces by
dimension

» Classification parametrized by bar codes, i.e. finite
collections of intervals

» Readily computable due to the judicious use of higher
algebra



Measuring the Shape of Data - Barcodes
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Measuring the Shape of Data - Barcodes
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Measuring the Shape of Data - Barcodes
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Measuring the Shape of Data - Barcodes
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Measuring the Shape of Data - Barcodes
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Measuring the Shape of Data - Barcodes
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Application to Natural Image Statistics

With V. de Silva, T. Ishkanov, A. Zomorodian
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Natural Images

An image taken by black and white digital camera can be
viewed as a vector, with one coordinate for each pixel

Each pixel has a “gray scale” value, can be thought of as a real
number (in reality, takes one of 255 values)

Typical camera uses tens of thousands of pixels, so images lie in
a very high dimensional space, call it pixel space, P



Natural Images

D. Mumford: What can be said about the set of images Z C P
one obtains when one takes many images with a digital camera?



Natural Images
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Natural Images

Solution (Lee, Mumford, Pedersen): Study /ocal structure of
images statistically, where there is less variation

Specifically, study 3 x 3 patches in the image.

Study high density high contrast patches
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Primary Circle

5 x 10* points, k =300, T = 25

One-dimensional barcode, suggests 31 = 1

Is the set clustered around a circle?



Primary Circle

PRIMARY CIRCLE




Three Circle Model

5 x 10* points, k =15, T = 25

One-dimensional barcode, suggests 51 = 5




Three Circle Model

5 x 10* points, k =15, T = 25

One-dimensional barcode, suggests 51 = 5

What's the explanation for this?



Three Circle Model




Three Circle Model

THREE CIRCLE MODEL




Three Circle Model

Red and green circles do not touch, each touches black circle




Three Circle Model
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Three Circle Model

Does the data fit with this model?




Three Circle Model

SECONDARY CIRCLE




Three Circle Model
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Database

k large

k small

T=5%

T=25%




Three Circle Model

IS THERE A TWO DIMENSIONAL SURFACE IN
WHICH THIS PICTURE FITS?



Klein Bottle

4.5 % 10° points, k = 100, T = 10

BettiO=1

Betti1=2 —_—

Betti2 =1 ' B




Klein Bottle

K - KLEIN BOTTLE




Klein Bottle

Bi(K)




Klein Bottle

I
BK) 121

Agrees with the Betti numbers we found from data



Klein Bottle
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Identification Space Model



Klein Bottle
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Klein Bottle

Do the three circles fit naturally inside K?



Klein Bottle
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Mapping Patches
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Mapping Patches




Natural Image Statistics

Klein bottle makes sense in quadratic polynomials in two
variables, as polynomials which can be written as

F = a(A(x))

where

1. q is single variable quadratic

2. A is a linear functional
3 [y f=0
4. [Hf2=1
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Kleinlet Compression

» This understanding of density can be applied to develop
compression schemes

» Earlier work, based on primary circle, called “Wedgelets”,
done by Baraniuk, Donoho, et al.

» Extension to Klein bottle dictionary of patches natural



Kleinlet Compression

A Picture is worth 1,000 words

The evidence for Kleinlets over Wedglets

(3 Coded by Kleinlet at .71bpp Coded by Wedgelet at .8bpp
Orlgmal PSNR=29dB PSNR=27.7dB

~

-

Kleinle

Kleinlet Wedgelet




Kleinlet Compression

PSNR Comparisons
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Texture Recognition
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» Texture patches can be sampled for high contrast patches




Texture Recognition

» Texture patches can be sampled for high contrast patches
> Yields distribution on Klein bottle
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Texture Recognition

» Klein bottle has a natural geometry, and supports its own
Fourier Analysis

» Textures provide distributions on the Klein bottle

» Pdf’s can be given Fourier expansions, gives coordinates
for texture patches (Jose Perea)

» Gives methods comparable to state of the art in
performance, but in which effect of transformations such as
rotation is predictable



Texture Recognition
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Summary

» Compression and texture recognition often obtained by
using finite dictionaries

» Geometry gives alternate notions of “finiteness”, i.e finite
geometric descriptions of finite sets

» Permits analysis using more mathematics, in particular
coordinate changes



Evolution

Bacteria Archaea Eukaryota

Slime -
Entamoebae Animals.
molds Fungi

Halophiles Plants
Ciliates
Flagellates
Trichomonads
Microspornidia

Dip lo monads

Tree of Life




Evolution

» Phylogenetics studies sets of sequences of various classes
of organisms



Evolution

» Phylogenetics studies sets of sequences of various classes
of organisms

» Uses Hamming or weighted versions of Hamming distances
as organizing principle



Evolution

» Phylogenetics studies sets of sequences of various classes
of organisms

» Uses Hamming or weighted versions of Hamming distances
as organizing principle

» Often analyze by finding best approximation to space by
trees



Evolution

» Phylogenetics studies sets of sequences of various classes
of organisms

» Uses Hamming or weighted versions of Hamming distances
as organizing principle

» Often analyze by finding best approximation to space by
trees

> Is this always justified ?



Evolution

Theorem: Let T be a tree, perhaps with lengths assigned to
the edges. Then for any finite subspace of T, the persistent
homology vanishes for every i > 0. This means there are no
bars in higher degrees.
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Evolution

» Can study persistence barcodes of metric spaces of trees
arising in evolution

» Presence of large loops can suggests standard model is
incomplete

» Signal of presence of alternate mechanisms, such as
horizontal gene transfer

» Can also estimate various rates from the barcodes, by
performing simulations

» J. Chan, G. C,, and R. Rabadan, Proc. Natl. Acad. Sci.
2013
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Other Applications of Persistence

» We have seen applications of persistent homology to
individual data sets

» Many times one has databases consisting of elements
which themselves carry a metric space structure

» Molecules, images, ...
» Can attach a barcode to each object

» Gives a “non-linear indexing scheme” for such
“unstructured” data

» Now one wants structures on space of barcodes for e.g.
Machine Learning
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Other Applications of Persistence

» Barcodes form a metric space B under “bottleneck
distance”

» Each barcode 3x(—) is Lipschitz with constant one from
metric spaces with Gromov-Hausdorff metric to B

> ‘B is also an infinite algebraic variety, suitably defined

» One obtains an infinite coordinatization of 98 using
functions £, i >0, >0
» Feature generation for this kind of data



Thank you!




