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Abstract

Neuroscientists are developing new imaging techniques and generating large vol-

umes of data in an effort to understand the complex structure of the nervous system.

The complexity and size of this data makes human interpretation a labor-intensive task.

To aid in the analysis, new segmentation techniques for identifying neurons in these

feature rich datasets are required. This paper presents a method for neuron bound-

ary detection and nonbranching process segmentation in electron microscopy images

and visualizing them in three dimensions. It combines both automated segmentation

techniques with a graphical user interface for correction of mistakes in the automated

process. The automated process first uses machine learning and image processing tech-

niques to identify neuron membranes that deliniate the cells in each two-dimensional

section. To segment nonbranching processes, the cell regions in each two-dimensional

section are connected in 3D using correlation of regions between sections. The combi-

nation of this method with a graphical user interface specially designed for this purpose,

enables users to quickly segment cellular processes in large volumes.
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1 Introduction

Neural circuit reconstruction is an important method for studying neural circuit connectiv-
ity and its behavioral implications. The differences between neuronal classes, patterns, and
connections are central to the study of the nervous system and critical for understanding
how neural circuits process information. The ability to reconstruct neural circuitry at ultra-
structural resolution is also of great clinical importance. With each new dataset generated,
new details of well-known brain areas are being revealed, promising new insights into the
basic biology and disease processes of nervous systems. For instance, for the first time,
scientists can study the structural integrity of the transition zone of the optic nerve from
unmyelinated to myelinated in the nervous system. This transition zone is now identified as
one of the sites of pathology in glaucoma (Gonzalez-Hernandez et al. 2008). Other retinal
degenerative diseases, including retinitis pigmentosa and macular degeneration, result from
a loss of photoreceptors. Photoreceptor cell stress and death induces subsequent changes in
the neural circuitry of the retina resulting in corruption of the surviving retinal cell class
circuitry. Ultrastructural examination of the cell identity and circuitry reveal substantial
changes to retinal circuitry with implications for vision rescue strategies (Marc et al. 2008,
2007, 2003; Jones and Marc 2005; Jones et al. 2003; Jones, Watt, and Marc 2005; Peng et al.
2000). Ultrastructural evaluation of multiple canonical volumes of neural tissue are also crit-
ical towards the evaluation of differences in connectivity between different individuals.

Electron microscopy (EM) is a useful method for determining the anatomy of individual
neurons and their connectivity because it has a resolution that is high enough to identify
features, such as synaptic contacts and gap junctions. These features define connectiv-
ity, and therefore are required for neural circuit reconstruction. Manual analysis of this
data is extremely time-consuming. Early work in mapping the complete nervous system
of the relatively simple C. eleganstook many years (White et al. 1986). Since then, sev-
eral researchers have undertaken extensive EM imaging projects in order to create detailed
maps of neuronal structure and connectivity (Fiala and Harris 2001; Briggman and Denk
2006a; Varshney et al. 2011). In comparison, newer imaging techniques are producing
much larger volumes of very complex organisms, with thousands of neurons and millions
of synapses (Briggman and Denk 2006b; Anderson et al. 2009). The complexity and size
of the these datasets, often approaching tens of terabytes, makes human segmentation of
the complex textural information of electron microscopic imagery both a difficult and very
time-consuming task. Moreover, population or screening studies are unfeasible since fully
manual segmentation and analysis would require years of manual effort per specimen. As
a result, research in new imaging techniques and protocols, as well as automation of the
reconstruction process, are critical for the study of these systems.

To assist in neural circuit reconstruction, this paper presents a method for segmenting 3D
nonbranching cellular processes in EM images and visualize the results. The segmentation
of neurons combines both automated neuron segmentation techniques with a graphical user
interface for correction of mistakes in the automated process. The automated process first
uses machine learning and image processing techniques to segment the neurons in each 2D
section and then connect them in 3D. The combination of this process with a graphical user
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interface specially designed for this purpose, enable users to quickly segment neuron cell
processes in large volumes.

1.1 Imaging Methods

Serial-section Transmission Electron Microscopy (ssTEM) and Serial Block Face Scanning
Electron Microscopy (SSBFSEM) are the two methods used for image acquisition in this pa-
per. Compared with other state of the art methods, such as MRI (Xiao, Wang, and Felleman
2003) and scanning confocal light microscopy (Minsky 1961; Denk, Strickler, and Webb 1990;
Egner and Hell 2005; Rust, Bates, and Zhuang 2006; Betzig et al. 2006), electron microscopy
methods provide much higher resolution and remain the primary tool for resolving the 3D
structure and connectivity of neurons.

One of the modalities chosen for reconstructing neuronal circuits at the individual cell
level is serial-section transmission electron microscopy (ssTEM) (Anderson et al. 2009, 2011;
Chklovskii, Vitaladevuni, and Scheffer 2010). Most importantly, through mosaicking of many
individual images (Tasdizen et al. 2010; Saalfeld et al. 2010), ssTEM offers a relatively wide
field of view to identify large sets of cells that may wander significantly as they progress
through the sections. It also has an in-plane resolution that is high enough for identifying
synapses. In collecting images through ssTEM, sections are cut from a specimen and sus-
pended so that an electron beam can pass through it, creating a projection. The projection
can be captured on a piece of film and scanned or captured directly as a digital image. An
example ssTEM image is shown in Figure 2(a). An important trade-off occurs with respect
to the section thickness. Thinner sections are preferable from an image analysis point of
view because structures are more easily identifiable due to less averaging. However, from
an acquisition point of view, thinner sections are harder to physically handle and impose a
limit on the area of the section that can be cut. Sections can be reliably cut at 30 − 90nm
thickness with the current ssTEM technology. This leads to an extremely anisotropic z res-
olution, compared to 2 − 10nm in-plane. The C. elegans ventral nerve cord dataset used
in this paper, for example, was imaged using ssTEM and has a resolution of 6nm × 6nm
× 33nm. This anisotropy poses two image processing challenges. First, the appearance
of cell membranes can range from solid dark curves for neurons that run approximately
perpendicular to the cutting-plane, to fuzzy grey swaths, commonly referred to as “grazed
membranes,” for membranes that run more obliquely and suffer more from the averaging
effect. This is demonstrated in Figure 1. Consequently, segmentations of neurons in these
2D images are difficult given the change in membrane contrast and thickness. Second, due to
the large physical separation between sections, shapes and positions of neurons can change
significantly between adjacent sections. An example of this is shown in Figure 3(a).

Another specimen preparation and EM imaging technique commonly used for neu-
ral circuit reconstruction is Serial-Block Face Scanning Electron Microscopy (SBF-
SEM) (Denk and Horstmann 2004). In SBFSEM, successive slices are cut away and dis-
carded, and the electron beam is scanned over the remaining block face to produce electron
backscattering images. This method results in smaller deformations than ssTEM because the
dimensions of the solid block remain relatively stable after slicing and thus deformation be-
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Figure 1: Diagram demonstrating the formation of fuzzy membranes in ssTEM images.

tween sections is relatively small, usually eliminating the need for image registration between
sections. The in-slice resolution (which is closer to 10nm) and signal-to-noise properties of
SBFSEM are generally not as good as those of ssTEM, though. However, a specialized
scanning electron microscope equipped with a high precision Gatan 3View ultramicrotome
combined with an improved specimen staining protocol can produce high contrast images
and increased detail of individual cells in the context of their surroundings (Deerinck et al.
2010). Specifically, by staining the tissue with a series of heavy metal stains, we were able to
improve contrast and render the samples more conductive. The specimens were conductive
enough to allow us to image at high vacuum, which results in images with improved resolu-
tion and signal/noise. This specimen preparation protocol was used to collect the neuropil
of the molecular layer of the cerebellar cortex from an adult mouse, an exemplary image of
which is shown in Figure 2(b). This image acquisition technique still results in anisotropic
resolution, causing the separation between slices to be significant enough that positions of
fine neurites and subcellular structures can shift and change significantly between sections
(see Figure 3(b)). In the case of SBFSEM mouse neuropil dataset, the resolution is 10nm ×

10nm × 50nm (SBFSEM).

1.2 Cellular Segmentation

There are two general approaches for neuron segmentation. One approach focuses first on
the detection of neuron membranes in each 2D section. These boundaries can then be used to
identify individual neurons, which are subsequently linked across sections to form a complete
neuron (Jeong et al. 2010; Jurrus et al. 2008; Macke et al. 2008; Allen and Levinthal 1990).
The other approach to neuron segmentation is to directly use the 3D characteristics of
the data (Andres et al. 2008; Jain et al. 2007). Full 3D approaches are difficult due to the
anisotropic nature of the data, however. As mentioned earlier, the large section thickness
often causes features to shift significantly between sequential images, decreasing the potential
advantages of a direct 3D approach.

A number of methods exist for neuron membrane detection in 2D sections. Image pro-
cessing methods for finding membranes include edge detection (i.e., Canny), region growing
methods, and intensity thresholding on enhanced membrane features, either through Hessian-
based diffusion (Tasdizen et al. 2005) or radon-like features (Kumar, Reina, and Pfister 2010).
Accurate detection of neuron membranes using these methods alone is a difficult problem
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(a) (b)

Figure 2: (a) ssTEM image of the ventral nerve cord from the C. elegans (b) SBFSEM
image of the mouse neuropil

(a) (b)

Figure 3: Example showing how much change frequently occurs in neuron profiles between
sequential sections from an (a) ssTEM image of the ventral nerve cord from the C. elegans
and (b) SBFSEM image of the mouse neuropil
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given the presence of intracellular structures. There are several methods that attempt to
segment EM images of neural tissue using active contours, in both parametric and level set
forms (Jurrus et al. 2009; Bertalmı́o, Sapiro, and Randall 2000; Vazquez, Sapiro, and Randall
1998; Vazquez-Reina, Miller, and Pfister 2009). 2D graph cuts can be used to segment im-
ages using region and boundary terms that separate intracellular structures from mem-
branes (Vu and Manjunath 2008; Yang and Choe 2009). These can provide smooth, accu-
rate segmentations of cells. However, when used alone they require a very specific energy
minimization function so that neuron membranes are not confused with organelles making
this method dependent on the type of cell being segmented. Additionally, their success can
depend on their initialization (Vu and Manjunath 2008). Combined with machine learning
methods (Kaynig, Fuchs, and Buhmann 2010), they have an improved detection accuracy
and can be used more reliably in 3D.

Recent related work indicates that supervised machine learning methods are an effective
approach for detection of neuron membranes in 2D and 3D (Jain, Seung, and Turaga 2010;
Andres et al. 2008). Simple classifiers such as a single perceptron applied to a carefully
chosen set of features have been shown to provide promising results in identifying mem-
branes in EM images (Mishchenko 2008). Nevertheless, this method still needs significant
post-processing to connect membranes and remove internal cellular structures. Similarly,
Venkataraju et al. proposed using local context features computed from the Hessian ma-
trix to train a boosted classifier to detect membranes, which highlights the importance of
context for membrane detection (Venkatataju et al. 2009). Jain et al. use a multilayer con-
volutional ANN to classify pixels as membrane or non-membrane in specimens prepared
with an extracellular stain (Jain et al. 2007; Turaga et al. 2009). The convolutional ANN
has two important characteristics: it learns the filters for classification directly from data,
and the multiple convolutions throughout the layers of the network account for an increasing
(indirect) filter support region. The serial neural network architecture (Jurrus et al. 2010)
used in this paper also takes advantage of context and samples the image pixels directly to
learn membrane boundaries, but given the anisotropic data, focuses only on 2D sections.
New cost functions used during training are being developed to take into account the topo-
logical constraints of neuron boundaries (Turaga et al. 2010; Jain et al. 2010). The results
obtained with these methods demonstrate not only the complexity of the problem, but also
the potential of supervised machine learning as a tool towards neuron segmentation.

One of the goals of this work is to combine machine learning and segmentation algorithms
with three-dimensional rendering capabilities for users to better understand how to process
the data and visualize the results. Towards this aim, there are several existing software efforts
that incorporate many of the above algorithms specifically for reconstructing neural circuits
from biological volumetric images. These tools provide an interface to the data and contour
tools to segment structures in a stack of EM images. One of most widely used software tools
is Reconstruct (Fiala, , and Harris 2002; Fiala and Harris 2010) which enables users to view
and outline structures of interest and then render them as 3D volumes. Combining Recon-
struct with automated methods, such as the ones proposed by Mishchenko (Mishchenko et al.
2010) resulted in scientific discoveries regarding the predicted location of synapses within a
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neuron. IMOD (Kremer, Mastronarde, and McIntosh 1996) and TrakEM2 (Cardona et al.
2010) have also proved to be useful tools for mosaicking, segmenting, and rendering struc-
tures from a variety of biological volumetric image data. A more comprehensive set of tools
for reconstruction is the Cell Centered Database (Martone et al. 2008) which performs not
only annotation on EM images, but also provides data management and protein knowledge
base interfaces. While these tools are critical in the segmentation and reconstruction of
EM data, the goal of this paper is to segment many structures from large sets of images
through the design of automated memory efficient algorithms while also building a tool ca-
pable of streaming large datasets for volume viewing and interaction. Towards this goal,
two software programs, the Serial Section Reconstruction and Tracing Tool (SSECRETT)
and NeuroTrace can segment large image databases (Jeong et al. 2009, 2010). SSECRETT
is an interface for slice-based viewing of large volumes using a client-server architecture to
request only the data needed by the user. NeuroTrace incorporates 2D level set segmentation
tools for segmenting individual sections, and then using those segmentations to identify long
neuronal processes. These combined tools produce vital reconstruction data, however the
interface to the data is specific to the implemented algorithms and still requires the user
to initialize each neuron for segmentation. The software program designed for this paper
similarly manages memory for large datasets, but also is designed to incorporate automated
segmentation algorithms. In addition, it provides an interface specific to the segmentation
method presented in this paper to make corrections, and most importantly, view the raw
image data with its 3D segmentation.

2 Methods

The overall method proposed in this paper for reconstructing nonbranching neuron cell pro-
cesses consists of two steps. First, neuron membranes are segmented in 2D and neuronal
cross-sections are identified. Second, the regions are linked across all the sections to form
3D renderings of parallel processes. The initial neuron segmentation used for each 2D sec-
tion builds upon previous work which uses a series of artificial neural networks (ANNs) to
detect neuron membranes. To improve the membrane detection, that method is extended
here by incorporating learned membranes from sequential sections into another ANN and
applying tensor voting post-processing. Also drawing from previous work, we incorporate an
optimal path algorithm to connect similar regions through the volume to form complete 3D
segmentations. Furthermore, this paper combines all of the above techniques into an inter-
active tool, called the Neuron Reconstruction Viewer (NeRV), that lets the user view large
EM datasets, evaluate the segmentations, and make corrections to both the 2D membrane
detection and the joining of regions through the sections to segment a neuron in 3D.

2.1 2D Membrane Detection

The method developed here for neuron membrane detection extends previous work, which
uses a series of ANN classifiers and image stencil neighborhood feature vectors to detect
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neuron membranes in 2D images (Jurrus et al. 2010). In that paper, membrane detection
was limited to features within a 2D section. An example output from this algorithm is shown
in Figure 4(b)-(d). This work is extended here to train on information from neighboring
sections, using the confidence from sequential sections. Given the anisotropic nature of
the data, sequential sections have very poor membrane correspondence. To account for
this, classified results representing the membrane probability image are registered and a 3D
stencil that spans 3 sections is formed for training. Finally, tensor voting, a method for
closing remaining gaps, is used. This provides significantly improved segmentation results
over the original method (Jurrus et al. 2010). The output from these additional steps is
shown in Figure 4(e)-(f). Quantitatively, the improvement of these new methods can be
seen in Figures 16, 17, 22, and 23.

2.1.1 Serial Neural Network Architecture

In previous work, a serial classifier architecture was implemented that used a series of clas-
sifiers, each operating on input from the previous classifier, to incrementally gain knowledge
of a large neighborhood (Jurrus et al. 2010; Paiva, Jurrus, and Tasdizen 2010). This archi-
tecture is particularly useful for two reasons. First, the data used for training requires no
preprocessing with filter banks or statistics, and the classifier is trained directly on sampled
image intensities. Second, by applying several classifiers in series, each classifier uses the
classification context provided by the previous network to improve membrane detection ac-
curacy. To initialize this architecture, the first classifier is trained only on image intensities.
Each remaining classifier in the series then uses an input vector containing samples from the
original image appended with the values from the output of the previous classifier, yielding
a larger feature vector. While the desired output labels remain the same, each classifier
is dependent on the information from the previous network and therefore must be trained
sequentially. The output from each network is used to generate an image that represents the
membrane probability map at that stage. Figure 5 demonstrates this flow of data between
classifiers: ML is the classifier, I denotes the image, S represents the sampling of image
intensities from the image using the stencil, and C denotes the output from the classifier,
yielding the membrane detection.

Since the serial classifier architecture is not specific to any classifier and given the success
of ANNs for membrane detection (Mishchenko 2008; Jain et al. 2007), the classifier chosen
for this architecture is a multilayer perceptron (MLP) ANN (shown in Figure 6). An MLP
is a feed-forward neural network which approximates a classification boundary with the use
of nonlinearly weighted inputs. The output of each processing element (PE) (each node of
the ANN) is given as (Haykin 1999; Principe, Euliano, and Lefebvre 2000)

y = f(wTx + b), (1)

where f is, in our case, the tanh nonlinearity, w is the weight vector, and b is the bias. The
input vector x to PEs in the first hidden layer is the input feature vector discussed in more
detail in the next section. For the PEs in subsequent layers, x contains the outputs of the
PEs in the previous layer. ANNs are a method for learning general functions from examples.
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(a)

(b) (c) (d)

(e) (f) (g)

(h)

Figure 4: Output of the method on a test image from an SBFSEM dataset. (a) is the raw
image, (b)-(d) are stages 1, 2 and 5 of the series ANN, (e) is the output from the sequential
series ANN, (f) is the output from the tensor voting, (g) is the region segmentation after
a simple flood fill, and (h) the gold standard, generated by an expert, for membranes and
neuron regions.
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Figure 5: Serial classifier diagram demonstrating the flow of information between classifiers.
I is the original image, C is the output image from the classifier (ML), and S is the stencil
(shown in Figure 7) that samples the image data to form the feature vector for the classifier.
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Figure 6: Artificial neural network diagram with one hidden layer.
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Figure 7: Image neighborhood sampling technique: image pixels sampled using a stencil.
For this example, the stencil contains a small number of samples, yet covers a larger area of
the data. This is an efficient representation for sampling the image space.

They are well suited for problems without prior knowledge of the function to be approximated
(a.k.a., ”black box models”). They have been successfully applied to robotics (Pomerleau
1993; Wells, Venaille, and Torras 1996) and face and speech recognition (Rabi and Lu 1998;
Cottrell 1990), and are robust to noise.

To learn the weight vector and bias, back-propagation was used to minimize the min-
imum squared error(MSE) criterion (Haykin 1999; Principe, Euliano, and Lefebvre 2000).
Back-propagation is a gradient descent procedure that maps the output layer error to the
error at the output of each node, yielding a local update rule that depends only on the
node’s input and output error. It is obtained by direct application of the chain rule to the
derivative of the criterion with regards to each one of the ANN parameters. Because back-
propagation depends only on the local gradient and that information is available directly
from the optimization criterion, there is no need to explicitly characterize the parameter
space.

The serial classifier is trained by simply using raw image intensities. Training a classifier
on raw image data yielded improved results over filter banks and neighborhood statistical
information (Jurrus et al. 2009; Paiva, Jurrus, and Tasdizen 2010). The stencil, shown in
Figure 7, can cover large areas representing the desired feature space, but samples it with
a spatially adaptive resolution strategy. In this way, an ANN can be trained using a low
dimensional feature vector without having to use the whole image patch. Pixels are selected
close to the stencil center, along a radius, at a high resolution, and then further from the
center at a more coarse resolution. This gives more detail for the training of our classifier
around the feature of interest, while maintaining a large area in which to apply context. Since
the number of weights to be computed in an ANN are dominated by the connection between
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the input and the hidden layers, reducing the number of inputs also reduces the number of
weights and helps regularize the learned network. Moreover, using fewer inputs generally
allows for faster training. With this, one aims to provide the classifier with sparse, but
sufficient context information and achieve faster training, while obtaining a larger context
which can lead to improvements in membrane detection. This strategy, combined with the
serial use of ANNs, grows the region of interest for classification within a smaller number of
stages and without long training times. Example output from the serial classifier is shown
in Figure 4(b)-(d).

The training data used to train the classifier is generated by hand by domain experts.
For each dataset, a user annotated all the membrane boundaries with curves that were one
pixel wide on a subset of the images. We dilated this boundary to cover the width of the
neuron membrane and these pixels were used as positive training examples for our classifier.
Unannotated pixels, which included intercellular features such as vesicles, mitochondria, and
nucleus, were used as negative training examples. From these pixels, we randomly chose a
balanced set of positive and negative training examples for our classifier. This is discussed
in more detail for each dataset in Sections 3.1 and 3.2.

2.1.2 Sequential Section Serial Neural Network Architecture

Sequential sections from EM data often contain similar structures that we would like to
use as context to improve the quality of the 2D segmentation. One way to do this would
be with a stencil that spans multiple sections. However, the membrane locations between
sections have poor correspondence. This is partly because of the anisotropic nature of the
data, which often results in large movement of membranes between sections, and membranes
sometimes do not run perpendicular to the cutting plane causing membranes to have low
contrast and appear fuzzy. The differences between two sections is seen in Figure 8(a) which
shows two sequential images with detected membranes overlaid with each other. Membranes
in sequential sections are near each other, but they do not correspond well enough to use
them directly in a 3D stencil that would span multiple sections. One way to resolve this
problem is to perform a nonrigid registration across the whole volume to align as best as
possible all the membrane boundaries. There are two problems with this approach. First,
internal structures in the neurons complicate the registration process introducing possible er-
rors to the segmentation. Second, this process introduces warping, changing the anatomy of
the neurons. To account for this, we propose a novel approach which aligns sequential mem-
brane probability map images between only two sections using a correlation-based nonlinear
registration. We register only the membrane probability images because the classification
process has removed many of the internal structures that would make an extremely fine-scale
nonlinear registration on raw image data difficult. Also, we perform the registration between
only two sections to keep the location of the neurons intact. Once registered, a 3D stencil
that spans 3 adjacent sections samples the classification results from the previous stage and
provides information to be used in the final classification step.

More specifically, after the membrane detection is complete for each section using the
serial ANN architecture, images are registered in pairs to the center section and used as input
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to a new ANN. The serial ANN with the registration step and final ANN is depicted in Fig-
ure 9. The registration method proposed is a B-spline deformable registration (Ibanez et al.
2005). Given an image to be registered and a static template image, a nonlinear deformation
can be generated which minimizes the mean squared difference energy, given by,

∫

Ω

(

CM
◦ t(x)− CS(x)

)2
dx. (2)

where Ω is the image domain and t(x) is the deformation R
2 → R

2, in our case given by a
2D tensor product B-spline transform of order 2 (Rueckert et al. 1999). CM is the moving
classification image, and Cs is the static classification image. For our purposes, Ci (the
center section) is the static image and Ci−1 and Ci+1 are the moving images.

Each section has its own set of neighboring registered sections. The change in the mem-
brane locations after two images are registered is shown in Figure 8(b). Now that membranes
are more carefully aligned across neighboring sections, a new stencil can be used to sample
the 3D space. The 3D, three section, stencil is similar to the one shown previously in Fig-
ure 7. This stencil is used on the middle slice, while the stencil on the top and bottom slice
have a shorter radius. The output from the ANN using this stencil is show in Figure 4(e).
Using information from the sequential sections, the ANN learns to identify membranes in
Ci that were not previously detected, because the membranes were detected in Ci−1 and
Ci+1 improving the overall segmentation. This helps specifically in cases where Ci contains
grazed membranes, but Ci−1 and Ci+1 do not. A good example of this is shown in Figure 14,
second column. Membranes in the raw image appear fuzzy and are not well detected after
the serial ANN. Using information from the registered sequential sections strengthens these
boundaries. In this way, the ANN also learns the possible shapes of membranes across several
sections.

2.1.3 Tensor Voting

Tensor Voting (TV) is a method first proposed by Guy and Medioni (Medioni, Lee, and Tang
2000) for extraction or enhancement of local features (lines, curves or surface) extraction
results. Local feature extraction by itself is often unreliable in noisy and complicated images.
That is, the lines or curves are often noisy and interrupted. TV enhances or predicts local
features by integrating clues from nearby features. In our case, the influence of nearby
features is based on a given voting field designed to extract smooth curves.

In tensor voting, a 2-D tensor can be represented by a symmetric, positive semidefinite
2× 2 matrix as follows:

T =

(

axx axy
axy ayy

)

= λ1e1e
T
1 + λ2e2e

T
2 (3)

where λ1 and λ2 are the eigenvalues (λ1 ≥ λ2 ≥ 0); e1 and e2 are the orthonormal eigen-
vectors. Graphical representation of this kind of tensor is ellipse, as shown in Figure 10(a).
One common parameterization is to define a tensor with three parameters: orientation β,
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(a) (b)

Figure 8: [color] Two sequential sections from the mouse neuropil with membranes detected
after the serial ANN overlaid with each other with (a) no registration and (b) after the
intensity-based nonlinear registration. Blue and yellow colors indicate membrane overlay
mismatches and white indicates shared membranes.

I CSerial ANNi i

I CSerial ANNi+1 i+1

I CSerial ANNi-1 i-1

Sequential 
Section ANNCi

3

C    t   (x)i-1

C'iS'

i-1
o

C    t   (x)
i+1i+1

o

Figure 9: Diagram demonstrating the flow of data for the sequential section ANN architecture
on a single image. Ii are the input images, SerialANN is the diagram in Figure 5 collapsed,
and Ci is the output of the classifier on image Ii. Ci−1 ◦ ti−1(x) is the registration of Ci−1 to
Ci and Ci+1 ◦ ti+1(x) is the registration of Ci+1 to Ci. C

3
i is the stack of all three registered

images. S ′ is the 3D stencil used on the combined images as input to the classifier. C ′

i is the
final classification.
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stickness s and ballness b.

β = arccos
(

eTxe1
)

(4)

s = λ1 − λ2 (5)

b = λ2 (6)

where ex = (1, 0)T . A tensor with ballness equal to 0 is called stick tensor and represents a
curve passing through that pixel. A tensor with stickness equal to 0 is called ball tensor. In
our work the initial tensors are computed from the classifier output image as

Tx,y = Ix,y

(

cos(αx,y)
sin(αx,y)

)

(

cos(αx,y), sin(αx,y)
)

(7)

where I(x, y) is the membrane strength at pixel (x, y) and α(x, y) is the local orientation
computed as the orientation of the eigenvector corresponding to the smaller eigenvalue of
the local second order derivative matrix (Hessian).

In TV, the ”vote” is a tensor calculated from the geometric relation between the voter and
the votee. All the votes to a pixel will be summed and form the output tensor of that pixel.
The voting field is shown in Figure 10(b). A typical voting method is to filter the tensor
image with a nonholonomic filter, called voting field, aligned with the local tensor orientation.
Since this is a computationally intensive method, it is typically applied in a sparse manner
such that only a subset of the pixels in the image, those where curve features are detected,
are allowed to cast votes. However, in problems where detection is hard, such as with neuron
membranes, it can be advantageous to allow every pixel to cast votes proportional to their
strength, as determined by our classifier, and to postpone detection until after this step. To
achieve this in a computationally efficient manner, we used a rapid tensor voting algorithm
which uses steerable filters as a basis for the voting field (Franken et al. 2006; Leng et al.
2011). In this algorithm, a set of basis voting fields are convolved with the image and then
linearly combined to form the desired voting field at each pixel.

(a) Ellipse representation
of a tensor

(b) a typical tensor
voting field

Figure 10: Tensor and tensor voting field
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2.1.4 Region Segmentation

Given detected membranes in each 2D section, neurons can be segmented in each section
using either a watershed segmentation (Gonzalez and Woods 1992; Ibanez et al. 2005) or
a simple flood fill algorithm on the thresholded probability map. The flood fill algorithm
operates on thresholded data and works best when a user has corrected segmentations with
hand editing and wants a precise neuron membrane representation at every section. For larger
problems, the watershed algorithm has the advantage in that it can close gaps automatically.
For our method, we apply a watershed segmentation to the blurred output from the tensor
voting and select the watershed depth that best segments the neuron regions. However, there
are two trade-offs to consider when choosing to use the watershed for region segmentation.
The first is a trade-off between the ability to close large gaps and the ability to segment
smaller features. This is controlled by the parameter σ which is used to smooth the image
as part of the watershed process. Large σ enables the watershed to close large gaps but
also loses the ability to segment smaller features. Another trade-off of the watershed is that
depending on the level (or depth) of the watershed, chosen by the user, over-segmentation
can occur of regions, meaning areas that should be one whole region are instead two or three
regions. The user has to balance these trade-offs when choosing the level to proper set of
required parameters. This is discussed more in Section 3.2 when the watershed is applied to
the mouse neuropil data.

2.2 Region Linking

In segmenting the structures relevant for the datasets described in this paper, we present
a method that identifies only parallel processes through a stack of images. For this pa-
per, neuron identification across a stack of EM images is formulated as an optimal path
problem with a graph data structure (Jurrus et al. 2008). The vertices of the graph are
defined as the regions obtained by 2D segmentation of the individual sections, as described
in Section 2.1. Edges in the graph represent possible linkages between regions in neighboring
sections. Linking together the neuron regions in the graph is performed using Dijkstra’s
shortest path algorithm. The resulting path through the graph is used to reconstruct the
neuron in 3D.

2.2.1 Linking Method for Neuron Regions

Let Rs,i be the i’th region from the 2D segmentation in section s. A directed graph containing
a set of nodes that correspond to the set of segmented regions in section s is constructed.
The set of directed edges on the graph is between all nodes in adjacent sections. That is,

E =

{

N,Qs,Qs+1
⋃

s,i,j=1

Es,i,j

}

where Es,i,j = [Rs,i, Rs+1,j], (8)

N is the total number of sections, and Qs denotes the number of segmented regions in section
s.
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A path through the graph is defined as a sequence of nodes connected by edges. We are
interested in paths that span all sections P = (R1,i1 , R2,i2, . . . , RN,iN ), and the cost of the
path is defined as the sum of the costs of the edges

K(P ) =
N−1
∑

s=0

W (Es,is,is+1
), (9)

where i1, . . . iN is the set of indices that the path follows on each section; because of the
directed nature of the graph, paths cannot cross back to previous sections.

For biologists, the identification of neurons between sections relies on texture, shape,
and proximity. These properties motivate the construction of the edge cost as the negative
of the log-product of the correlation between regions and a Gaussian penalty on in-section
displacement. That is:

W (Es,i,j) = − log

[

C(Rs,i, Rs+1,j) exp

(

−D(Rs,i, Rs+1,j)
2

φ2

)]

, (10)

where D(Rs,i, Rs+1,j) is the Euclidean distance between region center of mass in the x − y

coordinates of the section. φ is the maximum distance we expect the neurons to move between
sections. C is the maximum value of the normalized cross-correlation of the two segmented
regions. Correlation is used most commonly in image processing and computer vision for
locating or matching specific features across scenes. In this case, it is used to measure how
well a region in section s matches with another region in section s + 1. The two section
images are multiplied with the characteristic function of the regions (0 outside, 1 inside)
corresponding to Rs,i and Rs+1,i to obtain the masked images Is,i and Is+1,j, respectively.
Then, the normalized cross-correlation between two vertices of the graph is computed as

C(Rs,i, Rs+1,j) = max
tx,ty

∑

x,y

I ′s,i(x− tx, y − ty)I
′

s+1,j(x, y)

√

√

√

√

(

∑

x,y

I ′s,i(x, y)
2

)(

∑

x,y

I ′s+1,j(x, y)
2

)

. (11)

For computational efficiency, the cross-correlation is computed in the Fourier Domain. The
log is used so that the formulation is equivalent to a product through the sections, and
the system avoids seeking out very good connections at the expense of very bad ones. Cell
identity is lost if a connection between sections is not sufficiently strong. Finally, the log-
product, which can be seen as an edge connection weight, is negated to create a cost function.

An important extension to this basic framework allows paths to skip sections, in order
to avoid poor quality sections, which can happen regularly. To accomplish this, edges are
added to the graph that allow connections up to M sections away:

E =

{

M,N,Qs,Qs+k
⋃

k,s,i,j=1

Es,i,j,k

}

where Es,i,j,k = [Rs,i, Rs+k,j] (12)
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where k is the number of skipped sections. For the datasets in this paper, M = 2, thereby
allowing connections between sections separated at most by a single intermediate section.
This gives Dijkstra’s algorithm a choice in calculating the best path in the case where an
immediately adjacent section does not have the best match. This changes the construction
of costs for these edges, because we want to avoid cost functions that favor skipping sections
when there is sufficient data to support a path through a section. The function in Equation 10
is adjusted to penalize the correlation and distance terms for the skipped sections. Generally
we have

W (Es,i,j) = − log

[

αk−1C(Rs,i, Rs+1,j) exp

(

−D(Rs,i.Rs+1,j)
2

kφ2

)]

, (13)

α is the typical normalized correlation penalty between a cell in two adjacent sections, which
was found empirically to be about 0.6. The displacement Gaussian’s variance is multiplied
by k, allowing more spatial movement when a section is skipped. The effect of these changes
is to normalize the correlation, but allow for more displacement between the skipped regions.
Overall, this increases the edge cost for k > 1.

Dijkstra’s algorithm, which finds a minimum distance path in a directed graph is used
to find the optimal connectivity for each neuron (region) in the first section. Dijkstra is
run with a zero cost for all the regions in the first section. The region with the best cost
is found on the last section, and tracing the solution backwards results in the optimal path
(best cell) for the whole data set. Of course in this solution, cells can share paths, which is
not normally what we want for this particular application. To account for this, we enforce
uniqueness iteratively, in a greedy optimization strategy. That is, we solve for the best path,
remove those nodes from the graph, and repeat, producing a sequence of cells associated
with a decreasing degree of evidence for connectivity.

One of the constraints required by this method is that the user know how far a neuron
will likely go across an image volume. This linking algorithm is designed to identify as many
neurons as possible that start on slice s and end on slice s + n. This limits this method
to parallel processes. However, for certain datasets, such as the C. elegans where neurons
rarely branch or terminate, scientists can potentially use this automatic linking algorithm
to reconstruct as many paths, P , as possible of the ventral nerve cord.

2.2.2 Neuron Reconstruction Viewer

The automatic methods described up until this point all work fairly well on their own, but
in the end, require the ability for viewing and editing of the segmentation results. The
Neuron Reconstruction Viewer (NeRV) (shown in Figure 11) attempts to bridge these two
requirements by providing a visual interface to large volumes of EM images and neuron
segmentations, with the option to make corrections that will, in the long term improve the
segmentation.

Primarily, NeRV is an interface for the user to view the raw image data and the 3D
reconstruction. Interacting with the image data and the rendered neuron provides insight
for the scientist on the arrangement of the neurons within the data. The pane on the left, in
Figure 11, is mainly a slice viewer. The user can view the membrane detection, the region
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Figure 11: [color] Screen capture of NeRV displaying the automatic segmentation results on
the C. elegans ventral nerve cord for a portion of the data.

segmentation, and the raw data all in one viewer. Spheres highlight the paths neurons take
through the volume. The keyboard arrow keys or the slider in the middle lets the user scroll
through the sections. The pane on the right, is a 3D viewer of the reconstructed neuron.
Raw image data can be turned off and on in this view, and users can select other sections
simply by clicking on the area of the neuron.

Users can interact with this using the graphical interface on the far left. First, users can
correct segmentations to close gaps with a simple drawing tool, then recompute the regions
and correlations to improve the optimal path calculation (as discussed in Section 2.2). Users
can manually select regions in slices and create their own 3D renderings with the automatic
path calculation. For precomputed and segmented neurons, a separate window allows users
to select different neurons for viewing, deleting, or joining.

Figure 12 is an overview of all the software and data used to generate results in this
paper. Before NeRV can load any image data, a sequence of command line tools needs to be
executed to generate the membrane detection, segmentations, correlations, optimal paths,
and isosurfaces. NeRV could easily interact with all these tools at each step; however, because
of the time it takes to process the data, it is easier to do the early steps off line. However,
once generated, NeRV has the ability to quickly edit membranes and view segmentations
through streaming of the image data. Only the data that the user is viewing is loaded into
memory. The 3D visualization and path editor give the user an opportunity to view full
models of neurons and join paths, one of the most crucial steps in the reconstruction.
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Figure 12: [color] Diagram demonstrating how the command line tools for segmenting
EM images and NeRV interact with the EM images and data files. Directions of arrows
indicate reads and writes. Double arrows designate data that is being streamed by VTK.
The isosurfacing command line tool also takes, as input, the labeled images. ”Binary Corr.”
are the correlations files for all the section to section edge weights, stored in binary for fast
reading and writing of large files.

NeRV is built primarily using VTK (Schroeder, Martin, and Lorensen 2010) and Qt (Nokia).
To handle large datasets, the VTK image data streamer is used to load only the images re-
quired for viewing and requested by the user. Since slices are loaded as needed, the memory
of this system is limited only by the size of a single section. Other optimizations, such as
down sampling and memory management, enable efficient building of the isosurfaces for the
3D reconstruction in the right pane.

3 Neuron Segmentation Results

Two EM datasets are segmented using the proposed methods. The first dataset is a stack
of 400 sections from the ventral nerve cord of the C. elegans worm. The second dataset is a
stack of 400 sections from the mouse neuropil. These datasets contain very different types
of neural cells. Furthermore, the C. elegans data has a resolution of 6nm×6nm×33nm and
each 2D section is 4008×2672 pixels, whereas the mouse neuropil data has a pixel resolution
of 10nm×10nm×50nm and each 2D section is 4096×4096 pixels. Figure 2 shows images from
each of these datasets. Note that the membranes in the mouse and worm images, shown
in Figure 2, are very different. The section from the worm nerve cord (Figure 2(a)) has a
low signal-to-noise ratio and the neuron membranes have varying thickness and contrast.
While the membranes from the mouse neuropil (Figure 2(b)) are strong in contrast and have
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a high signal-to-noise ratio, they contain more variable internal structures. Both datasets
contain grazed membranes, corresponding to neurons cut at nonperpendicular angles. This
makes it difficult for even the human eye to identify all the membrane structures. More
traditional statistics-based machine learning methods would require a specific filter design
for each dataset. However, the use of stencils, rather than a predefined filter bank, means
the proposed method can adapt to the idiosyncrasies of different samples and is successful
in learning to detect neuron membranes in both datasets.

To segment the neurons in these datasets we focused on identifying parallel processes.
The C. elegans data was ideal for this solution because nerves running along the ventral
nerve cord rarely branched or terminated. In contrast, the mouse neuropil contains a higher
number of branching structures, although in our close examination of the data, most parallel
processes found in this data branched very little, maybe two to three slices. In an effort to
segment as many neurons as possible, we also restrict our segmentation to processes that
span a specific number of sections.

The results presented in this paper were generated using 2 different computers. The first
was on a desktop computer containing 8, 2.8 GHz Intel CPUs and 8G of Memory. The second
machine was a 32 node, 2.93Ghz, shared memory computer containing 200G of memory. The
raw C. elegans data, if loaded entirely into memory at once, requires 4.2G of memory, while
the mouse neuropil data requires 25G. Because of these memory requirements, distribution
of the processing was done across computers, in parallel, for the most efficient computation
of results as possible. Details regarding the time for each computation are described in detail
in the following sections.

3.1 Results for the C. elegans Ventral Nerve Cord

The nematode C. elegans is an important organism for neural circuit reconstruction because
it is the only organism for which the connectivity has been determined (White et al. 1986;
Varshney et al. 2011). Nevertheless, there are still numerous questions that require the de-
termination of the connectivity, such as how genes regulate wiring (Jin, Hoskins, and Horvitz
1994) or how connectivity is altered to mediate different behaviors, for example, between
males and females (White et al. 2007). In addition, reconstructions of the full nervous system
reveal topological characteristics of the neurons that are important for studies of neuronal
functions. The particular dataset used in this paper is from the ventral nerve cord of the
C. elegans and is important for studying the interwoven topology of neurons making con-
nections to local targets.

To segment the membranes in this dataset and create a 3D reconstruction, we first had
to align all the ssTEM images into a volume. We performed a ridged alignment using
a brute-force search for the unknown rotation and translation between adjacent pairs of
sections (Tasdizen et al. 2010). This was a challenging task because there are significant
changes between the sections resulting from slicing artifacts and missing sections. Approx-
imately 10% of the images required user intervention to remove images of poor quality or
realign sections that had little correspondence. Using the tools described in Tasdizen et al.
hand alignment of two sections took just a couple of minutes. We did not perform a non-
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linear alignment on these sections because we wanted to maintain the shape of the neurons
and prevent distortion.

For validation, we had experts segment 40 selected images from the first 400 sections.
Each expert placed a one pixel wide line along the membranes of the neurons, which we
dilated using a 5 pixel wide structuring element, to cover most of the membrane pixels.
Before training, we performed Gaussian blurring of the EM images with a small σ = 2
to remove noise, and down sampled by 2 to reduce the computational complexity. Then
we used a contrast limited adaptive histogram equalization (CLAHE) (Pizer et al. 1990)
filter to enhance the contrast in the neuron membranes. For the training data, 30 images
were randomly selected for training and the remaining 10 were used for validation. From
those images, 1 million samples were randomly selected from the manually marked images.
Because of the relatively small percentage of positive examples (representing membrane
pixels), these 1 million samples were chosen to contain 1

3
positive and 2

3
negative examples.

The stencil used to sample the image values had a radius of 10 and was similar to the one in
Figure 7. The ANN we used was implemented in C++ and had one hidden layer of 20 nodes.
To mitigate problems with local minima in training, each network was trained for 5 Monte
Carlo simulations using randomly initialized weights. Each stage of the serial ANN took
between 9 and 12 hours to complete. The ANN for the sequential sections took about 22
hours to train. Applying the weights from the ANNs takes a total of 7 minutes per section.
Finally, the tensor voting implemented in Matlab was completed in 6 minutes per section.

Figure 13(a) shows three selected sections from the C. elegans dataset. The final mem-
brane detection with the proposed method is shown in Figure 13(e). The sequential section
ANN uses information about membranes also detected in neighboring sections to improve
the current segmentation. The tensor voting uses, as input, the final classification and closes
remaining gaps. This is demonstrated in closer detail in Figure 14. Improved membrane
detection is annotated with yellow circles. Most often a strong membrane in a neighbor-
ing section provides confidence for enhancing membranes with poor contrast in the current
section. Using difference images, Figure 15 demonstrates the improvements between the
different methods. Figure 16 gives a numerical evaluation of the improvement between the
serial ANN and the sequential section ANN on the validated test images using ROC curves.
While the impact from the tensor voting method to close gaps is demonstrated qualitatively,
its true positive and false positive values do not change as much. This is partly due to the
dilation that results from the tensor voting and that the addition of pixels for closing is
small compared to the overall segmentation. Figure 15(b) demonstrates this dilation effect.
To evaluate the effectiveness of the sequential section ANN and the tensor voting applied to
the output of the serial ANN, Figure 17 uses the Rand index (Rand 1971) to validate our
methods. For the C. elegans data, the value of using detected membranes from sequential
sections to improve the classification is quite large, while the tensor voting contribute is
smaller. Since we developed the tensor voting to work with both datasets, we suspect the
lack of improvement for the C. elegans dataset is because the tensor voting was better tuned
for the mouse neuropil image data.

Figure 18 shows the 3D reconstruction of 10 neurons through the first 300 sections of the
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(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)

Figure 13: [color] Output of the method on C. elegans test images. (a) is the raw image, (b)
is the output from the final stage of the series ANN (Section 2.1.1), (c) is the output from the
sequential section ANN (Section 2.1.2), (d) is the output after tensor voting (Section 2.1.3),
and (e) is the segmentations of the neuron regions from a flood fill.
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(a)

(b)

(c)

(d)

(f)

Figure 14: [color]Example images demonstrating how the different elements of the proposed
method contribute to strengthen undetected or grazed membranes, and close gaps on the
C. elegans ventral nerve cord data. (a) is the raw image, (b) is the output from the final
stage of the series ANN (Section 2.1.1), (c) is the output from the sequential section ANN
(Section 2.1.2), and (d) is the final output after tensor voting. Yellow circles highlight
improved membrane detection and gap closing that results from these methods. (f) is the
expert annotated gold standard.
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(a) (b)

Figure 15: Difference images for the image in Figure 13, middle row, showing the change in
membrane detection between (a) the series ANN and the sequential section ANN and (b) the
sequential section ANN and tensor voting. White pixels indicate added membranes, black
indicates removed membrane pixels, and grey is unchanged.
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Figure 16: These ROC curves show the improvement for the C. elegans data using the true
positive and false negative membrane pixel classification rate with the use of the sequential
section ANN (Seq. Sec. ANN) and the tensor voting, compared to using the serial ANN
alone. Each curve the results over a series of threshold values from the output of the ANNs.
The output from the tensor voting is binary and, thus, is represented by a single point.
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Figure 17: This plot shows the improvement of the Rand index, which measures the similarity
between two segmentations after the new methods, proposed in this paper, are applied. For
each point in this plot, the segmentation for the methods is compared to the segmentation
from the truth data.

C. elegans ventral nerve cord. Building this reconstruction was a two part process. First,
we identified 6 significant breaks in the image volume where there was missing data due to
lost or badly imaged sections. These were places where the data had significant changes and
would cause the region linking algorithm to fail. As a result, neuron regions were linked only
between the sections without breaks, producing six sets of paths that spanned the whole
volume. To completely reconstruct these paths through the all 300 sections, NeRV was used
to manually merge neurons in sequential sections, forming complete reconstructions through
the volume. This final step, computing the isosurface for all the neurons, took approximately
5 minutes per neuron to complete. Figure 18 is the final output from this process.

To validate the accuracy of the 3D reconstruction automatically generated by the neuron
region linking method, we manually inspected the top 34 total paths returned for a sequence
of images. We picked the series of images 85 through 190 to be our test volume. This
sequence of images had the longest continuous set of sections without significant breaks.
Figure 19 shows the number of regions each neuron successfully tracked through the volume.
Of these 34 paths, 19 (58%) went through the entire dataset with no errors. Of the remaining
paths, 9 correctly linked neuron regions for over half of the sections and 6 paths correctly
linked regions through less than half of the sections. Despite the continuity of the set of
sections, significant changes between neuron shape and location still existed within this
block of images. One example of this is shown in Figure 3. These cases sometimes caused
neuron paths to sometimes follow intercellular spaces (also included in the graph) or other
neuron regions. Overall, the automatic segmentation still has the potential to reduce the
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Figure 18: [color]Two views of 10 neurons spanning 300 sections of the ventral nerve cord
of the C. elegans. Neuron paths were generated automatically between six pairs of sections
where known breaks in the image data existed. NeRV was used to connect paths between
the breaks. Arrows identify discontinuities in neurons where some of these breaks occurred.
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Figure 19: This plot shows, in descending order, the number of regions correctly linked across
slices for a continues series of images from the C. elegans volume.

amount of time a scientist is required to perform annotation by half for this dataset.

3.2 Results on the Mouse Neuropil

Understanding the connectivity, types of connections, and roles of different cells in the mouse
neuropil is an increasingly common area of study. The 3D organization of these structures
provides insight into how the nervous system functions at very basic levels (Watanabe et al.
2010). In an effort to better understand and statistically quantify these structures, we are
segmenting a large volume of the mouse neuropil.

The entire neuropil dataset is 4096×4096×400. To train and validate our neural networks,
a subset of this data (700×700×70) was manually segmented using Amira (Imaging) by an
expert. From that set, 42 images were randomly selected and used for training in our
classifier. The training set contained 4.5 million examples. To decrease training time, the
ANN was trained first on 1 million examples for 50 iterations. The weights from this network
were used to initialize the ANN for the 4.5 million training examples. The ANN contained
one hidden layer of 10 nodes. The images required no preprocessing to remove noise or
enhance contrast and were sampled with a stencil of radius 10.

Figure 20 shows the segmentation results on three images from different sections. Fig-
ure 24 demonstrates in more detail the gap closing that occurs when the sequential section
ANN and tensor voting are used. Figures 21 and 22 give a quantitative comparison on the
improvement of the different methods. While the improvement in the ROC curve for the se-
quential section ANN is evident, the improvement after the tensor voting is more difficult to
distinguish. However, evaluation of the difference images and the Rand index, shown in Fig-
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ures 21 and 23, shows a much greater improvement towards closing gaps and strengthening
boundaries.

Final reconstruction of the volume on the entire dataset turned this task into a large
data challenge, since the actual size of the full volume is much larger than the training data.
First, neuron membranes needed to be detected in each 4Kx4K section, which took about
40 minutes for each section, including applying all the wights in series from the ANNs and
using tensor voting. We then used the watershed segmentation algorithm on the blurred
output from the tensor voting. As discussed in Section 2.1.4, the user chose a level for the
watershed that gave us a slightly over segmented set of regions, ensuring that gaps were
closed. Using the watershed implementation from ITK (Ibanez et al. 2005), a level of .15
was used. These became the regions used in the correlations and linking methods. The
computation of the watersheds was much faster, taking only about one minute per section.
Calculating the correlations between every two sections took between 40 minutes and 1.5
hours, depending on the number of regions in each section. To reduce computational time
and the required memory, correlations were only calculated for regions within β distance
away. For this dataset β = 150. Once all the correlations are calculated, a graph can
be constructed and Dijkstra can be used to find paths through the volume. The generic
implementation of Dijkstra’s algorithm has a complexity of O(r2), where r is the number
of nodes in the graph. However, for this case, since the edges in the graph are limited to
connections between sections, the complexity is O( r

2

N
). The graph can be made even more

sparse by limiting the number of edges to regions by D(Rs,i, Rs+1,j) < d, where d is the
maximum distance a region is allowed to connect between region centers. For this dataset
d = 100. This means the algorithm can scale more easily to larger graphs. To scale the path
calculation even further, we divided the volume into smaller slabs and found paths through
every 25 sections. Each path then took approximately 4 minutes to compute and paths were
easily joined by matching paths with overlapping sections. To view in 3D, each path that
spanned more than 300 sections was rendered in 45 minutes. We used, to our advantage,
multiple processor machines to compute these results as efficiently as possible, in parallel.
NeRV easily handles the size of this data because it only loaded into memory what was
requested by the user. Finally, users can easily select the neurons they want to view in the
volume. The final 3D visualization of this dataset can be seen in Figure 25.

Our neuron linking method was validated for this dataset using the small training volume,
discussed earlier, which is a subset of the main volume. We calculated every possible path
that would pass from the top of the stack to the bottom of the stack. After we eliminated
paths that attempted to link neurons that passed through the edge and outside of the volume
subset, we had 56 possible paths. Of these, 14 were correctly segmented neurons through
the whole stack, 12 were correctly segmented through more than half of the dataset, 23
were correctly segmented through less than half of the dataset, and finally 7 paths had no
regions correctly linked. Figure 26 is a plot of these results, demonstrating the accuracy of
the neuron linking through a small volume that is representative of the main dataset.
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(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)

Figure 20: [color] Output of the method on a three different test images from the mouse
neuropil. (a) is the raw image, (b) is the output from the final stage of the series ANN
(Section 2.1.1), (c) is the output from the sequential section ANN (Section 2.1.2), (d) is the
output after tensor voting (Section 2.1.3) and (e) is the segmentations of the neuron regions
from a flood fill.

31



(a) (b)

Figure 21: Difference images for the mouse neuropil section in Figure 20, middle row, showing
the change in membrane detection between (a) the series ANN and the sequential section
ANN and (b) the sequential section ANN and tensor voting. White pixels indicate added
membranes, black indicates removed membrane pixels, and grey is unchanged.
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Figure 22: ROC curves showing the improvement of the membrane pixel classification rates
on the mouse neuropil data using the two methods highlighted in this paper.
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Figure 23: The Rand index is used to demonstrate the similarity between the segmentations
produced after a flood fill of the output from the sequential section ANN and tensor voting
when compared to the true neuron regions.

4 Conclusion and Future Work

This paper presents a method for the segmentation and extraction of neurons from electron
microscopy images. Membranes in each 2D section are initially detected using a series of
ANNs. The output image from this algorithm is used in a final ANN which uses registered
images to improve the classification. Examining the detected membranes in sequential sec-
tions, above and below the current section, helps the classifier learn to detect membranes
that are grazed or complicated by internal cellular structures. In the last step, tensor voting
closes remaining gaps in the image. A software tool, NeRV, provides an interface for users
to correct 2D segmentations and manually assign neuron paths through sections. Users can
also view automatically generated paths and join sections. This aids the user in visualizing
the reconstruction data.

Future work in this area includes extending this framework to detect synapses and vesi-
cles. In addition, we would like to incorporate a multiscale context sampling method to
train the series ANNs. One of the drawbacks of this method is that the classifier is very
sensitive to the data it uses in training. As a result, applying this method to new image
data without first training a classifier is not possible. Recent, related work in this field is
available in a tool called Ilastic (Sommer et al. 2011) which computes segmentations based
on user inputs. Building on these concepts, we would like to improve the performance and
flexibility of our algorithms to enable the incorporation of interactive user input into our
model. The path computation and linking of neuron membranes might also be more efficient
to compute using a more flexible graph matching algorithm, incorporating recent work by
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(a)
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Figure 24: [color] Example images demonstrating this method closing gaps on neuropil data.
(a) is the raw image, (b) is the output from the final stage of the series ANN (Section 2.1.1),
(c) is the output from the sequential section ANN (Section 2.1.2), and (d) is the final output
after tensor voting. Yellow circles highlight membranes that were enhanced and detected
using these methods. Finally, row (e) is the ground truth.
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Figure 25: [color]Two views of 14 fully automatically segmented parallel fibers spanning
400 sections of the mouse neuropil. The larger 3 structures, Purkinje cells, were segmented
manually using the NeRV interface. Discontinuities in the neuron renderings indicate sections
of the automatic algorithm that were skipped because of changing neuron regions.

35



 0

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50  60

C
o
rr

ec
tl

y
 L

in
k
ed

 S
li

ce
s

Neuron

Slices Correctly Tracked Through the Mouse Neuropil Data Volume

Figure 26: This plot shows, in descending order, the number of regions correctly linked, for
each neuron, across the subset volume of the mouse neuropil.

Funke et al. (Funke et al. 2011) . This would be beneficial because it could more easily
handle neuron branching and termination. Finally, NeRV should be extended with more
user interfaces for editing neuron segmentations, such as making corrections and handling
branching.

We plan on extending this method on the full C. elegans ventral nerve cord dataset. This
would reveal in 3D the physical layout of neurons and can be compared to the data from
White et al. which is the current gold-standard for neuron connectivity in the C. elegans.
Further work to segment the synapses in the neurons and the muscles that surround the nerve
cord would provide insight into communication and wiring in the C. elegans. Likewise, a
more thorough analysis of the 3D reconstructions in the mouse neuropil need to be completed
so we can develop a better understanding of the types of connections present in this dataset.

5 Software Availability

NeRV and related command line tool software are available at
http://www.sci.utah.edu/~liz/nerv.html

for download. The mouse neuropil image data is available from ccdb.ucsd.edu as a microscopy
product with the ID 8192.

36

http://www.sci.utah.edu/~liz/nerv.html


Acknowledgments

This work was supported by NIH R01 EB005832 (TT), HHMI (EMJ), NIH NINDS 5R37NS34307-
15 (EMJ) and 1R01NS075314 (MHE, TT) as well as NIH NCRR for support of the National
Center for Microscopy and Imaging Research at UCSD, 5P41RR004050 (MHE). We are
grateful to Nikita Thomas, Nels B. Jorgensen, Jeremy B. Thompson, and Blake Paulin for
their help in imaging the c. elegans VNC and Eric Bushong and Thomas Deerinck for their
work in preparing the examples from the mouse cerebellum.

References

Allen, Barry A. and Cyrus Levinthal (1990). CARTOS II semi-automated nerve tracing:
Three-dimensional reconstruction from serial section micrographs. Computerized Medical
Imaging and Graphics 14(5): 319 – 329.

Anderson, J. R., B. W. Jones, C. B. Watt, M. V. Shaw, J. H. Yang, D. Demill, J. S. Lauritzen,
Y. Lin, K. D. Rapp, D. Mastronarde, P. Koshevoy, B. Grimm, T. Tasdizen, R. Whitaker,
and R. E. Marc (2011). Exploring the retinal connectome. Mol. Vis. 17: 355–379.

Anderson, J.R., B.W. Jones, J.-H. Yang, M.V. Shaw, C.B. Watt, P. Koshevoy, J. Spal-
tenstein, E. Jurrus, Kannan U.V., R.T. Whitaker, D. Mastronarde, T. Tasdizen, and R.E.
Marc (2009). A computational framework for ultrastructural mapping of neural circuitry.
PLoS Biology 7(3): e74.
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