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Abstract— In this paper, we propose a new nonlinear prin-
cipal component analysis based on a generalized correlation
function which we call correntropy. The data is nonlinearly
transformed to a feature space, and the principal directions
are found by eigen-decomposition of the correntropy matrix,
which has the same dimension as the standard covariance
matrix for the original input data. The correntropy matrix
characterizes the nonlinear correlations between the data.
With the correntropy function, one can efficiently compute the
principal components in the feature space by projecting the
transformed data onto those principal directions. We give the
derivation of the new method and present simulation results.

I. INTRODUCTION

Principal component analysis (also known as the
Karhunen-Loève transformation in communication theory) is
a powerful tool for feature extraction and data dimensionality
reduction in statistical pattern recognition and signal process-
ing. It can be easily performed by eigen-decomposition of
the standard covariance matrix or by adaptive algorithms
that estimate principal components [2]. Principal component
analysis or PCA is really an affine transformation of the
coordinate system such that the rate of decrease of data
variance is maximized. The projections of the data onto
the new coordinate system are called principal components.
These projections represent the data optimally in a least-
square sense. In feature extraction, PCA transforms the data
in such a way that a small number of principal components
can represent the data while retaining most of the intrinsic
variance of the data. These are sometimes called factors or
latent variables of the data [5].

While PCA yields a smaller dimensional linear subspace
that best represents the full data according to a minimum-
square-error criterion, it might be a poor representation if the
data structure is non-Gaussian. Hence nonlinear component
analysis may be needed. There have been numerous attempts
to define nonlinear components analysis in the latest decades.
Nonlinear PCA is generally seen as a nonlinear generaliza-
tion of standard PCA [2], [5]. The principal component is
generalized from straight lines to curves. Principal curves
were proposed by Hastie [4] to define local directions that
pass through the high density parts of the data set. The
principal curves are found through an iterative algorithm that
minimizes the conditional expectation of projections on the
curves. Kramer presented a nonlinear PCA based on auto-
associative neural networks. The auto-associative network
performs identity mapping from the input data to the output
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by minimizing the square error [6]. Recently, Schölkopf et
al applied kernel methodology to obtain a nonlinear form
of PCA [13]. This so called Kernel PCA solves the eigen-
decomposition of the Gram matrix of the input data in a high-
dimensional feature space. The Gram matrix has a dimension
given by the number of samples N . The data projections
onto the principal directions of the Gram matrix, i.e. the
inner product in feature space, are carried out by means of
kernel functions in the input space. While the utilization of
Mercer kernels provides a tractable way to compute principal
components in the high-dimensional feature space, there are
still problems of interpretation and computation of the large
dimensional Gram matrix. Indeed, the number of eigenfunc-
tions of the Gram matrix is dependent on the number of
data samples N , not the size of the data space L. Moreover
computing Gram matrices for millions of samples in a small,
let us say, two dimensional space becomes wasteful.

In this paper, we propose a new nonlinear PCA technique
based on the generalized correlation function, which we call
CORRENTROPY PCA. The generalized correlation function
quantifies the similarity between the L different components
of the L dimensional input data vector (or the time structure
in a time series) using the statistical data distribution [12].
The generalized correlation also utilizes a kernel methodol-
ogy, but in a different form: by applying the kernel to pairs
of data vector components, a random vector (or stochastic
process) is nonlinearly transformed into a high dimensional
function space where the similarity between the components
of the transformed random variables (or stochastic process)
can be measured by the conventional covariance function.
The eigen-decomposition of the covariance of the trans-
formed data yields the principal directions of the nonlinearly
transformed data. These linear principal directions in feature
space correspond to nonlinear principal directions in the
input space. These projections can be efficiently computed
by utilizing the generalized correlation function. That means,
if one has one million samples in a two dimensional space,
it is only necessary to solve a two dimensional eigenvector
problem on a matrix whose entries are computed from one
million samples. In many applications this is a tremendous
computational saving.

The paper is organized as follows. First, we introduce the
generalized correlation function in section 2. We present the
definitions auto-correntropy and cross-correntropy functions
and some properties of correntropy functions. The derivation
of the CORRENTROPY PCA is given in section 3. After that,
we have a discussion section on some specific issues con-
cerning CORRENTROPY PCA. We present two experimental
results comparing the CORRENTROPY PCA with standard
linear PCA and kernel PCA by Schölkopf [13] in section 5.



II. CORRENTROPY FUNCTION

In this section, we give the definition and properties of the
generalized correlation function. This generalized correlation
function extends the correlation function to nonlinear spaces
where data has been nonlinearly mapped according to some
transformation associated with the data distribution. The
correntropy function of two random variables x and y is
defined as

V (x, y) = E[κ(x, y)], (1)

where E [·] denotes mathematical expectation and κ is a
positive definite kernel function that obeys the Mercer’s con-
ditions [7]. One widely used kernel function is the Gaussian
kernel given by

κ(x, y) =
1√
2πσ

exp{− (x − y)2

2σ2
}.

By using Parzen window to implicitly estimate the proba-
bility density function (PDF) [8], it turns out that the value
of generalized correlation function coincides with the value
of information potential of second order Renyi’s entropy for
a given data set [9], [12]. Thus the generalized correlation
function is called Correntropy [12].

Correntropy has very nice properties that make it useful
for nonlinear signal processing and machine learning. First
and foremost, it is a positive definite function.

Property : Given any symmetric positive definite kernel
function κ(x, y), the correntropy function defined in (1) is
also symmetric and positive definite.

Proof : Given a positive definite kernel function κ(x, y),
then for any sets of n random variables for x and y
{x1, x2, · · · , xn} and {y1, y2, · · · , yn}, any set of not all
zero real numbers {α1, α2, · · · , αn}, by definition we have

n∑
i=1

n∑
j=1

αiαjκ(xi, yj) > 0.

Certainly, the expectation of any positive definite function is
always positive definite. Thus we have

E


 n∑

i=1

n∑
j=1

αiαjκ(xi, yj)


 > 0.

This is equivalent to
n∑

i=1

n∑
j=1

αiαjE [κ(xi, yj)] =
n∑

i=1

n∑
j=1

αiαjV (xi, yj) > 0.

V (x, y) is obviously symmetric since κ(x, y) is symmetric.
This concludes our proof.

The well known Moore-Aronszajn theorem states that
there exists a unique reproducing kernel Hilbert space
(RKHS) for any given positive definite function and vice
versa [1]. So for the correntropy function V (x, y) defined
in (1), there is a unique RKHS associated with correntropy
function. The nonlinear principal component analysis using
correntropy function proposed in this paper is based on
this property. As we know that the conventional correlation

function for any two random variables is not necessary
positive definite (the autocorrelation function for any given
random process is positive definite), thus there is no such
RKHS associate with convectional correlation function. By
imposing a positive definite kernel function on the argument
inside the expectation, the correntropy function becomes
positive definite which makes it a reproducing kernel. The
data then will be nonlinearly transformed into this RKHS,
called feature space, and we only need to compute the inner
product via the correntropy function to perform nonlinear
algorithms. We provide two ways of nonlinear mapping to get
insights into the feature space associated with the correntropy
function. One is through the reproducing kernel mapping and
the other is by the Mercer kernel mapping.

A. The reproducing kernel mapping: As we have already
seen that correntropy function corresponds a unique repro-
ducing kernel Hilbert space, this suggests that we can map
data into the feature space by means of RKHS. Let H be the
RKHS, then for any functional f ∈ H, by Riesz represent
theorem [11], we have

f(x) =< f, V (x, ·) >

The feature space can be constructed by containing all finite
linear combinations of the form

∑
αiV (xi, ·) and the inner

product is given by

V (x, y) =< V (x, ·), V (y, ·) > . (2)

B. The Mercer kernel mapping: Mercer theorem is one
of the fundamental theorems in reproducing kernel Hilbert
space research [7]. Suppose V is a continuous symmetric
positive function on a closed finite interval T × T. Let
{ϕk(x), k = 1, 2,...} be a sequence of normalized eigen-
function of V , and {λk, k = 1, 2, ...} be the sequence of
corresponding non-negative eigenvalues. In other word, for
all integers k and j,∫

T

V (x, y)ϕk(x)dx = λkϕk(y), x, y ∈ T
∫

T

ϕk(x)ϕj(x)dx = δk,j

where δk,j is the Kronecker delta function, i.e., equal to 1
or 0 according as k = j or k �= j. Then

V (x, y) =
∞∑

k=0

λkϕk(x)ϕk(y)

where the series above converge absolutely and uniformly on
T × T [11].

It follows that V (x, y) can be rewritten as an inner product
between two vectors in the feature space, i.e.,

V (x, y) =< Π(x),Π(y) >

Π : x �→
√

λkϕk(x), k = 1, 2, .... (3)

Comparing equations (2) and (3), we notice that there is
an equivalence between V (x, ·) and Π(x). Both functional
mappings construct the reproducing kernel Hilbert space
associated with the correntropy function V (x, y). In the next



section, we will apply Mercer kernel mapping associated
with correntropy function to principal component analysis.

III. CORRENTROPY PCA

Given a set of zero mean vector observations xj , j =
1, . . . , N , xj ∈ R

L,
∑N

j=1 xj = 0, CORRENTROPY PCA
seeks a direction in the feature space such that the variance
of the data projected onto this direction is maximized.
Unlike the kernel method which transforms data into a
feature space sample by sample, CORRENTROPY PCA maps
data component-wise into a feature space, i.e., the RKHS
associated with the correntropy function. By the equation
(3) in the above section, we have

Π : RL �→ F

x �→ [Π(x1),Π(x2), · · · ,Π(xL)] ,

where xi denotes the ith component of the original in-
put data sample x. This nonlinear mapping transforms the
component-wise data into a high dimensional RKHS which
is associated with the correntropy function. By the definition
of correntropy function, we have

< Π(xi),Π(xj) >= V (xi, xj) (4)

= E[κ(xi, xj)] =
1
N

N∑
k=1

κ(xik, xjk), ∀ i, j = 1, 2, ..., L,

where xik is the ith component of the kth input data sample.
The expectation runs over all the data samples.

Let us first assume the transformed data in the feature
space is zero mean, and we will come back later to this
issue in the next section. Then the covariance matrix of the
transformed data in the feature space is given by

C =
1
L

L∑
i=1

Π(xi)ΠT (xi)

We now have to find the eigenvalues λ ≥ 0 and non-zero
eigenvectors satisfying

Cq = λq.

All the solutions q must lie in the span of Π(x1), . . . ,Π(xL),
i.e., we can write q as the form of linear combination of all
the Π(x1), . . . ,Π(xL),

q =
L∑

i=1

βiΠ(xi) (5)

And we may instead consider the set of equations,

< Π(xk), Cq >=< Π(xk), λq >,∀ k = 1, . . . , L. (6)

Combining equations (5) and (6), we get

< Π(xk),
1
L

L∑
j=1

Π(ji)ΠT (ji) ·
L∑

i=1

βiΠ(xi) >

=
1
L

L∑
j=1

L∑
i=1

βi < Π(xk),Π(xj) >< Π(xj),Π(xi) >

= λ

L∑
i=1

βi < Π(xk),Π(xi) >,∀ k = 1, . . . , L. (7)

By equation (4), we can define an L×L correntropy matrix
V by

Vij := E[κ(xi − xj)] =
1
N

N∑
k=1

κ(xik, xjk), (8)

∀ i, j = 1, 2, ..., L.

Let k in (7) runs from 1 to L, and write the result in matrix
form, we can get

V 2β = LλV β, (9)

where β denotes the column vector with entries β1, . . . , βL. It
can be shown that the solutions of equation (9) are equivalent
to the solutions to the following eigenvalue problem,

V β = Lλβ, (10)

for nonzero eigenvalues.
For the purpose of principal component extraction, we

need to compute the projections onto the eigenvectors q in
the feature space. Let x be a test point, the projection of x
onto the principal direction mapped back to input space is
given by

P (x) =
L∑

i=1

βi
1
N

N∑
j=1

κ(xij , xi), (11)

this is so called a nonlinear principal component.
In summary, we need to take the following steps to

compute the nonlinear principal components: (1) compute the
correntropy matrix V by equation (8), where the expected
value is substituted by the average, (2) compute its eigen-
vectors and eigenvalues through SVD, and (3) compute the
projections of a test point onto the eigenvectors by (11).

IV. DISCUSSIONS

In this section, we will discuss some specific issues
concerning the CORRENTROPY PCA. First issue is the data
centering in feature space. In the derivation of CORREN-
TROPY PCA above, we assume data is centered in the RKHS.
But this might not be true even the original data has been
preprocessed to be zero mean since data centering in feature
space and original input space is very different. Now we
define the centered data in feature space as the following,

Π(xi) = Π(xi) − E[Π(xi)]

= Π(xi) − 1
N

N∑
k=1

Π(xik).



Then the inner product between any two centered vectors in
the feature space is given by

< Π(xi),Π(xj) >=< Π(xi),Π(xj) >

− < Π(xi),
1
N

N∑
m=1

Π(xjm) > − <
1
N

N∑
k=1

Π(xik),Π(xj) >

+ <
1
N

N∑
k=1

Π(xik),
1
N

N∑
m=1

Π(xjm) >

= E[κ(xi − xj)] − 1
N2

N∑
k=1

N∑
m=1

κ(xik − xjm).

The term 1
N2

∑N
k=1

∑N
m=1 κ(xik − xjm) is called cross

information potential between ith and jth dimension of the
original data [9]. Notice that the correntropy function for the
centered data in the feature space is the original correntropy
function minus the cross information potential.

V. SIMULATIONS

In this section, we will present two experimental results
to show the effectiveness of CORRENTROPY PCA in finding
nonlinear principal directions. The first experiment compares
the standard linear PCA and CORRENTROPY PCA to extract
features from a two dimensional mixture of Gaussian distrib-
uted data. Specifically, the probability density function is a
mixture of Gaussian modes with the following form

f(x) = 1/2(N (m1,Σ1) + N (m2,Σ2)),

where N (m1,Σ1) and N (m2,Σ2) are two Gaussian dis-
tribution with the mean vectors and variance matrices given
by

m1 =
[ −1

−1

]
, Σ1 =

[
1 0
0 0.1

]
,

m2 =
[

1
1

]
, Σ2 =

[
0.1 0
0 1

]
.

In figure 1, we plot the contours of the data and of the
constant projections produced by linear PCA and CORREN-
TROPY PCA respectively. The principal directions would be
perpendicular to these constant projections. 200 samples are
used and kernel size is chosen to be 2. The result confirms
that linear PCA only provides the linear directions that
maximizes the variance. But since the underlying data is a
mixture of two Gaussian modes, linear PCA fails to consider
the directions of the individual modes but only averages these
directions. On the contrary, CORRENTROPY PCA is more
tuned to the underlying structure of the data in the input
space. CORRENTROPY PCA generates a nonlinear principal
direction that follows locally the directions of the individual
modes so that the variance of principal component projected
onto this nonlinear curve is maximized. The experiment
shows that CORRENTROPY PCA is superior in describing
the underlying structure of the data when compared to the
linear PCA method.

Our second experiment compared the kernel PCA, pro-
posed by Schölkopf et al in [13], with CORRENTROPY PCA.
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Fig. 1. Linear PCA versus CORRENTROPY PCA for a two-dimensional
mixture of Gaussian distributed data

We use the same experiment setup as in [13] in order to
illustrate the performance of CORRENTROPY PCA. The data
is two-dimensional with three clusters(Gaussian distribution
with standard deviation 0.1). The number of data samples and
the kernel size are chosen to be 90 and 0.1 respectively. Since
the number of principal components for kernel PCA depends
on the number of data samples, there are many eigen-
directions in feature space that are difficult to identify in the
input space, so we plot the two principal components with the
largest eigenvalues from kernel PCA. However the number
of principal components for CORRENTROPY PCA is equal
to the dimension of input space, so there is no ambiguity.
Figure 2 shows that both kernel PCA and CORRENTROPY

PCA can extract the nonlinear principal components form the
data. While kernel PCA tends to find the local structure for
a given data set as the contours circle around different data
clusters suggest, CORRENTROPY PCA seeks the underlying
global structure of the data set. The contour in the left bottom
plot shows that CORRENTROPY PCA can be tuned to the
data structure by changing the kernel size in the Gaussian
kernel, and locate the principal direction.

In experiments comparing the performance of CORREN-
TROPY PCA with standard linear PCA and kernel PCA for
nonlinear feature extraction, we found two advantages of our
method. First, CORRENTROPY PCA can be more tuned to
the underlying data structure than linear PCA so that it can
extract the nonlinear principal components from the data,
very much like principal curves. There is no ambiguity since
the number of nonlinear principal components is the same
as the dimensionality of the input space. In kernel PCA it
is very difficult to choose the eigen-directions if we can not
visualize the data, since the eigenvectors project locally to
the input space. Therefore, it is not easy to separate major
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Fig. 2. Kernel PCA versus CORRENTROPY PCA for a two-dimensional
mixture of Gaussian distributed data

and minor components. Second, CORRENTROPY PCA has a
tremendous computational complexity advantage over kernel
PCA. For example, in the second simulation, we only need
to compute an eigen-decomposition for a 2 × 2 matrix
using CORRENTROPY PCA while we have to do eigen-
decomposition for a 90 × 90 matrix using kernel PCA. As the
training set increases, the computational complexity of kernel
PCA will increase dramatically but the size of the correntropy
matrix remains the same. Of course the computation of each
entry of the matrix, the correntropy between components
increases with the square of the number of samples. New fast
techniques O(N) to compute each entry have been developed
[3].

VI. CONCLUSION

In this paper we have presented a novel approach for
principal component analysis using a new function called
correntropy that generalizes the concept of auto-correlation
to nonlinear spaces. Our approach is based on finding the
eigenvectors of the correntropy matrix (same as the dimen-
sion of the data) unlike the Gram matrix used by other
kernel methods, where the dimension of the Gram matrix is
dependent on the number of the data. Yet, the final principle
curves we get using this method adequately covers the data
in the direction of maximum spread (variance in the feature
space). Since we are dealing with a finite dimensional matrix,
we get a number of principle curves equal to the dimension
of the data space, and at the same time the computational
complexity is drastically reduced compared to the kernel
methods. In general this approach offers a new method of
analyzing data. The study also suggests that the concept of
correntropy can be used for de-correlating the data in the fea-
ture space (whitening), which can be applied in the context
of independent component analysis. The future research will

apply CORRENTROPY PCA to feature extraction in real data
problems and also compare it with other nonlinear principal
component analysis methods.
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