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Abstract—We propose a three-state series neural network
for effective propagation of context and uncertainty informa-
tion for image parsing. The activation functions used in the
proposed model have three states instead of the normal two
states. This makes the neural network more flexible than the
two-state neural network, and allows for uncertainty to be
propagated through the stages. In other words, decisions about
difficult pixels can be left for later stages which have access to
more contextual information than earlier stages. We applied the
proposed method to three different datasets and experimental
results demonstrate higher performance of the three-state series
neural network.
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I. INTRODUCTION

Image parsing is the problem of assigning an object
label to each pixel. It unifies the image segmentation and
object recognition problems. For instance, for a database
of horse images, image parsing can be thought of as the
task of classifying each pixel as part of a horse or non-
horse. In more complicated problems, image parsing might
require multiple labels, e.g. roads, cars, houses etc. in
outdoors scenes. Clearly, pixels can not be classified in this
manner based only on their intensities or even local feature
descriptors. Contextual information plays a critical role in
resolving ambiguities [1], [9].

Image parsing can be posed as a supervised learning
problem where a classifier is learnt from training data
consisting of images and corresponding label maps. Auto-
context [10] and convolutional networks [5] are two promis-
ing approaches that apply context to image parsing in the
supervised learning setting. Convolutional networks are a
type of artificial neural network (ANN) [4] in which each
processing element carries out a convolution followed by
a nonlinearity. Convolutional networks operate on image
neighborhoods; however, due to successive convolutions,
each hidden layer implicitly “sees” a larger context area
of the input image than the previous layer. While the
conventional use of convolutional networks has been ob-
ject recognition [7], they have recently also been used for
image parsing [5]. A related method, auto-context [10],
employs a series of classifiers (Figure 2b) which use features
computed from the output of the preceding classifier as
well as image features. This strategy amounts to implicitly

using larger context areas with each classifier and is related
to conditional random fields [10]. The advantage of the
auto-context architecture over convolutional networks is the
relative ease of training due to treating each classifier in the
series separately. Different types of classifiers can be used in
the auto-context architecture. Tu and Bi [10] used boosting
whereas Jurrus et al. [6] employed ANNs.

In our proposed method, we employ artificial neural
networks in an auto-context architecture as in [6], except
that we introduce three-state neurons instead of conventional
two-state neurons (Figure 2b). We will call this the 3-
state series-ANN classifier. Previously, Meunier et al. [8]
introduced a Hopfield-like network of three-state neurons in
which the additional state permits the network to deal with
situations where the state of some neurons is unknown and
as a result it can be used for pattern completion. However,
Hopfield network has a very restrictive structure and to our
knowledge, three-state neurons have not been previously
used in feedforward multilayer ANNs for pattern classifi-
cation. In a typical feedforward ANN, a neuron consists of
a nonlinear function such as the hyperbolic tangent or the
sigmoid function applied to weighted sum of inputs and a
bias term. This setup allows for two stable output values, i.e.,
−1 and +1 in the case of the hyperbolic tangent function,
and intermediate transitionary output values. Hence, we refer
to this arrangement as the two-state neuron. We generalize
this neuron model to a three-state model by including an
additional bias term which allows for a third stable output
level, i.e. 0, in addition to −1 and +1 in the case of the
hyperbolic tangent function. In the series-ANN architecture,
three-state networks are more flexible than two-state net-
works due to the possibility of making hard decisions only
for those samples which a given stage is confident about and
leaving the decision for difficult samples to later stages.

II. THE THREE-STATE NEURON

The main difference between our proposed three-state
neuron and the conventional two-state neuron is the use of an
additional bias term in the activation function. We propose
the following model for a three-state neuron 0.5f(xT x +
b1) + 0.5f(xT x + b2) where x is the input vector, x is the
weight vector, b1, b2 are the bias terms and f is the nonlinear
activation function. For the hyperbolic tangent activation



function, the output is:

g(x) =
1
2

tanh(xT x + b1) +
1
2

tanh(xT x + b2); (1)

however, the generalization applies to any nonlinearity. It is
important to notice that the same weighted combination of
inputs, xT x, is used in both functions. The update rule for
the biases is:

bnew
i = bold

i + µ ∗ e ∗ (1− tanh2(xT x + bold
i )) (2)

where µ is the stepsize and e denotes the backpropagated
error. As the difference between b1 and b2 becomes large,
the third state appears in the output (Figure 1). On the other
hand, the three-state activation function converges to two-
state activation function as the two bias terms become close.
For a given xT x, the biases b1 and b2 can be thought of as
low and high thresholds but this order is not enforced. In
pattern classification, this allows for three stable outputs: if
xT x is below the low threshold we can be confident that the
pattern belongs in the negative class; if xT x is above the
high threshold we can be confident that the pattern belongs
in the positive class; finally, if xT x is between the two
thresholds, this reflects a lack of confidence in the classifica-
tion. Of course, intermediate values in a conventional two-
state neuron can also be thought to represent uncertainty. The
idea is that having a third state allows for better uncertainty
representation. For the Gaussian case, the sigmoid function
represents likelihood ratios optimally [2] and the motivation
for a third state is not very compelling. On the other hand,
for non-Gaussian distributions, very different responses can
be obtained from a three-state neuron than a two-state neuron
as we describe next.

Consider the following hypothetical example of two-
class classification in which two classes are sampled from
following uniform distributions:

p(x|class1) =

{
1 if 0 ≤ x ≤ 1
0 otherwise (3)

and

p(x|class2) =

{
1 if −0.5 ≤ x ≤ 0.5
0 otherwise (4)

Notice that these two likelihood functions overlap 50%.
Consider a network consisting of a single neuron whose
input is x and the desired output is +1 and −1 for class1
and class2, respectively. The network is trained to minimize
the Mean Square Error (MSE) criterion. If we use the two-
state activation function, we obtain the result shown in
Figure 1(blue curve) and the final MSE is equal to 0.55. On
the other hand, if we use the three-state activation function
as in equation (1), we get the result shown in Figure 1(red
curve), and the final MSE is equal to 0.49. Maintaing a
stable third-state (value 0) for a wide range of input values
results in a lower MSE value and thus it preserves more

Figure 1. Activation functions.

information from original data which can be used by next
stages.

III. THREE-STATE SERIES-ANN

Figure 2b illustrates the three-state series-ANN. S is the
stencil(Figure 2a) which we use to compute the feature
vector for each pixel of the input image and also for each
pixel of the output stages. This helps the network in each
stage to utilize nonlocal information. T is a threshold applied
to the output of the last stage to produce the final result. Each
stage produces a class probability image which is used as
context for the next stage. One can notice that the threshold
is applied only to the output of the last stage, otherwise, we
lose useful information which can be used by next stages
for improving decision. For each stage we use a three-state
artificial neural network. That is, a neural network using
3-state neurons. The back-propagation algorithm is used to
train each network.

If we use a single ANN for classification, there is little
motivation to use a three-state network. This is because
thresholding is needed at the output of the ANN, and the
two-state ANN and three-state ANN will likely generate
the same thresholded output. On the other hand, using
three-state neurons in the series-ANN structure increases
the performance of the classifier because it propagates the
uncertainties to next stages. Consider the following scenario.
A given pixel is ambiguous to the first ANN in Figure 2b,
i.e., more than a single class is equally likely as in our
simple example in Section 2. The next stage will have
more information because it will use as input both the
image features and the output of the previous classifier in an
area around the pixel in question providing context, using
a stencil such as the one shown in Figure 2a. If three-
state ANNs are used for the stages, such ambiguous pixels
can easily be assigned a value of approximately 0 by early
stages, leaving the decision to later stages which have access
to increasing areas of context.

IV. EXPERIMENTAL RESULTS

In this section we illustrate and verify the performance
of our proposed classification model in several experiments.
In these experiments, each network has one hidden layer
and the number of nodes of this hidden layer is determined
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Figure 2. (a) Stencil structure, and (b) Serial neural network diagram.
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Figure 3. F-values at different stages of the classifier in the texture
segmentation experiment.

according to the complexity of the classification problem.
Also, number of stages is determined according to the per-
formance improvement in training. When the improvement
is small we stop adding stages, as it is shown in Figures 3,
4. For comparison, we applied the same model with two-
state neural networks except that two-state model has one
more hidden node to make the number of free parameters
comparable.

A. Texture segmentation

In this dataset we have 20 images which are generated
with four different textures for background and five different
textures for foreground. Eight of these images were used
for training, two were used for early-stopping [4] which
means the training stops by evaluating the performance of
the network for these two images. The remaining images
were used for testing. In this case, our networks have one
hidden layer with 20 nodes and our series-ANN model has
five stages. The radius of the stencil is five and the stepsize
is 0.001. Figure 5a shows the output of each stage in the
series for some test images.

The average of F − value = 2×Precision×Recall
Precision+Recall at zero

threshold for outputs of stages are shown in Figure 3. This
figure shows the improvement of the result with the stages.
In addition, it can be observed that the proposed three-state
series-ANN has better performance than the series-ANN
using conventional two-state nodes; a 6.7% improvement
in the testing F-value at zero threshold. It is important to
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Figure 4. F-values at different stages of the classifier in the rectangle
completion experiment.

notice that the difference in performance between the two
approaches is observed during the initial stages and remains
approximately constant afterward. This is because after the
initial stages most of the samples are classified into one of
the two classes and the third state no longer plays a major
role in the classification.

B. Rectangle completion

The rectangle dataset contains 30 images which were
generated by creating rectangles with varying widths and
heights, and adding some gaps in the rectangle sides and
noise segments to images. Ideally, our classifier should
complete the gaps on the side of the rectangles and remove
the noise segments from the image. We trained the classifier
with eight images, two images for early-stopping, and tested
it with the remaining 20 images.

In this case, each ANN had one hidden layer with five
nodes, and the model has five stages. Again, the stencil
radius was four and the stepsize was 0.001. Figure 5b shows
the output between each network in the series for some test
images.

The average F-values between the two-state and three-
state models can be compared in Figure 4. In this case,
the proposed method shows 1% higher performance in the
testing results. The improvement is smaller than previous
case because rectangle completion is an easier task, and the
classes are relatively well separated. However, in more com-
plex problems where the two classes overlap significantly,
such as in the texture segmentation, the advantage of our
approach is more clearly noticeable.

C. Horse segmentation

We also examined our model for a realistic dataset. For
this purpose, we randomly selected 25 images from the
Weizmann horse segmentation dataset [3]. Ten images were
used for training, two images for early-stopping and thirteen
images for testing.

In this experiment, we used three stages and each stage
has one hidden layer with 20 nodes. Furthermore, the stencil
radius was seven and step size was 0.0001. Figure 5c shows
some examples of our test images and their segmentation
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Figure 5. Test results for the (a) texture segmentation, (b) rectangle
completion, and (c) horse segmentation experiments. The first column
shows the input image and the remaining columns show the output at
different stages of the classifier.
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Figure 6. F-values at different stages of the classifier in the horse
segmentation experiment.

result images. For comparison, the F-value curves are shown
in Figure 6, where it is noticeable a 6.5% improvement in
the F-value at zero threshold using the proposed method
compared to the two-state series-ANN.

V. CONCLUSION

This paper introduces an image parsing algorithm using
three-state artificial neural networks in a series-ANN archi-
tecture. The proposed approach is based on the flexibility of
three-state neural networks. The free state in these networks
reduces the mean square error and allows the uncertainty
propagation to next stages. Indeed, the free state in neural
network leaves the decision about some samples for the
next stages which leads to better decision making according
to context information. We applied our method to three
challenging image segmentation tasks. Simulation results
indicate that the proposed method yields a higher image
parsing performance. However, this method can also be used
in other computer vision tasks.
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