Nonlinear Component Analysis Based on Correntropy

Jian-Wu Xu, Puskal P. Pokharel, António R. C. Paiva, and José C. Príncipe

Computational NeuroEngineering Laboratory,
University of Florida

July 18, 2006

Supported in part by NSF grant ECS-0300340.
A.R.C. Paiva supported by FCT grant SFRH/BD/18217/2004.
Outline

Introduction
 - Motivation
 - Correntropy function
 - Kernel mapping

Correntropy PCA
 - Principal component analysis in feature space
 - Feature space data centering

Results
Why do we need nonlinear component analysis?
Motivation

- Why do we need nonlinear component analysis?
 - Linear PCA only fully describes Gaussian distributed data!
 - In all other cases the principal components are, in general, nonlinear and depend on higher order moments.
Motivation

- Why do we need nonlinear component analysis?
 - Linear PCA only fully describes Gaussian distributed data!
 - In all other cases the principal components are, in general, nonlinear and depend on higher order moments.
- Are there methods for nonlinear component analysis currently available?
Motivation

- Why do we need nonlinear component analysis?
 - Linear PCA only fully describes Gaussian distributed data!
 - In all other cases the principal components are, in general, nonlinear and depend on higher order moments.

- Are there methods for nonlinear component analysis currently available?
 - Iterative methods (Hastie and Stuetzle, 1989; De’ath, 1999)
 - Kernel principal component analysis – Kernel PCA (Schölkopf et al., 1998)
 - ...
Why do we need another nonlinear component analysis method?
Motivation

Why do we need another nonlinear component analysis method?

- Iteratives methods are time consuming and prone to search problems (local minima, etc.)
- Kernel PCA needs to solve the eigendecomposition of the Gram matrix, which has the dimensionally of the data (1000 data points $\rightarrow 1000 \times 1000$ Gram matrix.)
- Difficult interpretation
Motivation

- Why do we need another nonlinear component analysis method?
 - Iteratives methods are time consuming and prone to search problems (local minima, etc.)
 - Kernel PCA needs to solve the eigendecomposition of the Gram matrix, which has the dimensionally of the data (1000 data points $\rightarrow 1000 \times 1000$ Gram matrix.)
 - Difficult interpretation
- **Correntropy PCA:**
 - Solves nonlinear component analysis
 - Incorporates higher order statistics
 - Constrained to input dimensionality
Definition of correntropy

- The correntropy of two random variables X and Y is defined as

$$V_{XY} \triangleq E[\kappa(x, y)].$$

where

- $E[\cdot]$ denotes mathematical expectation over X and Y
- κ is a symmetric positive definite kernel that obeys the Mercer’s conditions.
Properties of correntropy

- Correntropy depends on higher order moments. For example, using a Gaussian kernel the series expansion is

\[V_{XY} = \frac{1}{\sqrt{2\pi}\sigma} \sum_{n=0}^{\infty} \frac{(-1)^n}{2^n \sigma^{2n} n!} E \left[\|x - y\|^{2n} \right] \]

- Given any symmetric and positive definite kernel \(\kappa(x, y) \), the correntropy kernel is symmetric and positive definite.
Since the correntropy kernel is symmetric and positive definite, the Moore-Aronszajn theorem states that a unique reproducing kernel Hilbert space (RKHS) – \mathcal{H} – exists.

From Mercer’s theorem, the correntropy kernel can be decomposed in a sequence of non-negative eigenvalues, $\{\lambda_k : k = 1, 2, \ldots\}$, and corresponding (normalized) eigenfunctions, $\{\varphi_k(x) : k = 1, 2, \ldots\}$.

This is,

$$V_{XY} = \sum_{k=0}^{\infty} \lambda_k \varphi_k(x) \varphi_k(y) = \sum_{k=0}^{\infty} (\sqrt{\lambda_k} \varphi_k(x))(\sqrt{\lambda_k} \varphi_k(y))$$

$$= \langle \Pi(x), \Pi(y) \rangle$$
Outline

Introduction
Motivation
Correntropy function
Kernel mapping

Correntropy PCA
Principal component analysis in feature space
Feature space data centering

Results
Mapping input data to feature space

Given a set of zero mean vectors \(x_i \in \mathbb{R}^L, i = 1, \ldots, N \), \textsc{Correntropy PCA} maps the data component-wise in feature space, i.e.:

\[
\Pi(x): \mathbb{R}^L \mapsto \mathcal{F}
\]

\[
x \mapsto [\Pi(x_1), \Pi(x_2), \ldots, \Pi(x_L)]
\]

where \(x_i \) denotes the \(i \)th component of the input sample \(x \).

This leads to the following definition:

\[
V_{ij} \triangleq E[\kappa(x_i, x_j)] = \langle \Pi(x_i), \Pi(x_j) \rangle
\]

\[
\approx \frac{1}{N} \sum_{k=1}^{N} \kappa(x_{ik}, x_{jk}), \quad \forall i, j = 1, \ldots, L
\]
The covariance matrix of the transformed data is given by

\[C = \frac{1}{L} \sum_{i=1}^{L} \Pi(x_i)\Pi(x_i)^T \]

Then, we can compute the eigendecomposition of \(C \),

\[Cq = \lambda q \]

Since all solutions lie in the span of \(\Pi(x_1), \ldots, \Pi(x_L) \), we have that

\[q = \sum_{j=1}^{L} \beta_j \Pi(x_j) \]
Feature space component analysis (2)

- Instead of solving the eigendecomposition we can solve

\[
\langle \Pi(x_k), Cq \rangle = \langle \Pi(x_k), \lambda q \rangle, \quad \forall k = 1, \ldots, L
\]

- Substituting the expressions for \(C \) and \(q \), yields

\[
\frac{1}{L} \sum_{i=1}^{L} \sum_{j=1}^{L} \beta_j \langle \Pi(x_k), \Pi(x_i) \rangle \langle \Pi(x_i), \Pi(x_j) \rangle = \lambda \sum_{j=1}^{L} \beta_j \langle \Pi(x_k), \Pi(x_j) \rangle, \quad \forall k = 1, \ldots, L
\]
Feature space component analysis (3)

Define the correntropy matrix with the ijth entry,

$$ V_{ij} = \langle \Pi(x_i), \Pi(x_j) \rangle \approx \frac{1}{N} \sum_{k=1}^{N} \kappa(x_{ik}, x_{jk}), \quad \forall i, j = 1, \ldots, L $$

Then, the solutions of the previous set of equations can be found through the eigendecomposition of

$$ V^2 \bar{\beta} = L \lambda V \bar{\beta} $$

which has the same solutions as, $V \bar{\beta} = L \lambda \bar{\beta}$, where $\bar{\beta} = [\beta_1, \ldots, \beta_L]^T$.
Computing the data projections

The data projections are given by the inner product of the transformed vector with the eigenvectors:

\[P(a) = \sum_{i=1}^{L} \beta_i \frac{1}{N} \sum_{j=1}^{N} \kappa(x_{ij}, a_i) \]
CORRENTROPY PCA: Summary

1. Compute the correntropy matrix V
2. Compute the eigendecomposition of the correntropy matrix
3. Project the data points onto the eigenvectors
Data centering in feature space

- So far, the transformed vectors were assumed to be zero mean, which is not true in general.
- The centered data in feature space is given by:

\[
\bar{\Pi}(x_i) = \Pi(x_i) - E[\Pi(x_i)] \\
= \Pi(x_i) - \frac{1}{N} \sum_{k=1}^{N} \Pi(x_{ik})
\]

where \(x_{ik} \) is the \(i \)th component of the \(k \)th sample vector.
Data centering in feature space: inner product bias adjustment

In terms of input samples, the inner product between two centered vectors in feature space is given by:

\[
\langle \overline{\Pi(x_i)}, \overline{\Pi(x_j)} \rangle = \langle \Pi(x_i), \Pi(x_j) \rangle - 2 \left(\langle \Pi(x_i), \frac{1}{N} \sum_{m=1}^{N} \Pi(x_{jm}) \rangle \right) \\
+ \left(\frac{1}{N} \sum_{k=1}^{N} \Pi(x_{ik}), \frac{1}{N} \sum_{m=1}^{N} \Pi(x_{jm}) \right)
\]

\[
= E [\kappa(x_i - x_j)] - \frac{1}{N} \sum_{k=1}^{N} \sum_{m=1}^{N} \kappa(x_{ik} - x_{jm})
\]
Outline

Introduction
Motivation
Correntropy function
Kernel mapping

CORRENTROPY PCA
Principal component analysis in feature space
Feature space data centering

Results
Example 1: Mixture of two Gaussians

- Generated 200 samples from mixture of two Gaussians:

\[f(x) = \left(\mathcal{N}(\mathbf{m}_1, \Sigma_1) + \mathcal{N}(\mathbf{m}_2, \Sigma_2) \right) / 2 \]

- Kernel size: 0.5
Example 2: Mixture of three Gaussians clusters

- Generated 150 samples (50 per cluster) from mixture of three Gaussians clusters with standard deviation 0.1.
- Kernel size: 0.2
Conclusions

- Proposed novel approach for principal component analysis, based on the correntropy cost function.
- Incorporates higher order statistics.
- Problem constrained to the dimensionality of the input.
- Much smaller computational complexity.