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Abstract

Quantification and visualization of uncertainty in cardiac forward and inverse problems with 

complex geometries is subject to various challenges. Specific to visualization is the observation 

that occlusion and clutter obscure important regions of interest, making visual assessment 

difficult. In order to overcome these limitations in uncertainty visualization, we have developed 

and implemented a collection of novel approaches. To highlight the utility of these techniques, we 

evaluated the uncertainty associated with two examples of modeling myocardial activity. In one 

case we studied cardiac potentials during the repolarization phase as a function of variability in 

tissue conductivities of the ischemic heart (forward case). In a second case, we evaluated 

uncertainty in reconstructed activation times on the epicardium resulting from variation in the 

control parameter of Tikhonov regularization (inverse case). To overcome difficulties associated 

with uncertainty visualization, we implemented linked-view windows and interactive animation to 

the two respective cases. Through dimensionality reduction and superimposed mean and standard 

deviation measures over time, we were able to display key features in large ensembles of data and 

highlight regions of interest where larger uncertainties exist.

1. Introduction

Forward and inverse problems in electrocardiography provide a means for studying the 

electrical properties and patterns that arise within the heart and/or torso from the integrated 

electrical activity of cardiac myocytes. In the forward case, electrical inferences are made 

based on given source models and associated conducting media that contain these sources. 

Inverse solutions, in contrast, use remote observations to deduce the electrical function of 

the cardiac sources. Solutions to forward and inverse problems, however, require several 

assumptions that, due to such characteristics as the complex nature of cardiac structure or 

the inherent need to regularize the inverse, generate uncertainty in the results.

To understand the uncertainty associated with cardiac forward and inverse problems, 

visualization techniques are often applied; however, visualization of 3-dimensional data 
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presents its own set of complexities. Obstruction and clutter can obscure or even hide 

regions of interest. To overcome these difficulties in visualization and to thus better 

understand variations in the uncertainty of electrocardiographic models, we have developed 

new 3-dimensional techniques to visually analyze simulation uncertainty.

In order to explore uncertainty visualization, we considered two electrocardiographic 

simulation cases—one for forward and one for inverse simulation. We first investigated the 

uncertainty associated with bidomain conductivities in the static forward model of an 

ischemic heart. In the second case, we explored variability in reconstructed activation times, 

computed by way of Tikhonov inverse, as a function of an unknown λ value. To more 

thoroughly investigate the uncertainties in our models, we have developed new visualization 

systems that overcome many of the difficulties of 3-dimensional rendering and provide a 

means of interactive exploration of high-dimensional data.

2. Methods

While both forward and inverse problems in electrocardiography seek to capture electric 

activity from the heart, they are different in formulation and solution approach. Each, 

therefore, required unique and specific uncertainty quantification and visualization 

approaches.

2.1. Static ischemic forward model

To generate data for the static ischemia model, we extracted cardiac and ischemic zone 

geometries from experimentally induced ischemic studies using approaches described 

previously [1, 2]. Fiber directions, acquired by diffusion tensor imaging (DTI), were also 

assigned.

In order to simulate ischemia, anisotropic conductivity values within the ischemic region 

were decreased (see Table 1) and a potential difference of 30 mV was applied to the 

transmembrane potential, Vm, to represent the weakened activity during the plateau phase of 

the ischemic action potential, which corresponds to the ST segment of the ECG [3]. A linear 

transition region (border zone) from the diseased to healthy tissue was also applied [4].

Cardiac activity under these conditions was represented by the bidomain passive current 

flow equation [3]

(1)

where σ̄
i and σē represent the intracellular and extracellular conductivity tensors, 

respectively, and Ve represents the unknown extracellular potentials.

There have been many studies attempting to document the conductivity values of the heart 

[5, 6]; however, these values remain elusive and, therefore, provide a source of uncertainty 

for the model. We selected a range of conductivity values from the literature [7] onto which 

we applied generalized polynomial chaos-stochastic collocation methods (gPC-SC) [8]. 

Conductivity values were treated as uniformly distributed, stochastic processes within the 
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conductivity range provided. gPC-SC was used to reduce the stochastic governing equations 

into a finite set of deterministic simulation parameters, reducing computational complexity 

and allowing us to extract the mean and probability density function of the resulting solution 

ensemble.

2.2. Activation time inverse solutions

The activation-based inverse problem aims to estimate the spread of electrical activation 

over the epicardium from measurements of electric potentials on the body surface during the 

QRS complex. Prior to computing the inverse solution, body surface potentials were 

generated by solving a distinct forward model from the one described in the previous 

section. This forward model was composed of a nonlinear function, x(τ), which mapped a 

set of activation times to transmembrane potentials (TMPs) from a discrete set of electrical 

sources along the heart surface, and a linear mapping, A, a matrix that computes body 

surface potentials from TMPs. This problem is not only non-linear but also ill-conditioned 

and hence requires regularization. A simple, yet effective approach to regularization uses the 

Tikhonov [9] method, resulting in the following non-linear, least squares (NLLS) 

optimization problem, which is non-convex [10]:

(2)

where b are the body surface potentials, L is a regularization matrix, and λ is a regularization 

parameter that controls the trade-off between data fidelity and solution regularity.

We have previously used a convex relaxation of the above problem and discovered 

uncertainty in the solutions possibly due, in part, to the inherent sensitivity of the problem to 

signal noise, geometric errors, forward model assumptions (e.g. source amplitudes), and 

inverse problem parameters (e.g. L and λ) [10, 11]. In this study, we focused on the 

uncertainty generated by the selection of λ. We chose 50 evenly-spaced values within the 

interval [0.09, 0.11] on which we performed a perturbation analysis. For each λ, a solution 

was found for the convex relaxation, from which activation times were computed; from 

these values, we calculated statistics of the activation time (mean and standard deviation) for 

each source on the heart surface. This spatial distribution of mean and standard deviation of 

the activation time gave a measure of the uncertainty of the solution associated with λ 

selection.

2.3. μView: myocardial uncertainty viewer

To enable uncertainty visualization for the volumetric ischemic simulations we created a 

five-way, linked-view tool (μView), examples of which are shown in Figure 1. Simulation 

results, acquired in Section 2.1, were combined and dimensionality reduction was applied to 

provide a means of displaying large ensembles (high dimensional) data. Figures 1A and 1B 

show standard deviations and isovalue separation, respectively as two forms of 

dimensionality reduction used to visualize these data. Other methods were also employed to 

explore the data including: mean, minimum and maximum isosurfaces, and clustering based 

on several correlation metrics. Mean and standard deviation visualizations applied simple 

statistical measures at each node of the simulation with increased intensity representing 
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increased values. Isovalue separation scanned each node of the simulation set and 

determined how many nodes were above (red) and below (blue) the assigned isovalue. The 

spectrum of color between these two extrema reflected nodes that had values, within the 

solution ensemble, that were both above and below the threshold. Minimum and maximum 

isosurfaces use the isovalue results to highlight only the surfaces produced by the isovalue 

extrema. Clustering applied k-means methods to bin similar nodes together. Similarities 

were determined by L2 norm, Pearson’s correlation, or histogram difference.

To overcome difficulties associated with 3D rendering, the following visual techniques were 

applied: volume rendering (Figure 1A ), a 2D view of parameter space ( ) and three 

orthogonal 2D slicing planes (panes – ). Volume rendering and 2D slicing planes are 

standard visualization techniques used to display data values at each point within the 

myocardium. The parameter space view, in order to reduce the high dimensional data while 

preserving important features, uses principle component analysis to contract the solution 

space into a 2D representation – allowing the user to explore features not otherwise visible 

in the spatial domain. The shape of the resulting image is arbitrary and is a result of the 

selected principle components. For more information on the technical aspects of how these 

methods are applied, please see our prior work [12].

2.4. Uncertainty animation

Static isochronal maps of activation times are the most common visualization method for 

activation-based simulations of the spread of excitation in the heart. Such compression of an 

entire heart beat into a single image is one of the advantages of activation mapping that 

supports its utility in research and clinical applications. However, in the setting of 

visualizing uncertainty, the need to view additional parameters and their variation over both 

time and parameter space provides new challenges. To address this challenge, we have 

expanded the static, single image of activation to become an interactive animation over time. 

Similar to visualizing an animation of the moving activation wavefront, each frame of our 

animation shows spatial regions that are within one standard deviation of the current mean 

activation time and allows the user to move forward and backward in time as well as adjust 

view parameters. Figure 2 shows a single time instant from such an animation in which 

regions in yellow correspond to areas with low standard deviation values, i.e., represent the 

mean activation time values. Other regions, spanning from red to purple, display larger 

values of the standard deviation and indicate the spatial distributions of uncertainty for this 

particular time instant. Examples of this uncertainty animation can be found at http://

www.sci.utah.edu/~kpotter/research/heartActivation/

3. Results

Visualizing the results of varied conductivity parameters in the forward problem and the 

regularization parameter of the inverse problem allowed us to identify regions of interest 

within simulation results. In the ischemic forward model, isosurfacing, min/max 

isosurfacing and clustering allowed us identify regions near the ischemic zone by scanning 

the solution space of the simulation. Though independent of the physical space, these 

methods were able to scan the solution space and provide the viewer with a sense of 

uncertainty with respect to a specified isovalue or number of bins. By projecting these 
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findings onto the physical space we were able to observe at what location, the chosen 

solution parameters differed. Standard deviation values were able to illustrate regions of 

uncertainty, within the areas of interest, as a sense of a range of variance within the solution 

ensemble.

By animating the activation based inverse solution, we were able to identify regions on the 

surface of the heart that exhibited higher temporal and spatial uncertainty. During a single 

frame of the animation (such as is seen in Figure 2) the standard deviation in some regions 

span a small distance (1/10 of the LV circumference) where other regions show spatial 

variation as large as 1/4 of the LV circumference. The temporal discrepancy in activation 

times within these spatial regions is as high as 36.4 ms.

3.1. Discussion

By using several uncertainty visualization techniques, we were able to highlight regions of 

interest in ischemic forward simulations and activation-based inverse solutions. Questions 

stemming from discrepancies in experimentally measured conductivity values for cardiac 

tissue generated small uncertainties in the forward solution. Regions in or near the ischemic 

zone exhibited greater standard deviations, while regions near the epicardium (where DTI-

defined fiber directions exhibited more random directional behavior) had wider 

discrepancies between min and max isosurfaces (not shown). These results remain 

inconclusive and will require further investigation. Likewise, for the inverse case, some 

spatial regions were shown to exhibit higher standard deviations than others based on 

different, user selected regularization parameters, λ, that merits additional study.

Acknowledgments

This project was supported by grants from the National Center for Research Resources (5P41RR012553-14) and 
the National Institute of General Medical Sciences (8 P41 GM103545-14) from the National Institutes of Health 
and by Award No. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST). 
Experiment data collection was funded by the Nora Eccles Treadwell Foundation at the Cardiovascular Research 
and Training Institute.

References

1. Shome, S.; MacLeod, R. Functional Imaging and Modeling of the Heart, Lecture Notes in Computer 
Science 4466. Springer-Verlag; 2007. Simultaneous high-resolution electrical imaging of 
endocardial, epicardial and torso-tank surfaces under varying cardiac metabolic load and coronary 
flow; p. 320-329.

2. Aras K, Shome S, Swenson D, Stinstra J, MacLeod R. Electrocardiographic response of the heart to 
myocardial ischemia. Computers in Cardiology. 2009; 2009:105–108.

3. Hopenfeld B, Stinstra J, MacLeod R. Mechanism for ST depression associated with contiguous 
subendocardial ischemia. 2004; 15(10):1200–1206.

4. Swenson, D.; Stinstra, J.; Burton, B.; Aras, K.; Healy, L.; MacLeod, R. Evaluating the effects of 
border zone approximations with subject specific ischemia models. In: Doessel, O.; Schlegel, WC., 
editors. World Congress on Med Phys and Biomed Eng. Vol. 25/IV. Heidelberg: Springer; 2009. p. 
1680-1683.

5. Plonsey R, Barr R. A critique of impedance measurements in cardiac tissue. 1986; 14:307–322.

6. Pollard A, Barr R. A biophysical model for cardiac microimpedance measurements. Jun; 2010 
298(6):H1699–H1709.

Burton et al. Page 5

Comput Cardiol (2010). Author manuscript; available in PMC 2014 November 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



7. Johnston P, Kilpatrick D. The effect of conductivity values on ST segment shift in subendocardial 
ischaemia. 2003; 50(2):150–158.

8. Xiu D. Efficient collocational approach for parametric uncertainty analysis. Comm Comp Phys. 
2007; 2:293–309.

9. Tikhonov, A.; Arsenin, V. Solution of Ill-posed Problems. Washington, DC: Winston; 1977. 

10. Erem B, van Dam P, Brooks D. A convex relaxation framework for initialization of activation-
based inverse electrocardiography. NFSI & ICBEM 8th International Symposium on IEEE. 2011

11. Erem B, van Dam P, Brooks D. Analysis of the criteria of activation-based inverse 
electrocardiography using convex optimization. Conf Proc IEEE Eng Med Biol Soc. 2011

12. Rosen P, Burton B, Potter K, Johnson CR. Visualization for understanding uncertainty in the 
simulation of myocardial ischemia. The 3rd International Workshop on Visualization in Medicine 
and Life Sciences. 2013

Burton et al. Page 6

Comput Cardiol (2010). Author manuscript; available in PMC 2014 November 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. 
Uncertainty Visualization of the Cardiac Ischemia Forward Model. (A) Standard deviation 

and (B) isolvalue rendering of cardiac forward model show regions of interest near the 

ischemic zone (outlined in pane ). The five-way linked view contains the following 

viewing modalities:  volumetric,  2D parameter space,  –  2D slicing planes.

Burton et al. Page 7

Comput Cardiol (2010). Author manuscript; available in PMC 2014 November 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. 
Spatial Distribution of Activation Times and Standard Deviations. Animations of 

uncertainty in the spatial distribution of activation times on heart surfaces at 30 ms. Color 

maps show the spatial location and the difference between the present time and the mean 

activation time (within one standard deviation).
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Table 1

Ratio applied to tensor conductivity values within the ischemic region to simulate the diseased state.

Conductivity Ischemic Ratio

σil 1/10

σit 1/1000

σel 1/2

σet 1/4
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