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Conclusion
• This paper presents a fixed point update for adaptation of the kernel width parameter which can be simplified

to the same computation complexity,O(N), as the gradient update.

• Our simulation results show that the proposed update rule converges significantly faster than the gradient
update previously proposed, and yields much more stable kernel width estimates.

• In addition, the proposed fixed point update eliminates the need to specify the learning rate for kernel width
adaptation without introducing any additional parameters.
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Figure 3: Comparison of the estimated kernel width using the gradient and fixed point update of non-stationary signals.
Two cases are shown: (a) the power of the signal decays exponentially, and (b) the signal has an abrupt change in power.

Results
• The fixed point update was compared to the stochastic gradient update, as proposed in [1, 2], for the esti-

mation of the kernel width on non-stationary signals.

• The examples recreate typical situations where the error signal of an adaptive system changes over time.
This can be a normal consequence of the training (Fig. 3(a)), or due to changes in the environment which
cause a mismatch with the learned system, such as those often encountered in mobile communication sys-
tems (Fig. 3(b)).

• Figure 3 shows that the fixed point update rule converges faster to the optimum kernel width and yields a
more stable estimate.

• In contrast, the adaptation of the kernel width using the gradient update is considerably slower and exhibits
occasionally sudden jumps. This is due to the skewness in the criterion, which yields very different gradient
magnitudes depending on the value of the current kernel width with regards to the optimum, as shown in
Figure 1(a).

Fixed point update of the kernel width
• The maximum of JKL(σ) can be found by equating its derivative to zero.

• The derivative of JKL(σ) is
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Equating to zero, it yields
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• Thus, a fixed point update towards the optimum kernel width is
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by replacing the expectation with the sample mean. However, this update
rule has computational complexityO(N 2).

• For online adaptation, we propose to approximate the expectation over
time instead. Accordingly, the estimated kernel width for the nth update
step is
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The computational complexity of this update rule is onlyO(N).

• Figure 2 suggests that the mapping converges because it has derivative
smaller than one and, thus, is contractive.
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Figure 2: Fixed point update as a function of σn−1, (a) for signals with the standard
deviation shown in the legend, and (b) its corresponding derivative.

Criterion for kernel width adaptation
• In information theoretic criteria, the kernel width controls the smoothing

used for non-parametric density estimation, as in Parzen windows.

• Hence, Singh and Principe [1, 2] proposed to minimize the Kullback-
Leibler divergence between the true and estimated pdf, denoted f (x) and
fσ(x). That is,
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• Since the first term does not depend on σ, the optimum kernel width
maximizes,

JKL(σ) = E
[
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]
.

• Plugging in Parzen’s pdf estimation on N samples with the Gaussian
smoothing kernel, it yields the estimator,
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Figure 1: (a) Kernel width adaptation criterion JKL(σ) and (b) its derivative, as func-
tions of σ for a Gaussian signal with unit variance.

Abstract
• Information theoretic criteria generalize the traditional mean squared er-

ror (MSE) criterion, and have been shown to yield better results in a num-
ber of applications.

• However, for information theoretic criteria to achieve these improvements,
a kernel width parameter needs to be appropriately set.

• This paper presents a fixed point update for adaptation of the kernel width
parameter and introduces no additional parameters.

• Adaptation of the kernel width allows for the information theoretic crite-
rion, and its performance surface, to be adjusted to changes in the signal
distribution.
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