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Abstract— In this paper, we present a weighted Linde-Buzo-
Gray algorithm (WLBG) as a powerful and efficient technique
for compressing neural spike data. We compare this technique
with the recently proposed Self-Organizing Map with Dynamic
Learning (SOM-DL) and the traditional SOM. A significant
achievement of WLBG over SOM-DL is a 15dB increase in the
SNR of the spike data apart from having a compression ratio
of 150 : 1. Being simple and extremely fast, this algorithm
allows real-time implementation on DSP chips opening new
opportunities in BMI applications.

I. INTRODUCTION

Brain Machine Interfaces (BMI) aim at establishing a
direct communication pathway between human or animal
brain and external devices (prosthetics, computers) [1]. The
ultimate goal is to provide paralysed or motor-impaired
patients a mode of communication through the translation
of thought into direct computer control. In this emerging
technology, a tiny chip containing hundreds of electrodes
are chronically implanted in the motor, premotor and parietal
cortices and connected through wires to external signal pro-
cessor which is then processed to generate control signals [2],
[3].

Recently, attempts to develop wireless neuronal data trans-
mission protocols has gained considerable attention [4]. Not
only would this enable increased mobility and reduce risk of
infection in clinical settings, but also would free cumbersome
wired behavior paradigms where experimenter must over-
come issues like entanglement, torque applied to prosthetics
and chewing of cables. Although this idea looks simple, a
major bottleneck in implementing it is the high constraints
on the bandwidth and power imposed on these bio-chips. On
the other hand, to extract as much information as possible
we would like to transmit all the electrophysiological signals
for which the bandwidth requirement can be daunting. For
example, to transmit the entire raw digitized potentials from
32 channels sampled at 20kHz with 16 bits of resolution we
need a huge bandwidth of 10Mbps.

Many solutions were proposed to solve this problem. One
solution is to perform spike detection on site, and then
transmit spike signal only or the time at which the spike oc-
curred [5]. An alternative is to use spike detection and sorting
techniques so that binning (the number of spikes in a given
time interval) can be immediately done [4]. The disadvantage
of these methods lies in the weakness of current automated
spike detection methods without human interaction as well
as the missed opportunities of any post processing since the
original waveform is lost. It is in this regard, that we propose
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to compress the raw neuron potentials using well established
vector quantization techniques.

The goal of vector quantization is efficient and compact
representation of data with few codewords. The most com-
mon method of doing vector quantization (VQ) is to mini-
mize a distortion measure between the set of codewords and
the data. k-means and LBG [6] are the two most popular VQ
algorithms which achieve this by minimizing the L2 norm.
Another popular and widely used technique is Kohonen’s self
organizing maps (SOM) [7] which not only represents the
data efficiently but also preserves the topology by a process
of competition and cooperation between neurons. In fact, self
organizing maps without lateral interactions between neurons
are standard vector quantizers [8].

Paiva et al. [9] successfully trained SOM on the neural
data recordings. The strategy was to transmit through the
wireless link only the index determined by the SOM, which
encodes the raw digitized potentials. As with any common
vector quantization technique, this would represent the dense
region very well and use few code vectors for sparse regions.
Unfortunately, this means poor encoding of spikes which are
generally sparse in the neural recordings. To correct this,
a new algorithm called self organizing map with dynamic
learning (SOM-DL) was introduced [10]. Though there is
slight improvement in the SNR of the spike region, the
changes made were heuristic. Further, these algorithms are
computationally intensive with large number of parameters
to tune and can only be executed offline.

In this paper, we introduce a new weighted LBG (WLBG)
algorithm which effectively solves this problem. Using a
novel weighting factor we give more weightage to sparse
region corresponding to the spikes in the neural data leading
to a 15dB increase in the SNR of the spike region. The
simplicity and the speed of the algorithm makes it feasible to
implement this in real-time opening new doors of opportunity
in online spike compression for BMI applications.

In the next section we give a brief overview of our
algorithm and SOM-DL. Section 3 deals with details of the
neural data. The novel waiting factor is introduced in section
4. Finally, we present our results in section 5 and conclude
in section 6.

II. THEORY

The WLBG is actually a recursive implementation of
weighted k-means algorithm. The cost function optimized is
the weighted L2 distortion measure between the data points
and the codebook as shown below in (2).

D(C) =
N∑

i=1

wi ‖xi − c∗i ‖
2
, (2)



Step 1 Specify the maximum distortion allow Dmax and maximum number of levels Lmax.
Step 2 Initialize L = 0 and codebook C as random point in Rd.
Step 3 Set M = 2L. Start the optimization loop

a. Calculate for each xi ∈ X , the nearest code vector c∗i ∈ C using (3).
b. Update the the code vectors in the codebook using (1) where the sum is taken over all data

points for which cj is the nearest code vector.

cj =

∑
k:c∗k=cj

wkxk∑
k:c∗k=cj

wk
(1)

c. Measure the new distortion D(C) as shown in (2). If D(C) ≤ Dmax then go to step 5 or
else continue.

d. Go back to (a) unless the change in distortion measure is less than δ

Step 4 If L = Lmax, go to step 5 . Else L = L + 1 and split each point cj ∈ C into two point cj + ε
and cj − ε and go back to step 3.

Step 5 Stop the algorithm. Return C, the optimized codebook.

Fig. 1. The outline of WLBG algorithm.

where c∗i is the nearest code vector to data point xi as given
in (3).

c∗i = min
cj∈C

‖xi − cj‖2 (3)

Consider a dataset X = (xi)N
i=1 ∈ Rd. Let C =

(cj)M
j=1 denote the codebook to be found. The outline of

the algorithm is show in Fig. 1. Both δ and ε are set to
a very small value. A typical value is δ = 0.001 and
ε = 0.0001[1 − 1 − 1 . . .] where the random 1 and -1 is a d
dimensional vector. This recursive splitting of the codebook
has two advantages over the direct k-means method.

1) Firstly, there is no need to specify the exact number of
code vectors. In most real applications, the maximum
distortion level Dmax is known. The LBG algorithm
starts with one code vector and recursively splits it so
that D(C) ≤ Dmax.

2) Secondly, the recursive splitting effectively avoids the
formation of empty clusters which is very common in
k-means.

A. SOM and SOM-DL
Self organizing maps (SOM) is an idea based on competi-

tive learning. The goal is to learn the non linear mapping
between the data in the input space and a two or one
dimensional fully connected lattice of neurons in an adaptive
and topologically ordered fashion [11]. Each processing
element (PE) in the lattice of M PEs has a corresponding
synaptic weight vector which has the same dimensionality
as that of the input space. At every iteration, the synaptic
weight closest to every input vector xk is found as shown in
(4).

i∗ = argmin
1≤i≤M

‖xk − wi‖ (4)

Having found the winner PE for each xk, a topological
neighborhood is determined around the winner neuron. The
weight vector of each PE is then updated as

wi,k+1 = wi,k + ηkΛi,k(xk − wi,k), (5)

where ηk ∈ [0, 1] is the learning rate. The topological neigh-
borhood is typically defined as Λi,k = exp

(
−‖ri−ri∗‖2

2σ2
k

)
where ‖ri − ri∗‖ represents the Euclidean distance in the
output lattice between ith PE and the winner PE. Notice
that both learning rate (ηk) and the neighborhood width
(σk) are time dependent and are normally annealed for best
performance.

When applying SOM to neural data it was found that most
of the PEs were used to model the noise rather than the
spikes in the data. This is typical of any neural recording
which generally has sparse number of spikes. In order to
alleviate this problem and to move PEs from low amplitude
region of state space to the one corresponding to the spikes
the following update rule was proposed.

wi,k+1 = wi,k + µΛi,ksign(xk − wi,k)(xk − wi,k)2 (6)

This was called self organizing map with dynamic learning
(SOM-DL) [10]. By accelerating the movements of the PEs
toward the spikes, the SOM-DL represents the spikes better.
But for good performance careful tuning of the parameters is
important. For example, it was experimentally verified that
µ between 0.05 and 0.5 balances between fast convergence
and small quantization error for the spikes. Further, it is well
known that SOM based algorithms are computationally very
intensive.

III. NEURAL DATA

We test this algorithm on synthetic neural data which was
designed to emulate as accurately as possible the scenario
encountered with actual recordings of neuronal activity. The
waveform contains spike from two neurons differing in both
peak amplitude and width as shown in Fig. 2(a). Both
neurons fired according to homogeneous Poisson process
with firing rates of 10 spikes/s (continuous line) and 20
spikes/s (dotted line). Further, to introduce some variability
in the recorded template each time a neuron fired the template
was scaled by a Gaussian distributed random number with
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(b) An instance of the neural data

Fig. 2. Neural Dataset and the waveforms of the two neurons

mean 1 and standard deviation 0.01. Finally, the waveform
was contaminated with zero mean white noise of standard
deviation 0.05. An instance of the neural data is shown in
Fig. 2(b).

IV. NOVEL WEIGHTING FACTOR

Since we are interested in the reconstruction of spikes as
accurately as possible, a separate training dataset was con-
structed with 100 spikes as if they had been segmented from
a real waveform after spike detection. A two dimensional
non overlapping embedding of the training data is shown in
Fig. 3.

Since the spikes correspond to large amplitudes in mag-
nitude, the farther the data point from the origin the more
likely it is to belong to the spike region. Further, information
at the tip of the spike should be modeled well since amplitude
of the spike is an important feature in spike sorting. Thus,
to reconstruct spike information as accurately as possible we
need to give more weightage to the points far from the origin.
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Fig. 3. 2-D embedding of training data which consists of total 100 spikes
with a certain ratio of spikes from the two different neurons

Thus, we select the weighting for our algorithm as shown
below

wi =

{
‖xi‖2 if ‖xi‖2 ≥ τ

τ if ‖xi‖2 ≤ τ ,
(7)

where τ is a small constant to prevent the weighting from
going to zero. Though an arbitrary choice of τ would do, we
can make an intelligent selection. Note that we can estimate
the standard deviation σ of the noise from the data which
corresponds to the dense gaussian cluster at the origin in
Fig. 3. Since 2σ denotes 95 percent confidence interval of
the gaussian noise, therefore we can set τ = (2σ)2 giving
same weightage to all points belonging to the gaussian noise.
In our experiment σ = 0.05 and so we set τ = 0.01.

V. RESULTS

In this section, we present the results obtained by WLBG
on the neural spike data using the novel weighting factor
developed in previous section and compare it with results
obtained from SOM-DL and SOM.

Fig. 4 shows 16 point quantization obtained using WLBG
on the training data. As can be seen more code vectors are
used to model the points far away from the origin even
though they are sparse. This helps to code the spike infor-
mation in greater details and hence minimize reconstruction
errors. On the other hand, SOM-DL wastes a lot of points in
modeling the noise cluster as shown in Fig. 5. Further, not
only does SOM-DL have large number of parameters which
needs to be fine tuned for optimal performance, but also takes
immense amount of time to train the network making it only
suitable for off line training.

We test this on a separate test data generated to emulate
real neural spike signal. A small region is highlighted in
Fig. 6 which shows the comparison between the original and
the reconstructed signal. Clearly WLBG does a very good
job in preserving spike features. Also notice the suppression
of noise in the non-spike region. This denoising ability is
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Fig. 4. 16 point quantization of training data using WLBG
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Fig. 5. Two-dimensional embedding of training data and quantization
vectors in a 5 × 5 lattice trained by SOM-DL.

one of the strengths of this algorithms and is attributed to
the novel weighting factor we selected.

We report the SNR obtained by using WLBG, SOM-
DL and SOM in Table I. As can be seen, there is a huge
increase of 15dB in the SNR of the spike regions of the test
data compared to SOM-DL which only marginally improves
the SNR over SOM. Obviously, by concentrating more on
the spike region, our performance on the non-spike region
suffers but the decrease is negligible compared to SOM-
DL. It should be noted that good reconstruction of the spike
region is of utmost importance and hence the only measure
which should be considered is the SNR in the spike region.
Further, the result reported here for WLBG is for 16 code
vectors which is far less than 25 code vectors (5× 5 lattice)
for SOM-DL and SOM algorithms.

A. Compression Ratio

We quantify here the theoretical compression ratio achiev-
able by using the codebook generated by WLBG. In order to
do so, we use a test data consisting of 5 seconds of spike data
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Fig. 6. Performance of WLBG in reconstructing spike regions in test data

TABLE I
SNR OF SPIKE REGION AND THE WHOLE TEST DATA OBTAINED USING

WLBG, SOM-DL AND SOM

SNR of WLBG SOM-DL SOM
Spike region 31.12dB 16.53dB 14.7dB

Whole test data 8.12dB 8.97dB 10.08dB

sampled at 20kHz and digitized to 16 bits of resolution. We
use this to measure the firing rate of the code vectors. Fig. 7
shows the probability of firing of the WLBG codebook. Code
vector 16 (centered near origin in Fig. 4) models the noisy
part of the signal and hence fires most of the time. It should
be noted that in general neural data has very sparse number
of actual spikes.
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Fig. 7. Firing probability of WLBG codebook on test data

The probability values for the code vectors is given in
Table II. The entropy of this distribution is

H(C) =
16∑

i=1

pi log(pi) = 0.2141.

From information theory, we know that this is a lower
bound for average number of bits needed to represent the
codebook. Thus, with good coding like arithmetic codes we



TABLE II
PROBABILITY VALUES OBTAINED FOR THE CODE VECTORS AND USED IN

FIG. 7

Code Vectors Probability
1 0.0007
2 0.0017
3 0.0007
4 0.0014
5 0.0003
6 0.0007
7 0.0010
8 0.0193
9 0.0003
10 0.0018
11 0.0007
12 0.0045
13 0.0002
14 0.0015
15 0.0006
16 0.9647

can reach very close to this optimal value. Since we are
using 2D non overlapping embedding of the signal sampled
at 20kHz, the number of bits needed to transmit the data is
20k
2 × 0.2141 = 2.141kbps. If the data had been transmitted

without any compression then, the number of bits needed
is 20k × 16 = 320kbps. Thus we achieve a compression
ratio of 150 and at the same time maintain a 32dB SNR
on the spike region. Further, on real datasets, where a 10D
embedding is generally used, the compression ratio would
increase to 750 with only 428bps needed to transmit the data.
This is a significant achievement and would help alleviate
the bandwidth problem faced in transmitting data in BMI
experiments.

VI. CONCLUSIONS

We have proposed a weighted LBG (WLBG) as an excel-
lent compression algorithm for neural spike data with em-
phasis on good reconstruction of the spikes. The advantages
over SOM-DL are apparent but nevertheless listed below.

1) A 15dB increase in SNR of spike regions in the data.
2) A smaller and more efficient codebook achieving a

compression ratio of 150 : 1.
3) The increase in speed is many folds. The WLBG takes

less than 1 seconds on machine with Pentium IV and
512 MB RAM versus SOM-DL which takes more than
15 minutes.

4) There is no parameters in WLBG compared to SOM
algorithms which has step size, neighborhood kernel
size and their annealing parameters which needs to
be properly tuned. The only variable to be defined in
WLBG is the weights wi which have a clear interpre-
tation for the application at hand.

5) Since the WLBG algorithm update just consists of inner
products and is extremely fast, it can be easily be
implemented in DSP chips for online compression.

Future work includes extending this idea to real dataset
and constructing an efficient k-d tree search algorithm for
the codebook taking into account the weighting factor and

the probability of code vectors. We would also like to use ad-
vanced encoding techniques like entropy coding and achieve
bit rate as close as possible to the theoretical value. Finally,
real-time implementation of this algorithm and applying this
to real BMI experiments would also be pursued.
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