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ABSTRACT

The goal of semi-supervised image segmentation is to obtain
the segmentation from a partially labeled image. By utiliz-
ing the image manifold structure in labeled and unlabeled
pixels, semi-supervised methods propagate the user labeling
to the unlabeled data, thus minimizing the need for user la-
beling. Several semi-supervised learning methods have been
proposed in the literature. Although results have been promis-
ing, these methods are very computationally intensive. In
this paper, we propose novelty selection as a pre-processing
step to reduce the number of data points while retaining the
fundamental structure of the data. Since the computational
complexity is a power of the number of points, it is possible
to significantly reduce the overall computation requirements.
Results in several images show that the computation time is
greatly reduced without sacrifice in segmentation accuracy.

Index Terms— Semi-supervised segmentation, image
segmentation, novelty selection.

1. INTRODUCTION

Image segmentation is a challenging task and remains an
open problem in image processing. Unsupervised methods
explore the intrinsic data structure to segment the image into
regions with different statistics. However, these methods of-
ten fail to achieve the desired result, especially if the desired
segmentation includes regions with very different character-
istics. On the other extreme, supervised image segmentation
methods first learn a classifier from a labeled training set.
Although these methods are likely to perform better, marking
the training set is very time consuming. Semi-supervised
image segmentation methods circumvent these problems by
inferring the segmentation from partially labeled images.
The key difference from supervised learning is that semi-
supervised methods utilize the data structure in both the
labeled and unlabeled data points [1]. Hence, the main ad-
vantage of semi-supervised image segmentation methods is
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that they take advantage of the user markings to direct the
segmentation, while minimizing the need for user labeling.

There are several general approaches towards semi-
supervised learning, but recent developments have focused
on graph-based methods [1], likely because the graph-based
representation naturally copes with nonlinear data manifolds.
In this formulation, data points are represented by nodes in
a graph, and the edge weights are given by some measure of
distance or affinity between the data points. Then, the labels
for the unlabeled points are found by propagating the labels
of labeled points through the graph. Based on this methodol-
ogy, a number of methods have been proposed [2, 3, 4, 5, 6],
differing mainly on the way how the edge weights are defined
and/or how to propagate the labels (see, for example, [7, 1]
for comprehensive reviews). Although results from graph-
based semi-supervised methods have been promising, these
methods are severely limited by the number of data points.
This is because label propagation in the graph requires first
the computation of the connectivity matrix for all the data,
and then the labels are propagated using this matrix. Conse-
quently, the computational complexity grows exponentially
with the number of points. This severely limits the application
of semi-supervised learning methods for image segmentation
because, even for relatively small images, one can easily have
tens of thousands of pixels.

To mitigate the computational burden of semi-supervised
learning methods, we propose the use of novelty selection
as a pre-processing step. Given the data (labeled and unla-
beled points), novelty selection finds a reduced set of points
while preserving the overall structure of the data. By apply-
ing semi-supervised learning on this “representative set,” one
greatly reduces the computational complexity and storage re-
quirements. The final segmentation can then be achieved by
extending the labeling of the points in the representative set
to their nearest neighbors.

2. NOVELTY SELECTION

Novelty selection is closely related to Platt’s work on resource-
allocating networks [8]. Platt introduced a criterion to decide
whether a given input point should be added to a growing



radial basis function neural network in order to minimize net-
work error. The point was added if the distance to the other
points already in the network was larger than a threshold, and
the network error was above another threshold. Basically,
Platt’s criterion aims to achieve a small error with the least
possible number of reference points added to the network.
Implicitly, small error requires an accurate representation of
the input data space, but the key observation is that nearby
points in the input space convey approximately the same in-
formation and, therefore, they can be replaced by a single
representative point with minimal loss.

The same observation applies in our case. For semi-
supervised learning, we want to accurately reflect the data
structure with the smallest number of reference points. This
can be achieved by adding a data point to the set of rep-
resentative points only if the smallest distance to all other
points in the representative set is larger than a threshold δ. In
other words, a point is selected if it provides novel informa-
tion about the data space, hence the name novelty selection.
Thus, our method ensures that enough data points are kept
to completely cover the space while keeping the number of
points needed to achieve this covering to a minimum. Hence,
data points closer to a representative point than δ do not need
to be considered during semi-supervised learning (only the
representative set is used), which makes the propagation of
labels much faster.

In a sense, these ideas are also similar to those of vector
quantization [9]. Indeed, vector quantization could be utilized
instead of novelty selection. However, a key difference is that
novelty selection aims only to preserve the overall space cov-
ering, without explicitly attempting to model the density of
the data. For this reason, and as required towards a fast so-
lution, novelty selection is computationally much faster than
vector quantization (even when compared to k-means), be-
cause the representative set can be obtained in a single-pass
through the data. Another fundamental advantage is that there
is no need to select a priori the number of representative
points. The novelty selection criterion simply adds points to
the representative set until no points verify the criterion.

Since information is lost during novelty selection (due to
the reduction of the number of points), care must be taken to
ensure that essential information for semi-supervised learning
is preserved. Central to many semi-supervised learning meth-
ods is the smoothness assumption, meaning that nearby points
in a dense region are likely to have the same label. A corollary
is that points with different labels should be separated by re-
gions with low density. Consequently, novelty selection must
preserve the differences in density between a region with the
same label and the separation to other regions. In novelty se-
lection, this is ensured by making δ small compared to the
distance between points with different labels. Clearly, the op-
timal value of δ represents a trade-off between the reduction
of the number of points (achieved by increasing δ), and the
preservation of differences in density (by decreasing δ).

2.1. Algorithm

The algorithm for novelty selection and the procedure for its
use in semi-supervised image segmentation is now summa-
rized. Consider a set of N data points X = {x1, . . . ,xN},
and denote the representative set by Y . In addition, denote
by IY the set of indices of points in X included in Y , and
IX = {j1, . . . , jN} the set of indices of the nearest neighbor
in Y for each xi ∈ X . Then, novelty selection proceed as
follows:

• Initialize Y = {x1}, IY = {1} and IX = {1};
• For each xi ∈ X ,

– Compute d(xi, Y ), the vector of distances of xi

to all elements in Y ;
– If min(d(xi, Y )) > δ,

Add xi to Y , and set ji = i,
else,

Set ji = arg minn d(xi,yn), yn ∈ Y .

It must be noted that, strictly speaking, the index sets
IY , IX are not used for novelty selection, but to retain infor-
mation that is needed to compute the semi-supervised image
segmentation result. Also, if necessary, the algorithm can be
modified to operate incrementally simply by initializing the
set Y with the available representative set instead (and setting
IY and IX accordingly).

To obtain the final result, the novelty selection algorithm
has to be integrated in the semi-supervised framework. The
two main differences are the use of novelty selection as a pre-
processing step, and the assignment of the labels obtained
from semi-supervised learning to the remaining unlabeled
points. Summarizing, the segmentation is obtained with:

1. Apply novelty selection to all the data;

2. In addition to the representative set, ensure all labeled
data points are included in the analysis;

3. Propagate labels through semi-supervised learning;

4. Label the remaining unlabeled points (not included in
the analysis with semi-supervised learning) with the la-
bel of their nearest neighbor in the representative set.

Note that step 2 is not required for the analysis but is rec-
ommended since, in this way, one makes sure to use all the in-
formation available from user labeling. The index sets IY and
IX obtained from novelty selection can be utilized in steps 2
and 4, respectively, avoiding further computations.

3. RESULTS

In this section, the ideas described above are demonstrated in
some examples. First, we illustrate semi-supervised segmen-
tation and novelty selection in a simple manifold classifica-
tion example. Then, the new proposed approach is demon-
strated for semi-supervised image segmentation.
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(a) Data with two labeled points.
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(b) Label propagation on all the data.
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(c) Representative set from novelty
selection.
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(d) Final label assignment, with la-
bel propagation on the representative
set.

Fig. 1: Illustration of novelty selection and semi-supervised
learning on the “two moons” dataset.

For the experiments, with or without novelty selec-
tion, the semi-supervised learning algorithm proposed by
Zhou et al. [2] was utilized. In this method, label propagation
is implemented by solving the equation,

f = (I − αS)−1Y, (1)

where I is the identity matrix, S is the normalized affinity
matrix given by S = D−

1
2WD−

1
2 , and Y is the vector with

the available labeling (entries in Y are set to −1/ + 1 for
labeled points, and zero for unlabeled points). For simplic-
ity, we consider only the two-class problem here, but the ap-
proach can be easily extended to any number of classes if
needed (see [2] for details). The matrix W is defined by
Wij = exp(−‖xi − xj‖2/2σ2) if i 6= j and Wii = 0, and D
is a diagonal matrix with the ith diagonal entry equal to the
sum of the ith row of W . All experiments were performed in
Matlab using sparse matrix computation for efficiency.

3.1. Manifold classification

In this example we utilize the “two moons” dataset shown
in Fig. 1 to illustrate the use of novelty selection for semi-
supervised learning. Propagating the labels using kernel size
σ = 0.1 and α = 0.99 (from [2]), one obtains the desired
result shown in Fig. 1(b). If novelty selection is applied to
the dataset with δ = 0.2, the number of points is reduced
from 500 to 52, marked in Fig. 1(c). Then, performing label
propagation on these representative points with σ = 0.25 and
α = 0.99, and assigning the labels to the remaining points

also yields the desired result, as shown in Fig. 1(d) (repre-
sentative points are show with light face color). Notice that
the kernel size was increased in the second case, since the
data appears more “spaced out” due to novelty selection. Un-
derstandably, the kernel size was chosen to be higher than δ,
since novelty selection ensures that the minimum distance be-
tween neighbors is greater than δ. For comparison, the com-
putation times are provided: label propagation on the whole
dataset takes 0.22 seconds, whereas using novelty selection
the whole process takes only 0.01 seconds.

3.2. Image segmentation

We now provide results of applying novelty selection for
semi-supervised image segmentation. In our experiments, the
feature vector for each pixel was chosen to be a 5 × 5 image
patch centered at the pixel, and over the three color compo-
nents, resulting in a 75-dimensional feature vector. With our
image intensity values normalized to the interval [0, 1], the
threshold for novelty selection was set to δ = 0.5. It was
found empirically that this value of δ yielded a good compro-
mise in reduction of the number of points and improvement
in computation speed, without noticeable detriment in seg-
mentation accuracy. α was set to 0.1. The kernel size σ
was set to 1 when novelty selection was utilized, and 0.1 for
computation with all the data. It is important to note that we
attempted to further reduce the kernel size when computing
with all the data to try to increase the sparsity of the matrices
and thus speed the computation, but it was found that 0.1 was
the smallest kernel size that would reliably yield the correct
segmentation.

The results of semi-supervised image segmentation using
novelty selection are given in Fig. 2. The segmentation of the
first two images illustrates a situation where the desired seg-
mentation would be very hard to obtain using unsupervised
segmentation methods, but is obtained readily through semi-
supervision thanks to the user labeling.

To compare the computation time, we computed the seg-
mentation of the images in Fig. 2 with and without novelty
selection. The same user labeling was utilized in both cases.
The results are presented in Table 1. From these results, the
improvement in computation speed by using novelty selection
is clearly noticeable.

4. CONCLUSIONS

In this paper, novelty selection is proposed as a pre-processing
method to reduce the computational requirements of semi-
supervised methods. The fundamental assumption is that
neighboring points in the features space convey approxi-
mately the same information, and these can be represented
by one representative point without loss in the information.
Indeed, as discussed in section 2 and shown in the results, if
the radius of the neighborhood is chosen carefully, there is



Fig. 2: Semi-supervised image segmentation results. (left)
Original images with user labeling, shown as green and blue
traces, and (right) segmentation using novelty selection.

Table 1: Comparison of computation times with and without
novelty selection. All times are in seconds.

Image
Dimensions

(pixels)

with
novelty

selection

without
novelty

selection speedup
Tree 110×122 24.5 392.1 16×

Beach 150×150 4.6 2857.8 621×
House 128×128 18.2 639.4 35×
Tulips 300×200 640.6 12351.4 19×

no noticeable decrease in accuracy. And, most importantly,
because of the smaller number of points in the representative
set, label propagation can be made much faster.

Novelty selection was applied here for semi-supervised
image segmentation. However, the concept is directly appli-
cable to other applications using semi-supervised learning, as
should be clear from our exposition. Likewise, note that nov-
elty selection is not tied to any specific semi-supervised learn-
ing method and other graph-based semi-supervised methods
could be used.

For this work, the selection of the novelty selection pa-
rameter δ was done empirically. Future work may focus
on determining its value automatically. Although cross-
validation techniques may potentially be utilized, this is not
straightforward due to nature of semi-supervised learning and
the small number of labeled points.
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