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Abstract—
In this paper, we propose a simple algorithm that takes

multidimensional neural input data and decomposes the joint
likelihood into marginals using Boosted Mixtures of Hidden
Markov Chains (BM-HMM). The algorithm applies techniques
from boosting to create hierarchal dependencies between these
marginal subspaces. Finally, borrowing ideas from mixture of
experts, the local information is weighted and incorporated into
an ensemble decision. Our results show that this algorithm is
very simple to train and computationally efficient, while also
providing the ability to reduce the input dimensionality for
Brain Machine Interfaces (BMIs).

I. INTRODUCTION

The field of Brain Machine Interfaces (BMIs) is devoted
to bridging the gap between mind and machine so that para-
lyzed patients may one day have their mobility restored. One
of the focal points in this field has been the development of
linear and non-linear models that map neural firing patterns
of an animal to a robotic prosthetic [8], [12], [13]. Usually,
in this type of experiment, neural data is recorded from a
primate or rat cortex as it engages in a movement task. Once
a prediction model has been trained with the trajectory/neural
data, only neural data is used to control a robotic arm in real-
time [12], [13].

For the above mentioned experiments, our group estab-
lished that by using multiple feed-forward prediction models
to map discrete portions of the neural data to respective
portions of the continuous trajectory, the overall trajectory
reconstruction is improved [2], [3]. The classifier that is re-
sponsible for switching between these different feed-forward
models is the main focus of this paper.

The previous switching classifier was an ensemble method
that incorporated multiple independent experts. The experts
were single neural-channel HMM chains that formed an
Independently Coupled Hidden Markov Model (IC-HMM)
[3]. One limitation of this algorithm is that as an increas-
ing number of neurons are sampled from brain (as is the
current trend in BMIs), the number of independent models
could grow to an unmanageable level. Although it is still
computationally more efficient than using a model that has
full dependencies, like the Coupled Hidden Markov Model
(CHMM), it is still desired that the input dimensionality be
reduced to avoid this pitfall. Additionally, since it is likely
that the independence assumption is not realistic for all of the
neurons, finding dependencies between some of the neurons
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could prove beneficial for final kinematic reconstruction or
other biologically inspired modeling.

In this paper, we take multidimensional neural input data
and decompose the joint likelihood into marginals using
Boosted Mixtures of Hidden Markov Chains (BM-HMM).
The algorithm applies techniques from boosting to create
hierarchal dependencies between these marginal subspaces.
Finally, borrowing ideas from mixture of experts, the local
information is weighted and incorporated into an ensemble
decision. Our results show that this algorithm is very simple
to train and computationally efficient, while also providing
the ability to reduce the input dimensionality for Brain
Machine Interfaces (BMIs).

The development and evaluation of the BM-HMM serves
as the core of this paper and directs the following organi-
zation. First, we discuss our motivation and technique for
the BM-HMM and how it relates to other work. Second, we
compare results of this new model to our previous models,
as well as present some possible interpretation to its success.
Finally, we discuss the results and suggest areas of future
work.

II. APPROACH

A. Experimental Animal Data

Neural action potentials from two different animal exper-
iments are used to train and test the models in this paper.
In the first experiment, neural data was recorded from an
owl monkey’s cortex as it performed a food reaching task.
Specifically, multiple micro-wire arrays recorded this data
from 104 neural cells in the following cortical areas: posterior
parietal cortex (PP), left and right primary motor cortex (M1),
and dorsal premotor cortex (PMd). Concurrently with the
neural data recording, the 3D hand position was recorded as
the monkey made three repeated movements: rest to food,
food to mouth, and mouth to rest [8], [3].

In the second experiment, a male Sprague-Dauley rat
performed a go-no go lever pressing task as neural data
was recorded. This dataset contains 16 neural cells that were
collected with micro-wire arrays implanted in the forelimb
region of the left primary cortex (M1) [15]. Subsequently,
the data was spike detected and spike sorted using thresholds
and template matching [15]. The lever presses were recorded
simultaneously with the neural activity. The beginning of
each trial was signaled to the rat by a LED indicating when
to press the lever in order to receive a reward [15].

The data sets resulting from the above experiments were
segmented into movement and rest classes for modeling. For
the monkey data, all angular velocities greater than 4mm/s



are labeled as part of the movement class. Included in this
movement class are the times when the monkey momentarily
holds it’s arm during a reach for food or it’s mouth [3], [1].
For the rat experiments, since there is no information about
the rat moving around the cage (or grooming), only the lever
press is included as part of the movement class [15].

For both experiments, the neural data is binned into 100ms
counts which is consistent with the neural science community
[1], [9]. Consequently, the movement data is down-sampled
to match the 10 Hz neural bin counts. Specifically, the time
recording for the monkey experiment corresponds to a dataset
of 23000×104 time bins. For the rat experiment the dataset
consist of 13000×16 time bins [8], [15].

B. Motivation

From a machine learning perspective, the neural data
can be viewed as observable and hidden random processes
that are interacting with each other in some unknown way.
Specifically, we make the assumption that each neuron’s
output is an observable random process that is affected by
hidden information. Since the experiment does not provide
detailed biological information about the interactions be-
tween the sampled neurons, we use hidden variables to model
these hidden interactions [10], [9]. We further assume that
this compositional representation of the interacting processes
occurs through time and space (i.e. between neurons at
different times).

Since the final BMI paradigm will not include desired
kinematic information from paraplegics, generative models
are used to explain the observable neural data. The ultimate
goal is to decipher the underlying structure so that the model
may one day be decoupled from the desired kinematics (for
unsupervised modeling).

Our first attempt to characterize these interacting processes
was to simply compress the multidimensional input space
into a single observable process while modeling all the
hidden information as a single hidden process. This was
accomplished by using vector quantization to compress the
multidimensional input into 1D cluster labels for a single
discrete HMM chain[2].

Unfortunately, there was a performance plateau since
vector quantization assumes synchronous state transitions
between all of the neural channels which are known to be
non-stationary [2], [16]. By quantizing the non-stationary
signals, some of the asynchronous behavior of the neurons
is destroyed. Additional factors in the performance plateau
were due to the simple distortion experienced when quan-
tizing a multidimensional input space [2]. In turn, this work
motivated us to remove the quantization errors and eliminate
the assumption that all of the processes have synchronous
state transitions.

In our second modeling attempt, we relaxed the require-
ment that the states of all the neural channels change syn-
chronously and instead modeled them with an Independently
Coupled Hidden Markov Model (IC-HMM) [3]. This model
removes the need to compress the multidimensional input
since it uses the input directly. Consequently, this model

Fig. 1. Probabilistic ratios of 14 neurons

Fig. 2. Zoomed in version of the probabilistic ratios

improved performance and was more computationally ap-
pealing than the extreme alternative, a fully Coupled Hidden
Markov Model (CHMM) [3].

Unfortunately, there are two drawbacks to the IC-HMM
that are addressed in this paper. First, as additional neural
channels are sampled from the brain (which is the trend with
BMIs), it is not computationally attractive to increase the
number of models. Therefore, it would be beneficial to reduce
the dimensionality of the dataset so that only the pertinent
information is used to classify the data. Further, a reduction
in input dimensionality would reduce the number of free
parameters a mapping filter would need for final kinematic
reconstruction. The second drawback to the IC-HMM stems
from its inability to exploit some of the dependency or
synchrony information provided by the neural channels. In
particular, Figures 1 and 2 show some possible synchrony
between the channels or complimentary information at dif-
ferent points in time - respective to each class [3]. Identifying
these underling dependencies may help provide a better
biological understanding and move us closer to the ultimate
goal of unsupervised clustering in the input space. The goal
of the work in this paper is to find these dependencies
and exploit only the pertinent information (relative to the
kinematics) in order to reduce the input dimension without
sacrificing classification performance.

C. Related Work

In this section we first detail the IC-HMM and then
connect the development of the BM-HMM to related work.

When using IC-HMMs for BMIs, there is a simple
assumption that the neurons are acting independently. In
turn, each neural channel is then modeled with a hidden
and observable random process, i.e. an HMM chain [3].
The independence assumption is supported by neuroscience
literature that explains that neurons in the brain are known to
modulate independently from other neurons [10] during the



control of movement. Since each neural channel HMM in
the IC-HMM is computed independently, the joint likelihood
decomposes
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Ratios greater than the threshold ζ are classified as part of
the movement class, and those less than ζ as the rest class.
This threshold acts as a global weighting for one class or
another across all of the chains. The use of thresholds for
the likelihood ratio has been used in neural science and other
areas of research [7], [11]. Even the idea of partitioning the
joint space into marginals has shown up in literature under
different names [20], [23], [21].

In order to move beyond the IC-HMM and exploit the
complimentary information provided by the independent
HMM chains, we first look to boosting. Boosting is a
technique that creates different training distributions from
an initial input distribution so that a set of weak classifiers
is generated [24], [25]. The generated classifiers then form
an ensemble vote for the current data example. It has
been shown that these hierarchal combinations of classifiers
achieve lower error rates than the individual base classifiers
[24], [25].

Adaboost is the most widely used algorithm to evolve
from boosting methods. This algorithm sequentially gener-
ates weak classifiers based on weighted training examples.
Essentially, the initial distribution of training examples is re-
sampled each round (based on the distribution of the weights)
in order to train the next classifier. The training examples
that fail to be classified on a particular round receive an
increased weighting so that the subsequent classifiers are
more likely to be trained on these hard examples. Concurrent
to the weights for training examples, external weights for
each classifier are updated so that they can be used in a final
ensemble vote (which is a linear combination of weights and
the hypothesis). The success of boosting has been attributed
to the distribution of the ”margins” of the training examples.
For further details on Adaboost or boosting with respect to
the margin and relationships to support vector machines see
Schapire et al.

With respect to improving IC-HMM, Adaboost offers a
promising way to weight and hierarchally split the mul-
tidimensional training examples. Unfortunately, to take a
104 HMM chains (as with the IC-HMM) and boost them
individually (creating multiples of 104) would be compu-
tationally prohibitive. Other work has focused on solving
this problem of boosting multiple parallel classifiers. There
have even been proposed boosting solutions for reducing the
dimensionality of the input data [21], [22], [26]. From their
perspective, the multidimensional inputs are treated as simple
features of a single random process [26]. We differ from
this perspective by assuming the input space is composed
of multiple random processes that are interacting with each
other in some unknown way. By decomposing the input space
into multiple random processes the local contributions of
the individual processes are exploited rather than using the
global effect of a single process. In order to exploit the local
information and take advantage of the different subspaces of
the input we look to the mixture of experts algorithm.

Mixture of experts is a very well established adaptive
learning algorithm in which several expert classifiers are
trained in conjunction with a gating function [14], [23] . The
gating function, in turn, can be thought of as having the task
of assigning weights to experts in terms of their contribution
to the ensemble vote [14], [23] Although some similarities
exist between this method and boosting, it is noted that
the mixture of experts has the advantage of localization
and the use of a dynamic model for combining the outputs
from the experts [14], [23]. Others have proposed a similar
formulation of building boosted hierarchal structures with
mixture of experts but lack the Markovian dynamics that are
inherent with BM-HMMs [14], [18], [17], [23].

In the next section, we give specific details on the structure
and training of the BM-HMM and point out the similarities
to the above mentioned formulations.

D. Boosting mixtures of IC-HMM Chains

The proposed algorithm is intended for an arbitrary num-
ber of HMM chains not to exceed the number of neu-
ral inputs. Although the algorithm starts out with parallel
training for the independent experts, gradually a winning
expert is chosen for each hierarchal level to combine into the
ensemble. This algorithm marries some concepts of boosting
with concepts from mixture of experts.

In terms of boosting, we borrow some of Schapire &
Freund procedures in discrete Adaboost [25].

In this algorithm:
1) Start with weights wi = 1/N, i = 1, 2, ..., N .
2) Repeat for m=1,2,...,M classifiers:
3) Fit each classifier fm(x) ∈ {−1, 1} using weights wi

on the training data.
4) Compute errm = Ew[1(y 6=fm(x))], where αm =

log((1− errm)/errm)
5) Set wi ← wiexp[αm· 1(y 6=fm(x))], renormalize so that∑

i wi = 1
6) The ensemble output sign[

∑M
m=1 αmfm(x)]



Our first major departure from Adaboost, results from how
the ensemble is generated. Instead of forming one expert at a
time, the M independent HMM chains are trained in parallel
using the Baum-Welch formulation [5]. As explained, this
splits the joint likelihood into marginals so that independent
processes are working in simpler subspaces [3]. A ranking
is then performed and a winner is chosen based on the
classification performance for the current distribution of input
examples. The ranking is done by looking at the Euclidean
distance between the percentage correctly classified for each
class. Next, the remaining experts are trained within their
respective subspace but relative to the errors of the previous
winner. Finally, the wi is used to select the next distribution
of examples for the remaining experts. Similar to Adaboost
the remaining experts are trained on the hard examples
from different subspaces. In turn, a hierarchical structure is
formed as the winning experts affect the training on the local
subspaces for the subsequent experts.

With Adaboost the αm’s are used as external weights to the
classifiers as opposed to the wi’s which weight the training
examples. Computing the αm’s is the second major departure
from Adaboost since a mixture of experts formulation is
used for the external weights or mixture coefficients. To
find the mixture coefficients for the local classifiers, we
look to the Boosted Mixture of Experts (BME) [23]. With
BME, improved performance is gained through the use of a
confidence measure for the individual experts [23]. Although
many different confidence measures exist, the majority are
a scalar function of the expert’s output which is then used
as a gating function or mixture coefficient [14], [23]. Our
algorithm uses a simple measure for each expert based on
the L2-Norm of the class errors:
Instead of

αm = log((1− errm)/errm) (5)

we use,

αm = 1−
√

err2
M + err2

R (6)

Since there is a condition placed during the boosting phase
not to use experts with less than 50% classification, negative
alphas will not occur. Notice that as the errors between the
two classes are smaller, the weights for the experts become
larger.

The following describes how the different procedures are
combined to create the BM-HMM:

1) Start with weights wi = 1/N, i = 1, 2, ..., N .
2) Train all of the HMM chains on the full data set
3) Rank and select the best performing HMM chain on

current distribution of examples
4) Using the mth winner, compute errm =

Ew[1(y 6=fm(x))], where βm = log((1 − errm)/errm)
and αm = 1−

√
err2

M + err2
R

5) Set wi ← wiexp[βm· 1(y 6=fm(x))], renormalize so that∑
i wi = 1

6) Resample distribution with replacement based on win-
ner

Fig. 3. HMM chain adding experiment for Rat data

7) Train remaining experts on respective subspaces
8) Go to step 3 until stopping criterion is met.
9) The ensemble output sign[

∑M
m=1 αmfm(x)]

The criterion for stopping is based on two conditions. The
first stopping condition occurs if the individual experts are
performing less than 50% classification. The second stopping
condition occurs if the cross validation set shows an increase
in error or a plateau in performance for a significant number
of rounds.

Since a single HMM chain is trained on a single neural
channel, the number of parameters is very small and can
support the amount of training data. The individual HMM
chains in the BM-HMM contain around 70 parameters for a
training set of 10,000 examples as opposed to almost 18,000
parameters necessary for a comparable CHMM (due to the
dependent states) [3].

III. RESULTS

TABLE I
CLASSIFICATION PERFORMANCE

Model #channels % correct

With Monkey Data

IC-HMM 104 92.4%

IC-HMM 9 87.1%

BM-HMM 9 92.0%
Wiener Filter 104 88.3%

Wiener Filter 9 86.9%

With Rat Data

IC-HMM 16 62.5%

IC-HMM 6 58.3%

BM-HMM 6 64.0%
Wiener Filter 16 61.8%

Wiener Filter 6 56.9%

In this section, we first show the results of our model on
the two animal experiments. Next, we illustrate the effects



of the algorithm by comparing the BM-HMM chains, ranked
from best to worst, to the IC-HMM chains, also ranked
from best to worst. Finally, we conclude with an analysis
of parallel peri-event time histograms to understand which
neural channels the BM-HMM chains are selecting for the
ensemble.

In Table 1, we see a comparison of the results from the
BM-HMM chains versus the full IC-HMM and a linear
classifier. For the HMMs, we use three hidden states and an
observation sequence length T = 10, which corresponds to a
second of data (given the 100ms bins). These choices were
based on previous efforts to optimize performance [2]. For
the linear classifier, a Wiener filter with a 10-tap delay (that
corresponds to a second of data) is used. These parameters
were also chosen based on previous work [2], [6].

To give a fair comparison between the methods, the same
neural channels that were chosen by the BM-HMM are used
with the linear model and the IC-HMM. As can be seen from
the table, the BM-HMM performs on par with the IC-HMM,
but with the added benefit of dimensionality reduction. For
this experiment the performance on the rat data is better
with the BM-HMM. The improvement could be due to the
algorithm’s ability to remove noisy or unimportant neural
channels.

Furthermore, these results demonstrate three other inter-
esting points. First, it is significant that on the monkey data,
nine BM-HMM chains outperform the linear classifier that
uses the full input space. Second, the subset of experts that
are chosen by the BM-HMM seem to perform well on the
linear model. This result is expected since the BM-HMM
chains select neural channels with important complimentary
information. Lastly, when comparing the BM-HMM to the
Wiener filter and the IC-HMM using the same subset of
neural channels, the hierarchal training of the BM-HMM
provides a significant increase in performance. We believe
this is due to the dependencies that are being exploited during
each round of training, where the other models simply try to
uniformly combine all the neural information into a single
hypothesis.

Additionally, if we do an expert adding experiment in
which the best ranked experts are added one by one to the en-
semble vote, an interesting result emerges. In Figure 3, as the
BM-HMM chains are added, the error rate quickly decreases
below the IC-HMM error when applied to the monkey neural
data. Figure 4 shows a similar result when applied to the rat
neural data. Overall, we find that the boosted mixtures are
exploiting more useful and complimentary information for
the final ensemble than the simple IC-HMM.

To understand what possible information the boosted mix-
tures are selecting from the neural channels, we plot in
Figures 5 and 6 the peri-event time histogram for all
the neural channels in parallel. These histograms present
the firing rate of the different neurons averaged across a
single event (i.e the start of a movement trial) [27]. For these
figures, the mean firing rate is subtracted so that the light
colors illustrate decreased firing rates and the darker colors

Fig. 4. HMM chain adding experiment for monkey data

Fig. 5. Parallel peri-event histogram for monkey neural data

indicate increased firing rates. Overlaid and stretched on each
image is the average of the movement trials. It is interesting
to see how some channels have no pattern associated with
them whereas others appear to have a consistent pattern.

Notice how the BM-HMM selects neural channels that dis-
play both an increase in firing activity as well as neurons that
decrease their firing during the onset of movement. Although
we can not biologically substantiate that these neurons are
being inhibited, empirically the BM-HMM appears to use
this inhibition-like activity.

IV. DISCUSSION AND FUTURE WORK

Overall, the BM-HMM algorithm is very simple to train
and computationally efficient, while also able to reduce
the input dimensionality. It accomplishes this by taking the
multidimensional neural input and decomposing the joint
likelihood into marginals using a BM-HMM. Techniques
from boosting are used to create hierarchal dependencies
between these marginal subspaces. Then ideas from the
mixture of experts weight the local information. The results
demonstrate that fewer neurons are needed to achieve similar



or better results than using the IC-HMM and superior to a
linear model (both of which use the full input space).

With respect to related algorithms, there are a few ways
to interpret the BM-HMM. BM-HMMs can be thought of as
a modification to boosting, or even a simpler version of the
mixture of trees algorithm if the HMM chains are interpreted
as binary stumps [19]. Additionally, the temporal Markovian
dynamics coupled with the hierarchal structure and mixture
modeling can be thought of as a simple approximation to
tree structured HMMs [18]. Regardless of the algorithmic
interpretation, the BM-HMM algorithm is modeling the
neural data as multiple interacting processes where hidden
dependencies between neurons are approximated in a simple
and efficient way.

In future work, we would like to move to an unsupervised
version of the algorithm. As previously mentioned, the final
BMI paradigm will not include kinematic information from
a paraplegic; therefore it is imperative that BMI algorithms
work in an unsupervised or semi-supervised manner. Perhaps
we will need to look beyond simple HMM chains to compose
the boosted mixtures in order to find a better spatial and
temporal representation of the various interacting processes.
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