
published in the IEEE SIGNAL PROCESSING MAGAZINE, VOL. 30, NO. 4, JULY 2013, DOI:10.1109/MSP.2013.2251072 1

Kernel methods on spike train space for
neuroscience: a tutorial

Il Memming Park, Sohan Seth, António R. C. Paiva, Lin Li, and José C. Prı́ncipe

Abstract

Over the last decade several positive definite kernels have been proposed to treat spike trains as
objects in Hilbert space. However, for the most part, such attempts still remain a mere curiosity for both
computational neuroscientists and signal processing experts. This tutorial illustrates why kernel methods
can, and have already started to, change the way spike trains are analyzed and processed. The presentation
incorporates simple mathematical analogies and convincing practical examples in an attempt to show the
yet unexplored potential of positive definite functions to quantify point processes. It also provides a
detailed overview of the current state of the art and future challenges with the hope of engaging the
readers in active participation.

I. INTRODUCTION

Information processing in the brain is carried out by a complex network of neurons communicating by
sending reliable stereotypical electrical pulses known as action potentials, or spikes. Thus, the information
is encoded in a sequence of events over continuous time, and not in the amplitude of the signal as
is common in signal processing applications (see Fig. 1). Studying how information is represented
and processed as spike trains—known as the neural coding problem—is one of the key challenges of
neuroscience. We venture to say that the theory of how to represent information in continuous, infinite
dimensional spaces is also far from being understood in the signal processing and machine learning
communities. In light of the current signal processing focus in sparseness, point processes (that generate
spike trains) are very appealing, since a point process provides the natural limiting case of sparse priors
that underlie compressive sensing, and it implements the ultimate sparse representation: the system only
communicates when the information crosses some internal threshold. This strategy saves power, and
provides naturally a sparse representation in time, so the costly step of finding alternative spaces to map
the input data for sparseness is unnecessary. The problem is that the system becomes less observable, and
therefore algorithms intended to predict, control or otherwise process the incoming information are less
effective and much more cumbersome. The early attempts in the engineering literature to apply stochastic
process theory to zero crossing analysis (a simple way to create a point process) started in the 40’s with
Rice at the Bell Labs, and found applications in frequency modulation (FM) and shot noise. The theory
of point processes developed primarily in the statistics literature [1] and currently this theory is the most
widely used approach to quantify spike trains in computational neuroscience as well as in all other areas

I. M. Park is with the University of Texas at Austin, S. Seth is with the Helsinki Institute for Information Technology,
A. R. C. Paiva was with the Scientific Computing and Imaging Institute at the University of Utah (currently with EM-URC),
and L. Li and J. C. Principe are with the University of Florida

published in the IEEE SIGNAL PROCESSING MAGAZINE, VOL. 30, NO. 4, JULY 2013, DOI:10.1109/MSP.2013.2251072 2

of science and engineering. Point processes are also important for machine learning, in particular for
online learning that deals with data streams, because of the shortcomings of vector spaces to represent
both unbounded data and the resulting inference structure obtained after processing.

5 sec
20

 m
V

20
 m

V

2 ms

action potential

spike train

membrane
potential

Fig. 1. Spike train observation. Typical intracellular membrane potential recording from a neuron is shown as a continuous time
trace. Each occurrence of an action potential is the only information directly communicated to other neurons through synaptic
connections. Spike train is represented as a sequence of times (t1, . . . , tn) that action potentials are detected.

Since the spike train space is devoid of an algebra, it imposes many challenges to signal processing
methods. We must then first establish a space for computation or a transformation to a space with the
necessary properties. The approach explained here is to define a proper kernel function on spike trains to
capture nonparametrically the temporal structure and the variability of the spike trains of interest. Once
a positive definite kernel is defined, it maps the spike trains into a Hilbert space of functions which
allows signal processing tools to be applied directly through the kernel trick. This methodology has the
potential to enlarge the footprint of digital signal processing to objects that are non-numeric, i.e., we
can filter spike trains, decompose them in principal components, and perform inference, with exactly the
same tools available for time series defined in R. But more importantly, the use of kernels provides an
opportunity for a myriad of advanced machine learning tools such as Gaussian processes, and probability
embedding to be applied to spike trains, opening up a new frontier for next generation spike train signal
processing.

A. Neuroscience and neural engineering problems

The idea of a neural code is prevalent in the sensory and motor systems where the variables of interest
are directly observable, although it is latent in all neuronal communication. In a sensory system, we
would often like to understand how the sensory stimuli are encoded and transformed in each stage
of neural processing. For example, visual stimuli excite a cascade of neurons in the visual pathway
from photoreceptor neurons, and retinal ganglion cells in the eye to various areas of the visual cortex.
By analyzing the spike trains, we can understand how certain aspects of a stimulus are processed and
represented in these neurons [2]. The study of neural code often consists of

1) identifying neurons that encode certain features of interest (neuron identification), and
2) finding the functional relation between the feature and spike trains of the identified neurons (neural

encoding/decoding).
A major challenge in neuron identification is the neural variability, or “noise”, in the system. For

example, when a fixed stimulus is repeatedly presented to the system, the trial-to-trial variability of the

published in the IEEE SIGNAL PROCESSING MAGAZINE, VOL. 30, NO. 4, JULY 2013, DOI:10.1109/MSP.2013.2251072 3

neural
decoding

spike trains from motor area

spike trains from visual area

motor output

decoding

visual stimuli neural
encoding

Fig. 2. Illustration of the neural decoding problem in the sensory and motor system. Note that decoding is causal for behavior,
and anti-causal for sensation and perception.

neural response is often complex (see Fig. 3). Therefore, to determine if a neuron encodes for the variable
of interest x, one cannot compare simply single trial responses, but requires collections of responses that
are samples from the stimulus-conditional distribution p(spike train|x). Fortunately, the tools from signal
detection theory and hypothesis testing can be extended to stochastic spike trains via kernels to solve the
neural identification problem (section III-A).

On the other hand, a better method for reading out the stimulus from the spike trains (neural decoding)
can have major impact on a number of clinical and biomedical applications. For example, it can improve
sensory prosthetics such as cochlear implants, which are widely used, and retinal and tactile prosthetics
that are under active development [3], [4], [5]. In motor systems, identifying which neurons are involved in
motor planning and control, and understanding how information is represented in spike trains is essential in
building motor prosthetics [6], [7]. Similar approaches have been taken for various higher-level cognitive
systems such as decision making, memory, and language [8].

Spike train kernels provide alternative tools to the neural coding problem (Fig. 2). Traditionally, the
“rate code” has been the dominant idea in neuroscience [9], [10], and it has been repeatedly demonstrated
experimentally. The rate code hypothesis states that the average spike count encodes all information
underlying the stimulus, i.e., that the spike timing is not useful for neural processing. Contrary to the
rate code hypothesis, there is also ample evidence for the so-called “temporal code” hypothesis which
states that extra information is encoded in spike timings [11], [12], [13]. The neuroscience community,
however, has largely relegated the possibility of a temporal code to a secondary role perhaps due to the
large dimensionality of the neural code space and the limited ability of statistical methods that directly
operate on spike trains and are powerful enough to discover new patterns. If the brain processes and
communicates sensory data optimally amongst neurons, one natural solution is to utilize a representation
that preserves as much of the information as possible [14]. Along this line of reasoning, the timing
hypothesis should be the preferred theory because it is the one that guarantees no loss of information
and it solves the conundrum: in cases where it is impossible to use rates (when the response time has
to be minimized), spike times are preferred, but a representation that is sensitive to spike times also can

published in the IEEE SIGNAL PROCESSING MAGAZINE, VOL. 30, NO. 4, JULY 2013, DOI:10.1109/MSP.2013.2251072 4

easily represent rates by integration. Practically the argument between rates and timing is also biased by
the degree of sophistication of the mathematical tools required: it is difficult to quantify spike timings,
while it is very easy to process rates, therefore there may have been many experimental observations
that corroborate the spike timing hypothesis that were never published because researchers could not
quantify appropriately their data. Spike train kernels shine a new light into this controversy by providing
a general framework for studying spike trains that can accommodate both hypotheses. We hope that, by
focusing on what is common, the spike train kernel approach may kindle experimental research to show
that different neuron classes are optimized for different time scales of processing, just like engineers
design differently transistors for high speed CMOS and sample and hold circuits.

1 sec

tr
ia

ls

neuron A neuron B

Fig. 3. Trial-to-trial variability. Neural response to repeated stimuli are variable. The variability structure can differ for
different neurons and contexts. These trials are from retinal ganglion neurons [15].

B. Kernels and kernel methods

The practicality of signal processing is due to a clever exploitation of the linear model. Unfortunately,
not all the problems we want to solve are well approximated by the linear model. The Hilbert space
approach [16], and more specifically the reproducing kernel Hilbert space (RKHS) [17] extend the linear
model mathematics to nonlinear modeling in the input space. The methodology is principled because
it provides a general way to handle different types of nonlinearity, the optimization is convex, and
the methodology is still practical in terms of computational complexity. But in our opinion, the true
importance of kernel methods for neural signal processing is their ability of map abstract objects to
an Hilbert space—a linear functional space equipped with an inner product. Indeed, at the core of the
above mentioned problems in neuroscience to quantify spike trains is the lack of standard algebraic
operations such as linear projection and linear combination for spike trains. This mapping supplies the

published in the IEEE SIGNAL PROCESSING MAGAZINE, VOL. 30, NO. 4, JULY 2013, DOI:10.1109/MSP.2013.2251072 5

required structure for applying most signal processing tools, and also allows otherwise complex nonlinear
computation.

The theory of reproducing kernel Hilbert spaces provides a foundation for the existence of a (possibly)
infinite dimensional Hilbert space—a feature space—associated with any positive definite function of two
arguments called a kernel [18], [17]. Let the input space data X be an object—e.g., a point in R3, a
graph, or a spike train—and a kernel κ : X × X → R be a real-valued bivariate function defined in the
input space X. The input sample x ∈ X is mapped to the RKHS as the function κ(x, ·), therefore the
kernel specifies the richness of the transformation. The kernel defines also the inner product of the Hilbert
space, i.e. the kernel κ(x, y) provides the similarity in the RKHS of the functional images of any two
samples x and y in the input space and encapsulates any prior knowledge about the input space structure.
Moreover, the inner product of two functions in the RKHS can be computed by a scalar kernel evaluation
in the input space, i.e. 〈x|y〉H = κ(x, y). This property brings computational simplicity, therefore we
have a principled framework that allows nonlinear signal processing with linear algorithms and makes
working with functions practical.

For any finite set of points in the input space {xi}ni=1, the resulting matrix K,

K =

κ(x1, x1) κ(x1, x2) . . . κ(x1, xn)

κ(x2, x1) κ(x2, x2) . . . κ(x2, xn)
...

...
. . .

...
κ(xn, x1) κ(xn, x2) . . . κ(xn, xn)

 (1)

must be symmetric and positive semi-definite for a proper kernel κ, i.e., for any real vector x ∈ Rn,
x>Kx ≥ 0. Given data in X, the kernel matrix K represents the inner product between each pair in
the Hilbert space. The kernel matrix plays a central role in kernel method algorithms, because for most
algorithms, it contains all information required about the input.

Let us illustrate the importance of the kernel design with kernel mappings on the real line where we
know the feature space explicitly. If we map x ∈ R to a three-dimensional feature vector [1,

√
2x, x2] ∈

R3, then linear regression in the feature space corresponds to a quadratic fit in R. Equivalently, this
quadratic fit can be achieved by kernel least squares using the polynomial kernel κ(x, y) = (1 + xy)2

without explicitly constructing the feature space [17]. This is because the least squares linear regression
only requires operations provided by the Hilbert space (linear combination, and inner product) and the
polynomial kernel is the inner product of the feature space. The advantage of kernel method is avoiding
the intermediate feature space representation especially when it is of high dimension.

One popular kernel is the Gaussian (a.k.a. squared exponential) kernel κ(x, y) = exp(−(x − y)2/σ),
which implicitly corresponds to an infinite dimensional feature space. It captures the local similarity in
the real line; x and x + ε are assumed to be very similar if |ε| � σ, and gradually becomes dissimilar
as |ε| increases. However, the choice of σ is critical. As the kernel size parameter σ tends to zero, it
approaches the trivial kernel, κ(x, x) = 1, and κ(x, y) = 0 for x 6= y, that still maps the input to an
infinite dimensional space where every mapped input point is orthogonal to each other, and hence the
feature space has no ability to generalize and basically acts as a lookup table. On the other hand, if σ is
larger than the dynamic range of the data, the Gaussian kernel provides basically a constant mapping of
the argument, therefore the feature space is unable to weight distances differently and looses the ability
to discriminate distinct points. These two example kernels are extremes that do not bring any advantage.

published in the IEEE SIGNAL PROCESSING MAGAZINE, VOL. 30, NO. 4, JULY 2013, DOI:10.1109/MSP.2013.2251072 6

In practice, we use a kernel (and kernel size) that is in between, one that provides a rich feature space
with proper smoothing such that the practitioner can use it to nonlinearly interpolate between data points
(e.g., in the scale of σ for the Gaussian kernel).

II. SPIKE TRAIN KERNELS

In the previous section we discussed kernel methods on the real line, but the beauty of the theory is that
it can be applied to other more abstract spaces. In fact, various discrete objects naturally represented as
a collection such as graphs, sets, and strings have been successfully embedded in Hilbert spaces through
kernels [19], [20], [21], opening the door for many traditional tools to be directly applied when a suitable
kernel is used. The only difference with respect to the Gaussian kernel is that we now need a way to
define the kernel in a way that is relevant to measuring the similarity between spike trains. Once this is
done, we can replicate the same operations as explained for the Gaussian kernel on the real line, i.e.,
we can quantify similarity between spike trains and define a space where we can build signal processing
models and perform inferences.

In the remainder of the section, we introduce several important spike train kernels and discuss their
advantages and disadvantages.

A. Count and Binned Kernels

A trivial way of constructing a spike train kernel is by first mapping the spike trains into a finite and
fixed dimensional Euclidean space and using its inner product: x,y ∈ Rd, κ(x,y) = x>y. For example,
simply counting the total number of spikes in each spike train maps spike trains into natural numbers
which is a subset of the real line. The resulting kernel is called the count kernel. Count kernel completely
ignores the timing, but it is useful because it encompasses the conventional rate coding analysis done
by neuroscientists. For instance, the optimal least squares linear decoder is equivalent to the kernel least
squares, and the test of mean rate difference is equivalent to MMD (see section III-A) with the count
kernel.

A naı̈ve extension of the count kernel is to bin the spike train by choosing a sequence of consecutive
time windows (Fig. 4). Neighboring time bins corresponds to different dimensions, and hence the
kernel does not bring any smoothing across the bin boundaries. In the limit of fine time binning, all
information of the continuous representation is preserved in the binned representation at the expense
of huge dimensionality. When combined with the Euclidean inner product, binning in this regime is
catastrophic because the inner product implements a look-up table, like the trivial kernel mentioned
earlier. On the other hand, when the bin size is larger, the temporal continuity within each time bin is
respected, and some smoothing is provided, however, the resulting feature space is low dimensional, and
temporal details in the spike trains cannot be fully represented. For some applications, there is a sweet
spot for the bin size that may perform well, since it can partially extract linear relations with respect to
the rate code hypothesis [22]. The linear model on binned data, so popular in brain machine interfaces
(BMIs) [6] is one example of this technique.

B. Spikernel

Although directly binning spike trains as objects in the Euclidean space can be misleading, a better
kernel can be constructed using this representation but different inner product. The first successful kernel

published in the IEEE SIGNAL PROCESSING MAGAZINE, VOL. 30, NO. 4, JULY 2013, DOI:10.1109/MSP.2013.2251072 7

0 1 0 0 0 0 0 1 0 1 0 0 01

0 1 0 0 1 0 0 1 1 0 0 0 00

1 1 2 0

1 1 2 0

0 0

0 0

Low precision binning

High precision binning
time

Non-binned representation

Fig. 4. Advantages and disadvantages of fine and coarse time binning representation. The continuous time axis is divided into
a sequence of fixed intervals, and the number of spikes occurring within each time bin is counted. Two bin sizes with different
offsets are shown. Red numbers indicate changes in the representation due to the small temporal jitter. Small bin sizes allow
representation of fine temporal structure, while small fluctuations causes radical changes if the spike trains are considered as
a vector in the Euclidean space. Larger bin sizes smooth the time, so they are less sensitive to small fluctuations but detailed
temporal information is lost. Hard boundaries of binning can be relaxed by using a smooth basis function centered at fixed
times, such as a Gaussian or raised cosine function instead of a rectangular window. However, the resulting feature space still
has limited dimensionality because of the quantization imposed on time by these techniques.

for neuroscience is the spikernel [23] which falls in this category. It allows local time manipulation
(time warping) enabling spike counts in neighboring bins to be matched, effectively smoothing over
bin boundaries. It also weights different time bins according to the distance from the time of interest,
which is a reasonable assumption based on the finite memory of neural systems. The spikernel has been
successfully demonstrated to perform better than binned count kernel in the context of brain-machine
interfaces (decoding the motor signal from neural activity) [23].

In general, the spikernel performs robustly [24], however, it fundamentally lacks the ability to control
its temporal precision since it is tied to a binned representation. In addition, it should be noted that the
spikernel is computationally expensive to evaluate, and it requires tuning five free parameters, including
bin size. The relatively large number of free parameters delivers a flexible kernel, which is supported by
its performance, but tuning these parameters requires an extensive optimization that hinders its appeal.

C. Linear functional kernels

As we have seen earlier, the binning transformation is lossy—many spike trains can be mapped to the
same binned representation—and similar spike trains can be mapped to quite different representations.
How can we avoid binning and preserve all information and create a positive definite kernel? One solution
is to use an infinite dimensional representation [25].

Let h be a finite energy impulse response of a linear filter over time (possibly non-causal), and represent
the spike train as a sum of Dirac delta functions x(t) =

∑
i δ(t − ti) (non-binned representation, see

published in the IEEE SIGNAL PROCESSING MAGAZINE, VOL. 30, NO. 4, JULY 2013, DOI:10.1109/MSP.2013.2251072 8

B

A

Fig. 5. Linear functional kernel. (A) Two spike trains smoothed with a function h(t) = e−(t/σ)2 in red. The spike timings
of the first spike train are jittered to generate the second spike train, and their smoothed representation are similar in L2. (B)
Demonstration of linearity of linear functional kernels using h(t) = e−t/τI(t ≥ 0). The third spike train is a superposition of
the first two spike trains, and so is the corresponding smoothed representation. A schematic of the three vectors in L2 explicitly
indicates their linearity.

Fig. 4). Each spike train can be uniquely transformed into a function via convolution with a non-trivial
h:

fx(t) = x ∗ h =
∑
i

h(t− ti).

The resulting transformed spike train fx(t) is a function in L2 space, which is a Hilbert space on its
own. The inner product in L2 is defined as,

〈f |g〉 =
∫
f(t)g(t) dt.

By choosing a locally concentrated h, spike trains with similar small jitter are mapped to similar functions
(Fig. 5A). Therefore, it is continuous with respect to small temporal perturbations. The linear functional
kernel is simply defined as,

κ(x, y) = 〈fx|fy〉 =
∫

(x ∗ h)(t)(y ∗ h)(t) dt, (2)

that is, the inner product of the two smoothed functional representations in L2 (Fig. 5). Note that (2) can
be rewritten with an explicit summation over all pairs of spikes,

κ(x, y) =
∑
i,j

∫
h(t− txi)h(t− t

y
j) dt =

∑
i,j

g(txi , t
y
j)

published in the IEEE SIGNAL PROCESSING MAGAZINE, VOL. 30, NO. 4, JULY 2013, DOI:10.1109/MSP.2013.2251072 9

where g(u, v) =
∫
h(t− u)h(t− v) dt. Therefore, the kernel evaluation in the infinite dimensional space

can be computed with O(NxNy) function evaluations of g where Nx is the number of spikes in the spike
train x.

A few special choices of h are worth noting [26], [25]. If the smoothing function has the form of a
Gaussian function, h(t) = e−t

2/2σ2

, then g(u, v) = e−(u−v)
2/σ2

. More importantly, if the smoothing filter
is a causal exponential decay h = e−t/τ for t > 0, then we obtain the following kernel:

κ(x, y) =
∑
i,j

exp

(
−1

τ
|txi − t

y
j |
)
. (3)

This spike train kernel has two distinct advantages. First, it has a neurophysiological interpretation, since
the synaptic transfer function that transforms the spike trains to an analogue intracellular signal in the
downstream neuron can be approximated as a first order dynamical system (i.e., first order IIR filter) [27],
[28]. Second, it can be computed in O((Nx+Ny) log(Nx+Ny)) time [25]. The fast computation is due
to properties of the double exponential function [29].

It is easy to see that the linear functional kernels are linear with respect to the superposition of spike
trains. If x(t), y(t), and z(t) are spike trains represented as sum of delta functions, 〈x+y|z〉 = 〈x|z〉+〈y|z〉
(Fig. 5B). Therefore, the functions built on this space have the same constraint; the function value for
the superposition x(t) + y(t) is the sum of the function value for x(t) and y(t). Note that the binned
spike train kernels share this property of linearity with respect to superposition. We will see that this
limitation can be a critical weakness.

D. Nonlinear functional kernels

To unleash the full potential of kernel methods, we need binless nonlinear spike train kernels. There
are several ways to extend the linear functional kernels to be nonlinear [24], [30], [25], [28], [31]. Here,
we focus on building the Schoenberg kernel since it provides a provably universal kernel. Schoenberg
kernels are derived from the radial basis functions, and takes the following form,

κ(x, y) = φ
(
‖x− y‖2

)
(4)

where the function φ : [0,∞)→ R is completely monotone on [0,∞) but not a constant function [32].
Examples of completely monotone functions are e−αx, 1

(x+α2)β where α and β are constants [33].
We take the functional norm derived from the linear functional kernel, that is,

‖x− y‖2 = 〈x− y|x− y〉 = 〈x|x〉 − 2〈x|y〉+ 〈y|y〉.

Next, we build radial basis kernels on top of the feature space induced by the linear functional kernel.
Therefore, in Schoenberg kernels, the underlying linear functional kernel provides the smoothness in
the space, and the radial basis function φ enforces the linear superposition to only hold locally. This
combination guarantees the resulting kernel to be powerful for both neural identification and decoding
applications.

A typical choice is to use (3) as κ′ with φ(x) = e−αx which results in the following form:

κ(x, y) = exp

(
− 1

σ2
(
κ′(x, x)− 2κ′(x, y) + κ′(y, y)

))
. (5)

published in the IEEE SIGNAL PROCESSING MAGAZINE, VOL. 30, NO. 4, JULY 2013, DOI:10.1109/MSP.2013.2251072 10

This can be considered as an analogue of the widely used Gaussian kernel for Euclidean space. Schoenberg
kernels are universal, in the sense that they can asymptotically approximate arbitrary nonlinear function
from spike trains to reals. They have an additional scale parameter σ which controls how much smoothing
is applied to the space induced by the base kernel.

E. Extending single spike train kernels to multiple neurons

So far we have introduced kernels that compute similarity between a pair of spike trains (either from
a single neuron at different times or from a pair of neurons). However, recent recording techniques allow
simultaneous recording of up to a couple of hundreds of neurons. Thus, we need kernels for a pair of
sets of spike trains from many neurons. There are a couple of simple yet effective ways to extend single
neuron kernels to multiple neuron kernels (see [34], [17] for combining kernels). First is to use a product
kernel,

κ(x, y) =
∏
i

κi(xi, yi) (6)

where i indexes over simultaneously recorded neurons. Second is to use a direct sum kernel,

κ(x, y) =
∑
i

aiκi(xi, yi), (7)

where ai are weights for combining the effect of each neuron. The product kernel is the natural inner
product of the product Hilbert space, and the direct sum kernel is that of the direct sum Hilbert space.
The product kernel preserves the universality of elementary kernels (e.g., with Schoenberg kernels),
but if the effective dimension of the spike train manifold increases (as in the case of less dependent
spike trains and/or independent noise processes) the number of spike trains required to “fill” the space
increases for the same kernel size. Hence, more smoothness may have to be incorporated (imposed by
kernel sizes), or exponentially more data may be required to estimate equivalently detailed nonlinear
functions. The direct sum kernel does not preserve universality; in fact, only additive functions over
multiple neurons are spanned by those kernels. Therefore, unless such constrains are of interest, it is
not useful for general neuroscience applications. In general, combining kernels increases the number of
hyperparameters, making cross-validation less practical, hence we recommend empirical Bayes methods
for their estimation [35], [36].

Although it is possible to form a product kernel from the spikernel, it is not necessary to do so because
the spikernel can be extended directly for multiple neurons by considering a vector of spike counts for
each time bin [23]. In such construction, the time warping is uniformly applied to all spike trains. Since
the time complexity is only additive for the number of neurons, for a large population recording, spikernel
could be computationally advantageous.

III. APPLICATIONS

Equipped with spike train kernels, we can now discuss application areas in neuroscience and neural
engineering, each of which requires a different class of kernel methods. We discuss the problem of
hypothesis testing first, followed by stationary neural code analysis using regression and online neural
decoding with adaptive filtering.

published in the IEEE SIGNAL PROCESSING MAGAZINE, VOL. 30, NO. 4, JULY 2013, DOI:10.1109/MSP.2013.2251072 11

A. Neuron identification

Due to the trial-to-trial variability of neural responses (Fig. 3) the collection of responses to repeated
stimuli can be considered as realizations of a random process. When realizations are spike trains, the
corresponding mathematical object, the probability law over spike trains, is called a point process. It
is often necessary to determine if two sets of responses given different experimental conditions are
different—we want to know if the response carries any information about the experimental condition
of interest. For example, some neurons in the visual cortex encode the stimulus color regardless of the
motion, while some encode the directional motion regardless of the color.

In practice, a severe bias may be unwillingly included when searching for a neuron that encodes
information about a certain feature especially in the context of in vivo electrophysiology. In a typical
setting, a trained electrophysiologist would listen to the firing pattern of each neuron and make a decision
on the fly to record from the probed neuron, which tends to be the one with larger firing rate modulation.
Identifying neural selectivity has been widely done assuming that the information is only represented
in the mean statistics (firing rate). The conventional estimator is a histogram (or a smoothed version),
known as the peri-stimulus time histogram (PSTH), which is obtained by binning the time, and averaging
over trials. The difference in the mean statistics is then used for associated hypothesis testing [37], [38].

Another widely used test is the Wilcoxon rank sum test on the spike counts [39]. It nonparametrically
captures the difference in the distribution over counts, therefore, more than just the mean count is tested.
Since the count distribution must span across multiple values to be meaningful, it requires a large window
that captures relatively many spikes, and it is difficult to apply it to multiple bins. Thus, the count
distribution cannot capture the differences in the temporal structure. For these reasons, these widely used
parametric statistical tests are fundamentally incapable of discriminating many features.

Instead, we submit that a class of nonparametric statistics is needed that can discriminate among many
point process distributions, either in terms of higher order statistics or the temporal dimension. Such a
statistic is known generally as a divergence [40], [30], [41], [24]. One can define a divergence measure
from kernels by utilizing a recent development known as probability embedding, which provides a general
construction of divergence measures by representing the data’s probability distribution as a point in the
feature space [42], [43], [44], [45].

The idea of probability embedding is very simple. Use a kernel to map the samples to the feature
space, and take the mean to represent the (empirical) probability distribution. This is possible because
the feature space is a (linear) Hilbert space. As long as one uses a powerful enough kernel, this simple
process gives a unique representation of the empirical probability law that asymptotically converges to
the true distribution. Technically, it is sufficient to show that the kernel κ is strictly positive definite (spd)
in the integral sense, that is, ∫∫

κ(x, y)p(x)p(y) dx dy > 0 (8)

for any probability distribution p of consideration on the input space [24].
Interestingly, the mean of the point process in the Hilbert space for the binned or linear functional

kernel results in estimators for the firing rate function. The PSTH can be formed by using a binned
spike train kernel, and a smoothed estimate of the intensity function can be produced by using a linear
functional kernel. Given a collection of spike trains (with possible repeats), {xi}Ni , the mean in the Hilbert

published in the IEEE SIGNAL PROCESSING MAGAZINE, VOL. 30, NO. 4, JULY 2013, DOI:10.1109/MSP.2013.2251072 12

sorted spike trains
spikernel linear functional Schoenberg

MMD

mean in the feature space

principal component axes

detection performance example spike trains from a retinal ganglion cell

1 sec
0

20

40

60

80

100

W
ilc

ox
on

 te
st

co
un

t

sp
ik

er
ne

l

lin
ea

r f
un

ct
io

na
l

Sc
ho

en
be

rg

re
je

ct
io

n
ra

te
 %

tr
ia

ls
tr

ia
ls

tr
ia

ls
tr

ia
ls

condition 1

condition 2

Fig. 6. Illustration of maximum mean discrepancy (MMD) and hypothesis testing results. (Top row) Two sets of artificial spike
trains shifted half a cycle is analyzed with three different kernels: spikernel, linear functional kernel (3), and Schoenberg kernel (5).
The spike trains mapped in the feature space are visualized in two dimensional subspace determined by the kernel principal
component analysis that preserves the most of MMD [24]. The distance between the mean in the feature space corresponds to
MMD. In this example, all three kernels successfully rejected the null hypothesis, indicating the corresponding point processes
are distinct. (Bottom row) Hypothesis testing performance on spike trains recorded from retinal ganglion neurons. We used the
rat retinal ganglion cell recordings from Nirenberg’s lab [15] (22 stimulus conditions repeated 30 times for 3.1 sec from 15
neurons). The task is to discriminate different stimulus conditions given the spike trains from a single neuron. For each neuron,
we paired the stimulus conditions to have close median firing rate response by sorting the conditions and pairing neighbors for
the test. Higher rejection rate implies a more practical divergence for the test. Dashed line is the test size (p = 0.1). Error bar
indicate the standard error (165 tests). (Copyright 2012 MIT Press Journals. Modified from [24] with permission).

space corresponding to a linear functional kernel κ can be represented as a function over arbitrary spike
train z,

1

N

N∑
i

κ(xi, z) =
1

N

N∑
i

Ni∑
j

Nz∑
k

g(tij , t
z
k).

Since the kernel is linear for superposition, the mean does not depend on which spike train a particular
spike came from. Therefore, the mean does not capture any statistical structure between spikes within
the same trial. As can be expected, neither the binned kernel nor the linear functional kernels is spd [24].

For spd kernels, the mean contains all information about the collection of spike trains. This is not
surprising, given that unique spike trains mapped to the Hilbert space are not only unique, but are
mutually linearly independent (the Gram matrix is full rank). The mean “remembers” the set of spike
trains that formed it, except for the ordering. What is important is that the mean in the Hilbert space is

published in the IEEE SIGNAL PROCESSING MAGAZINE, VOL. 30, NO. 4, JULY 2013, DOI:10.1109/MSP.2013.2251072 13

a smoothed representation, and hence if the spike trains that consist the mean are similar, they are close
in the Hilbert space.

A divergence measure for empirical observations can be defined as the distance of the means for a
pair of collections of observed spike trains in the Hilbert space,

D
(
{xi}Ni , {yj}Mj

)2
=

∥∥∥∥∥∥ 1

N

∑
i

κ(xi, ·)−
1

M

∑
j

κ(yj , ·)

∥∥∥∥∥∥
2

=
1

N2

∑
i,i′

κ(xi, xi′) +
1

M2

∑
j,j′

κ(yj , xj′)

− 2

NM

∑
i,j

κ(xi, yj) (9)

where κ is a spd kernel. This divergence statistic D is called maximum mean discrepancy (MMD) [42].
When MMD is large, it is an indication that the two point processes are different. In the classical hypoth-
esis testing framework, we need the distribution of MMD under the null hypothesis which assumes that
both collections originate from the same underlying random process. We can generate MMD values from
the null distribution by mixing the samples from both conditions and resampling from the mixture [42],
[24]. The following simple procedure describes a typical hypothesis testing given two collections of spike
trains (xi)

N
i=1 and (xj)

M+N
j=N+1, and a test size α:

1) Compute the kernel matrix K

2) Compute D2= 1
N21>K(I, I)1+ 1

M21>K(J, J)1− 2
NM 1>K(I, J)1

3) Bootstrap randomly permuted indices of size N and M with replacement and recompute the statistic
of the null distribution

4) If D2 is above the (1−α) quantile of the bootstrapped null distribution, reject the null hypothesis,
otherwise accept it.

The smoothness of the probability embedding is controlled by the spike train kernel of choice, and
hence it is important to choose a kernel that captures the natural similarity of spike trains well. This
may come as a surprise since all spd kernel are asymptotically equivalent for MMD, that is, if the two
underlying probability laws are different, any spd kernel can discriminate given a large enough sample.
Yet, the small sample power of the divergence test is greatly enhanced by encoding more prior information
of the similarity into the spike train kernel.

B. Neural decoding

Neural decoding searches for the detailed relationship between neural activity and the variable of
interest (Fig. 2). Successful decoding analysis often provides evidence (or new hypothesis) for specific
coding schemes the neural system uses, functionally identifies the system, and moreover, it can be used
to develop neural prosthetics and interfaces.

Depending on the modality of the target variable, neural decoding can be tackled by different tools.
When the target variable is categorical (finite number of possibilities), classification algorithms are
suitable; e.g., object recognition and multiple choice decision are naturally categorical. If the target
variable is continuous valued and fixed for each trial, but jumps from one value to another, then regression

published in the IEEE SIGNAL PROCESSING MAGAZINE, VOL. 30, NO. 4, JULY 2013, DOI:10.1109/MSP.2013.2251072 14

−4

−3

−2

−1

0

1
−4

−3

−2

−1

0

1
−4

−3

−2

−1

0

1

200 ms

true
predicted
credible interval

spikernel

Schoenberg

linear functional

Gaussian process prediction on test set

input spike train

0
0

100

200

0 100 ms 200 ms

true 2nd-order
Volterra system

100 ms 200 ms

Fig. 7. Regression example using Gaussian processes on a synthetic problem. Gaussian process regression is used to estimate
a target variable on a training set in a test set. Decoding traces with their credible intervals (2 standard deviation of the
posterior around the mode) are plotted. The target variable is generated through a second-order Volterra system given by,
y(t) = 0.1 +

∑
i k1(t − ti) +

∑
i,j k2(ti, tj) (right). (Volterra kernels k1 and k2 are not to be confused with the spike train

kernel used for decoding.)

tools are appropriate. Such trial-based experimental design is commonly used for studying the neural
code. When a continuous target variable is varied through time, filtering and smoothing algorithms are
appropriate. Most primary sensory as well as motor features naturally fall in this category, and are of
most practical use in neural engineering. Here we will focus our discussion on regression and filtering.
By regression, we mean batch analysis, while by filtering, we refer to online (real-time) signal processing.

A traditional approach to map single or multiple spike trains to a continuous target variable is linear
regression on binned spike trains with relatively large bin sizes [46], [47], [48]. Again, the rational stems
from the neuroscience literature which focuses primarily on the information carried by the mean firing
rate, and little about the detailed temporal structure within each trial. Despite their crudeness, linear
models on binned spike trains perform reasonably for motor brain machine interfaces, because the time
scale of behavior is at the hundred milliseconds scale.

For filtering, conventional linear filtering methods such as least mean squares, recursive least squares,
and Kalman filters are often used, and recurrent neural network approach for filtering is also worth
mentioning [49]. In recent years, state-space based Bayesian filtering approaches have been popular [50],
[51], [52], [53]. A state-space (also known as latent-variable) model combined with an encoding model
from continuous observation to spike trains is inverted using the Bayesian filtering framework. This
method requires a good encoding model which has to be fit ahead of time, and is based on stationary
assumptions during and between training and testing conditions. Because of neural plasticity, in practice
frequent retraining or sophisticated tracking is needed.

1) Gaussian process regression: Gaussian process (GP) regression is a widely used nonparametric
Bayesian regression method [35]. For neural decoding, we assume a prior distribution over the functions

published in the IEEE SIGNAL PROCESSING MAGAZINE, VOL. 30, NO. 4, JULY 2013, DOI:10.1109/MSP.2013.2251072 15

from spike trains to R. This prior is explicitly stated to be a Gaussian process with covariance provided
by a kernel; the covariance of the function values evaluated at two spike trains x and y is given by
cov(f(x), f(y)) = κ(x, y). To be specific, given a set of spike trains {xi}ni=1, the distribution of the
function values from the prior is multivariate Gaussian distributed

[f(x1), . . . , f(xn)] ∼ N (0,K)

where K is the kernel matrix (1).
Using the GP prior, we can infer the posterior assuming a Gaussian noise corrupted observation model.

The prediction of the function evaluated at spike train z is given by,

f̂(z) =

n∑
i

αiκ(xi, z) (10)

where α = (K+σ2nI)
−1y, where σ2n is the observation noise variance and y is the desired signal vector

corresponding to training data {xi}ni=1.
There are several advantages of GP:

1) the prediction coincides with kernel ridge regression (regularized kernel least squares), but GP
provides the posterior credible interval (not to be confused with the frequentist confidence interval)
which indicates the uncertainty of the prediction under the model assumptions,

2) given a universal kernel, it can learn any nonlinear functional relation, and,
3) hyperparameters (kernel parameters and observation noise variance) can be tuned in a principled

way using empirical Bayes procedure.

In figure 7, we compare GP regression with linear functional, Schoenberg, and spikernel in a synthetic
example where a Poisson spike train is mapped to a real-valued signal through a second order Volterra
system. The hyperparameters are learned through empirical Bayes method where the marginal likelihood
is maximized on the training set (400 points). The linear functional kernel of (3) does not perform well
on mean prediction (red trace) because of the strong nonlinear component (pairwise interaction of spike
timings due to the second order Volterra kernel), while the spikernel obtains a reasonable prediction, and
Schoenberg kernel of (5) achieves very high performance. The credible interval resulting from using the
Schoenberg kernel is the smallest, meaning the model is confident that the data is well described by the
regression result. In contrast, the inferred credible interval for the spikernel is large, meaning at least
some aspects of the data are not well described by the fit model.

2) Kernel adaptive filtering: For closed loop applications, the system identification and prediction
benefit from sequential processing where the system parameters are adapted with every new sample
because neural systems are plastic and there are real time constraints in the experimental setup. Therefore,
adaptive filtering algorithms have been widely used in the brain-machine interface applications, and
other neural prosthetics [6]. As stated, linear filtering algorithms such as least mean squares (LMS) and
recursive least squares (RLS) algorithms as well as Kalman filtering have been successful using the
binned representation, but performance improvements are still needed.

Kernel adaptive filters (KAF) have been recently developed that kernelize the linear adaptive filtering
algorithms [54], inheriting their simple computational structure, and extending them to nonlinear transfer
functions. Similarly, KAFs operate on a sample-by-sample basis, and can deal with non-stationary
environments.

published in the IEEE SIGNAL PROCESSING MAGAZINE, VOL. 30, NO. 4, JULY 2013, DOI:10.1109/MSP.2013.2251072 16

0 200 400 600 800 1000 1200
0.6

0.7

0.8

0.9

1
Schoenberg
Linear functional
spikernel

N
or

m
al

iz
ed

 m
ea

n
sq

ua
re

d
er

ro
r

online learning step (samples)
Fi

rs
t d

er
iv

at
iv

e
of

 fo
rc

e

True tectile stimulation

200 ms

KLMS learning curves

Rat paw

tactile
stimulation Electrode array

in thalamus (VPL) and S1

simultaneously recorded spike trains from 19 neurons

KL
M

S
de

co
di

ng

ne
ur

on
s

Fig. 8. Decoding tactile stimulus from awake rat thalamus and somatosensory spike trains using kernel least means square
(KLMS) algorithm. 80 ms sliding window over the spike trains is used to decode stimulus sampled at 100 Hz. Hyperparameters
(kernel size and learning rate) are optimized for best performance on a cross-validation data (1 sec). First derivative of the force
applied to the finger is the target variable, and 19 neurons. Learning curve shows the convergence of online learning (12 seconds
of training is shown) quantified on a test dataset of 2 seconds. (Adapted from [55])

Here we describe the simplest yet powerful kernel least mean squares (KLMS) algorithm, which
has been successfully applied in neural engineering as inverse control in the context of somatosensory
prosthetics [56]. KLMS is a nonlinear extension of the popular LMS algorithm that can be derived as a
stochastic gradient descent on the mean squared error but with an infinite dimensional weight vector. The
filter mapping is a function of the same form as (10), where the α’s are proportional to the instantaneous
errors:

αi = −η(yi − f̂i−1(xi)) (11)

where f̂i−1 is the estimated filter before the i-th observation, and |η| < 1 is the learning rate [54]. Thus,
the filter input-output map is fully represented by pairs of real coefficient αi and observed spike train
xi. The KLMS has been applied with advantages in nonlinear signal processing of continuous amplitude
signals, mostly using the Gaussian kernel, but one of the advantages of the RKHS approach is that the
algorithm formulation is independent of the kernel. Therefore, any of the spike train kernels presented
in this paper can be directly used in the KLMS.

We demonstrate online inverse modeling using KLMS in figure 8 [55], [57]. The goal is to reconstruct
properties of the induced tactile stimulation (here the derivative of the force) from the generated multi-
channel spikes in the thalamus (VPL) and primary sensory areas (S1) upon stimulation. Given the finite
memory in the neural system, typically a moving window is usedfor example, of 80 milliseconds slided

published in the IEEE SIGNAL PROCESSING MAGAZINE, VOL. 30, NO. 4, JULY 2013, DOI:10.1109/MSP.2013.2251072 17

2 ms at a time over the spike data. We use the product kernel in this MISO KLMS model, train a
decoder on the tactile stimulus time series on a training set, and compare reconstruction performance
with different spike train kernels on a test set. Overall, a similar trend to previous examples is observed
in this application where the Schoenberg kernel outperforms the spikernel and the linear kernel, both in
terms of faster convergence in the training set and better reconstruction of the stimulus in the test set.

IV. DISCUSSION

Spike train kernels enable signal processing and machine learning of spike trains by providing a
feature space for computation. In this article, we surveyed how positive definite functions can be used
to quantify spike trains, at the rate or spike timing level, and implement important operations for neural
decoding such as hypothesis testing using probability embedding, and estimation of continuous functional
mappings from spike trains. As we have briefly demonstrated, spike train kernels provide a unifying
framework for most of the techniques used in spike train processing, from the statistical rate descriptors,
to the binned representations up to the full description (injective mapping by a spd kernel) of the spike
train timing structure in infinitely dimensional functional spaces. The approach is therefore versatile and
mathematically principled, extending the footprint of signal processing and machine learning to more
abstract spaces.

Among the spike train kernels, we have promoted the binless Schoenberg kernel, since, (1) it provides
an injective mapping, (2) it can embed arbitrary stochasticity of neural responses as the sample mean in
the RKHS, and (3) it is a universal kernel that can approximate arbitrary functions on spike trains. Such
arbitrarinesses in the point process and function classes are allowed because of the strongly nonparametric
nature (spd) of the kernel mapping.

A. Interpretation of decoding analysis

Like other advanced signal processing methodologies (e.g., deep learning and nonparametric Bayesian
methods), strictly positive definite spike train kernels make the results less interpretable due to the high
dimensionality of the implicit feature space. Weaker kernels only encapsulate explicitly certain designed
features, for instance, the count kernel is only sensitive to the total spike count, and the linear functional
kernel is mostly sensitive to firing rate profiles. Although the stronger kernels can capture arbitrary
features, they are not unique. Therefore designing explicitly stronger spike train kernels is non-trivial,
because it is hard to understand what spike train features they are emphasizing. There are several ways
we can partially recover the intuition, although more research is needed in this direction: via visualization
of spike trains in the feature space in the case of MMD-PCA (Fig. 6), via sparse regression methods
like relevant vector machine, or via kernel selection over a set of strongly interpretable weaker (more
parametric) kernels.

Another caveat of decoding analysis is that successful decoding does not imply that the brain is using
the information, it only signifies that the information exists in the collected neural signals. For example,
in early sensory neurons like retinal ganglion cells or auditory fiber, we can often decode and reconstruct
the sensory stimulus better than what the subject can report by behavior. Therefore, we should be cautious
not to over-interpret successful decoding.

published in the IEEE SIGNAL PROCESSING MAGAZINE, VOL. 30, NO. 4, JULY 2013, DOI:10.1109/MSP.2013.2251072 18

B. Future directions

The last decade has been productive in terms of new kernels for many abstract (non-Euclidean) spaces,
but there is still room for improvement. We would like to have a spike train kernel that is powerful enough,
i.e., spd and universal, while at the same time, able to capture our prior knowledge about the similarity
between spike trains. The variability of the neural system could provide hints to designing better spike
train kernels.

There are three practical aspects of designing a useful kernel: (1) the kernel should encode the prior
knowledge of the input domain, and the problem at hand, (2) the kernel should be computationally
tractable, perhaps with linear or less time complexity in the number of spikes; and (3) the kernel should
have no or very few parameters—in the latter case there should be simple intuition behind the parameters,
and more importantly simple rules for setting their values.

We have discussed two frameworks in this article, namely the binned kernels, and the functional
kernels. Binned kernels are either too simplistic, they ignore the temporal structure, or computationally
too expensive, e.g., spikernel. On the other hand, some functional kernels are either overly sensitive to
the mean rate, such as linear functional kernel, or involve parameters that are not easily visualized. A
kernel with the right balance among these three properties remains to be found. It is safe to assume that
we have only scratched the surface of this problem, and there remain many open avenues to be explored.
Two possible approaches are edit kernels, and generative kernels. Edit kernels rely on the principle of
adopting simple operations such as shifting, addition, and deletion to convert one spike train into another
where each operation is assigned a cost, whereas generative kernels rely on the principle that two spike
trains are similar if they originate from the same generative model.

REFERENCES

[1] D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes. Springer, 1988.
[2] B. A. Olshausen and D. J. Field, “How close are we to understanding V1?” Neural Computation, vol. 17, no. 8, pp.

1665–1699, Aug. 2005.
[3] B. S. Wilson, C. C. Finley, D. T. Lawson, R. D. Wolford, D. K. Eddington, and W. M. Rabinowitz, “Better speech

recognition with cochlear implants,” Nature, vol. 352, no. 6332, pp. 236–238, Jul. 1991.
[4] M. S. Humayun, J. D. Weiland, G. Y. Fujii, R. Greenberg, R. Williamson, J. Little, B. Mech, V. Cimmarusti,

G. Van Boemel, G. Dagnelie, and E. de Juan, “Visual perception in a blind subject with a chronic microelectronic retinal
prosthesis,” Vision Research, vol. 43, no. 24, pp. 2573–2581, Nov. 2003.

[5] J. K. Chapin, “Using multi-neuron population recordings for neural prosthetics,” Nature Neuroscience, vol. 7, no. 5, pp.
452–455, Apr. 2004.

[6] M. A. L. Nicolelis and M. A. Lebedev, “Principles of neural ensemble physiology underlying the operation of
brain-machine interfaces,” Nature Reviews Neuroscience, vol. 10, no. 7, pp. 530–540, July 2009.

[7] J. K. Chapin, K. A. Moxon, R. S. Markowitz, and M. A. L. Nicolelis, “Real-time control of a robot arm using
simultaneously recorded neurons in the motor cortex,” Nat Neurosci, vol. 2, no. 7, pp. 664–670, Jul. 1999.

[8] T. Berger, M. Baudry, R. Brinton, J.-S. Liaw, V. Marmarelis, A. Y. Park, B. Sheu, and A. Tanguay, “Brain-implantable
biomimetic electronics as the next era in neural prosthetics,” Proceedings of the IEEE, vol. 89, no. 7, pp. 993–1012, 2001.

[9] E. D. Adrian and Y. Zotterman, “The impulses produced by sensory nerve-endings: Part II. the response of a single
End-Organ.” The Journal of physiology, vol. 61, no. 2, pp. 151–171, Apr. 1926.

[10] D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurones in the cat’s striate cortex.” The Journal of Physiology,
vol. 148, pp. 574–591, October 1959.

[11] P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems.
Cambridge, MA, USA: MIT Press, 2001.

[12] T. J. Sejnowski, “Time for a new neural code?” Nature, vol. 376, no. 6535, pp. 21–22, Jul. 1995.

published in the IEEE SIGNAL PROCESSING MAGAZINE, VOL. 30, NO. 4, JULY 2013, DOI:10.1109/MSP.2013.2251072 19

[13] J. J. Hopfield, “Pattern recognition computation using action potential timing for stimulus representation,” Nature, vol.
376, no. 6535, pp. 33–36, Jul. 1995.

[14] H. Barlow, “Sensory mechanisms, the reduction of redundancy, and intelligence,” NPL Symposium on the Machinization
of Thought Process, vol. 10, pp. 535–539, 1959.

[15] A. Jacobs, N. Grzywacz, and S. Nirenberg, “Decoding the parallel pathways of the retina,” in Society for Neurosceince,
2006, p. Program No. 47.10/G1.

[16] L. Máté, Hilbert Space Methods in Science and Engineering,, 1st ed. A. Hilger, Jan. 1989.
[17] B. Schölkopf and A. J. Smola, Learning with kernels : support vector machines, regularization, optimization, and beyond,

ser. Adaptive computation and machine learning. MIT Press, 2002.
[18] N. Aronszajn, “Theory of reproducing kernels,” Transactions of the American Mathematical Society, vol. 68, no. 3, pp.

337–404, 1950.
[19] C. Cortes, P. Haffner, and M. Mohri, “Rational kernels: Theory and algorithms,” Journal of Machine Learning Research,

vol. 5, pp. 1035–1062, 2004.
[20] D. Haussler, “Convolution kernels on discrete structures,” Tech. Rep., 1999.
[21] K. Shin and T. Kuboyama, “A generalization of Haussler’s convolution kernel: mapping kernel,” in Proceeding of the

International Conference on Machine Learning, 2008, pp. 944–951.
[22] M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, and J. P. Donoghue, “Brain-machine interface: Instant

neural control of a movement signal,” Nature, vol. 416, no. 6877, pp. 141–142, Mar. 2002.
[23] L. Shpigelman, Y. Singer, R. Paz, and E. Vaadia, “Spikernels: Predicting arm movements by embedding population spike

rate patterns in inner-product spaces,” Neural Computation, vol. 17, no. 3, pp. 671–690, March 2005.
[24] I. M. Park, S. Seth, M. Rao, and J. C. Prı́ncipe, “Strictly positive definite spike train kernels for point process divergences,”

Neural Computation, vol. 24, Aug. 2012.
[25] A. R. C. Paiva, I. Park, and J. C. Prı́ncipe, “A reproducing kernel Hilbert space framework for spike trains,” Neural

Computation, vol. 21, no. 2, pp. 424–449, Feb. 2009.
[26] B. Schrauwen and J. Van Campenhout, “Linking non-binned spike train kernels to several existing spike train metrics,”

Neurocomputing, vol. 70, pp. 1247–1253, Mar. 2007.
[27] M. C. W. van Rossum, “A novel spike distance,” Neural Computation, vol. 13, pp. 751–763, 2001.
[28] A. R. C. Paiva, I. Park, and J. C. Prı́ncipe, Inner Products for Representation and Learning in the Spike Train Domain.

Academic Press, 2010.
[29] A. Chen, “Fast kernel density independent component analysis,” in Proceedings of the 6th international conference on

Independent Component Analysis and Blind Signal Separation, ser. ICA’06. Berlin, Heidelberg: Springer-Verlag, 2006,
pp. 24–31.

[30] I. Park and J. C. Prı́ncipe, “Quantification of inter-trial non-stationarity in spike trains from periodically stimulated neural
cultures,” in IEEE International conference on acoustics, speech, and signal processing (ICASSP), 2010, pp. 5442–5445,
special session on Multivariate Analysis of Brain Signals: Methods and Applications.

[31] C. Houghton, “Studying spike trains using a van Rossum metric with a synapse-like filter,” Journal of Computational
Neuroscience, vol. 26, no. 1, pp. 149–155, February 2009.

[32] R. Schaback and H. Wendland, Multivariate approximation and applications. Cambridge University Press, 2001, ch.
Characterization and construction of radial basis functions, pp. 1–24.

[33] C. Berg, J. P. R. Christensen, and P. Ressel, Harmonic Analysis on Semigroups: Theory of Positive Definite and Related
Functions. Springer-Verlag, 1984.

[34] M. G. Genton, “Classes of kernels for machine learning: a statistics perspective,” Journal of Machine Learning Research,
vol. 2, pp. 299–312, 2002.

[35] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning (Adaptive Computation and Machine
Learning series). The MIT Press, Nov. 2005.

[36] C. M. Bishop, Pattern recognition and machine learning, 1st ed. Springer, Oct. 2006.
[37] J. J. Eggermont, A. M. Aertsen, and P. I. Johannesma, “Quantitative characterisation procedure for auditory neurons

based on the spectro-temporal receptive field.” Hearing research, vol. 10, no. 2, pp. 167–190, May 1983.
[38] R. Naud, F. Gerhard, S. Mensi, and W. Gerstner, “Improved similarity measures for small sets of spike trains,” Neural

Computation, vol. 23, no. 12, pp. 3016–3069, Sep. 2011.
[39] G. Kreiman, C. Koch, and I. Fried, “Category-specific visual responses of single neurons in the human medial temporal

lobe,” Nature Neuroscience, vol. 3, no. 9, pp. 946–953, September 2000.

published in the IEEE SIGNAL PROCESSING MAGAZINE, VOL. 30, NO. 4, JULY 2013, DOI:10.1109/MSP.2013.2251072 20

[40] S. Seth, I. Park, A. J. Brockmeier, M. Semework, J. Choi, J. Francis, and J. C. Prı́ncipe, “A novel family of non-parametric
cumulative based divergences for point processes,” in Advances in Neural Information Processing Systems (NIPS), 2010,
pp. 2119–2127.

[41] I. Park, S. Seth, M. Rao, and J. C. Principe, “Estimation of symmetric chi-square divergence for point processes,” in
Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on. IEEE, May 2011, pp.
2016–2019.

[42] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. Smola, “A kernel method for the two-sample-problem,” in
Advances in Neural Information Processing Systems 19, B. Schölkopf, J. Platt, and T. Hoffman, Eds. Cambridge, MA:
MIT Press, 2007, pp. 513–520.

[43] A. Smola, A. Gretton, L. Song, and B. Schölkopf, “A Hilbert space embedding for distributions,” in ALT ’07: Proceedings
of the 18th international conference on Algorithmic Learning Theory. Berlin, Heidelberg: Springer-Verlag, 2007, pp.
13–31.

[44] L. Song, B. Boots, S. Siddiqi, G. Gordon, and A. Smola, “Hilbert space embeddings of Hidden Markov models,” in
International Conference on Machine Learning (ICML), J. Fürnkranz and T. Joachims, Eds. Omnipress, 2010.

[45] J. W. Xu, A. R. C. Paiva, I. Park, and J. C. Prı́ncipe, “A reproducing kernel Hilbert space framework for information-
theoretic learning,” Signal Processing, IEEE Transactions on, vol. 56, no. 12, pp. 5891–5902, 2008.

[46] E. Salinas and L. F. Abbott, “Vector reconstruction from firing rates,” Journal of Computational Neuroscience, vol. 1,
no. 1, pp. 89–107, Jun. 1994.

[47] M. M. Churchland and S. G. Lisberger, “Shifts in the population response in the middle temporal visual area parallel
perceptual and motor illusions produced by apparent motion,” The Journal of Neuroscience, vol. 21, no. 23, pp.
9387–9402, Dec. 2001.

[48] A. B. A. Graf, A. Kohn, M. Jazayeri, and J. A. Movshon, “Decoding the activity of neuronal populations in macaque
primary visual cortex,” Nature Neuroscience, vol. advance online publication, no. 2, pp. 239–245, Jan. 2011.

[49] J. C. Sanchez, D. Erdogmus, M. A. L. Nicolelis, J. Wessberg, and J. C. Principe, “Interpreting spatial and temporal neural
activity through a recurrent neural network brain-machine interface,” Neural Systems and Rehabilitation Engineering,
IEEE Transactions on, vol. 13, no. 2, pp. 213–219, Jun. 2005.

[50] E. N. Brown, D. P. Nguyen, L. M. Frank, M. A. Wilson, and V. Solo, “An analysis of neural receptive field plasticity by
point process adaptive filtering,” Proceedings of the National Academy of Sciences, vol. 98, pp. 12 261–12 266, 2001.

[51] W. Truccolo, U. T. Eden, M. R. Fellows, J. P. Donoghue, and E. N. Brown, “A point process framework for relating
neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects,” Journal of Neurophysiology,
vol. 93, no. 2, pp. 1074–1089, February 2005.

[52] E. N. Brown, R. E. Kass, and P. P. Mitra, “Multiple neural spike train data analysis: state-of-the-art and future challenges,”
Nature Neuroscience, vol. 7, no. 5, pp. 456–61, may 2004.

[53] Y. Wang, A. R. C. Paiva, J. C. Prı́ncipe, and J. C. Sanchez, “Sequential Monte Carlo point process estimation of kinematics
from neural spiking activity for brain machine interfaces,” Neural Computation, vol. 21, no. 10, pp. 2894–2930, Oct. 2009.

[54] W. Liu, J. C. Principe, and S. Haykin, Kernel Adaptive Filtering: A Comprehensive Introduction, 1st ed. Wiley
Publishing, 2010.

[55] L. Li, J. Choi, J. Francis, J. Sanchez, and J. Principe, “Decoding stimuli from multi-source neural responses,” in Engineering
in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, 2012, pp. 1331 –1334.

[56] L. Li, I. M. Park, A. Brockmeier, S. Seth, B. Chen, J. Francis, J. C. Sanchez, and J. C. Prı́ncipe, “Adaptive inverse control
of neural spatiotemporal spike patterns with a reproducing kernel Hilbert space (RKHS) framework,” IEEE Transactions
on Neural and Rehabilitation Systems Engineering, (in press).

[57] L. Li, “Kernel based machine learning framework for neural decoding,” Ph.D. dissertation, University of Florida, 2012.

