- [7] 3SPACE FASTRAK User's Manual, Polhemus Incorporated, Colchester, VTt, 2002.
- [8] R. M. Leahy, J. C. Mosher, M. E. Spencer, M. X. Huang, and J. D. Lewine, "A study of dipole localization accuracy for MEG and EEG using a human skull phantom," *Electroencephalogr. Clin. Neurophysiol.*, vol. 107, no. 2, pp. 159–173, Aug 1998.
- [9] D. L. Collins, A. P. Zijdenbos, V. Kollokian, J. G. Sled, N. J. Kabani, C. J. Holmes, and A. C. Evans, "Design and construction of a realistic digital brain phantom," *IEEE Trans. Med. Imag.*, vol. 17, no. 3, pp. 463–468, Jun. 1998.
- [10] J. Malmivuo and R. Plonsey, *Bioelectromagnetism—Principles and Applications of Bioelectric and Biomagnetic Fields*. New York: Oxford Univ. Press, 1995.

On the Use of Standards for Microarray Lossless Image Compression

Armando J. Pinho*, António R. C. Paiva, and António J. R. Neves

Abstract—The interest in methods that are able to efficiently compress microarray images is relatively new. This is not surprising, since the appearance and fast growth of the technology responsible for producing these images is also quite recent. In this paper, we present a set of compression results obtained with 49 publicly available images, using three image coding standards: lossless JPEG2000, JBIG, and JPEG-LS. We concluded that the compression technology behind JBIG seems to be the one that offers the best combination of compression efficiency and flexibility for microarray image compression.

Index Terms—Image coding standards, JBIG, JPEG-LS, JPEG2000, lossless image compression, lossy-to-lossless compression, microarray images.

I. INTRODUCTION

The raw data resulting from a DNA microarray experiment [1] is typically conveyed by two images of 16 bits per pixel (bpp), obtained after scanning the microarray slide with a laser and capturing the light emitted by two different fluorescent markers. Usually, a green marker (Cy3) is used to label the reference sample, whereas a red marker (Cy5) labels the sample under analysis. Depending on the size of the array and the resolution of the scanner, these images may require from a few megabytes to several tens of megabytes of storage [2].

In this paper, we report a set of experiments that have been performed with the aim of providing a reference regarding the performance of standard image coding techniques, namely, lossless JPEG2000 [3], [4] JBIG [5], and JPEG-LS [4], [6], when applied to the lossless compression of microarray images. In fact, although a number of new techniques has already been proposed for microarray image compression,

Manuscript received December 16, 2004; revised June 28, 2005. This work was supported in part by the Fundação para a Ciência e a Tecnologia (FCT) and by the INFOBIOMED European NoE. *Asterisk indicates corresponding author.*

*A. J. Pinho is with the Department de Electrónica e Telecomunicações and with the Instituto de Engenharia Electrónica e Telemática de Aveiro (IEETA), Universidade de Aveiro, 3810-193 Aveiro, Portugal (e-mail: ap@det.ua.pt).

A. R. C. Paiva was with the Instituto de Engenharia Electrónica e Telemática de Aveiro (IEETA), Universidade de Aveiro, 3810-193 Aveiro, Portugal, and is now with the University of Florida, Gainesville, FL 32611 USA (e-mail: arpaiva@ufl.edu).

A. J. R. Neves is with the Department de Electrónica e Telecomunicações and with the Instituto de Engenharia Electrónica e Telemática de Aveiro (IEETA), Universidade de Aveiro, 3810-193 Aveiro, Portugal (e-mail: an@ieeta.pt).

Digital Object Identifier 10.1109/TBME.2005.869782

as we show in Section II, it is often difficult to compare the performance among them and/or in relation to current standards. One of the factors that contributes to this limitation is the lack of results regarding a common and representative set of images. Moreover, and in order to facilitate future comparisons by other researchers, these images should be publicly available. In this paper, we tried to overcome some of these drawbacks, by providing compression results on a set of 49 images gathered from three different publicly available sources.

Another objective of this work was that of trying to identify compression technologies that, on one hand, provide efficient lossless compression results and, on the other hand, offer relevant features for the microarray image compression problem, such as lossy-to-lossless reconstruction. From the three image coding standards that we addressed, we have been able to identify JBIG as potentially the most interesting.

II. SPECIALIZED METHODS

To the best of our knowledge, at the time of writing, there are four published methods for the lossy and/or lossless compression of microarray images, namely, the works of Jörnsten *et al.* [2], Hua *et al.* [7], Faramarzpour *et al.* [8], and Lonardi *et al.* [9]. Next, we give a brief overview of each of these techniques.

The technique proposed by Jörnsten *et al.* [2] is characterized by a first stage devoted to gridding and segmentation. Using the approximate center of each spot, a seeded region growing is performed for segmenting the spots. The segmentation map is encoded using chaincoding, whereas the interior of the regions are encoded using a modified version of the low complexity lossless compression for images (LOCO-I) algorithm (this is the algorithm behind the JPEG-LS coding standard), named SLOCO. Besides lossy-to-lossless capability, Jörnsten's technique allows partial decoding, by means of independently encoded image blocks.

Hua *et al.* [7] presented a transform-based coding technique. Initially, a segmentation is performed using the Mann-Whitney algorithm, and the segmentation information is encoded separately. Due to the thresholding properties of the Mann-Whitney algorithm, the gridding stage is avoided. Then, a modified embedded block coding with optimized truncation [4] for handling arbitrarily shaped regions is used for encoding the spots and background separately, allowing lossy-to-lossless coding of background only (with the spots losslessly encoded) or both background and spots.

The compression method proposed by Faramarzpour *et al.* [8] starts by locating and extracting the microarray spots, isolating each spot into an individual region of interest (ROI). To each of these ROIs, a spiral path is adjusted such that its center coincides with the center of mass of the spot, with the idea of transforming the ROI into an one-dimensional signal with minimum entropy. Then, predictive coding is applied along this path, with a separation between residuals belonging to the spot area and those belonging to the background area.

More recently, Lonardi *et al.* [9] proposed lossless and lossy compression algorithms for microarray images (MicroZip). The method uses a fully automatic gridding procedure, similar to that of Faramarzpour's method, for separating spots from the background (which can be lossy compressed). Through segmentation, the image is split into two channels: foreground and background. Then, for entropy coding, each channel is divided into two 8-bit subchannels and arithmetic encoded, with the option of being previously processed by a Burrows-Wheeler transform.

III. STANDARD METHODS

JBIG [5], JPEG-LS [4], [6], and JPEG2000 [3], [4] are state-ofthe-art standards for coding digital images. They have been developed with different goals in mind, being JBIG more focused on bi-level imagery, JPEG-LS dedicated to the lossless compression of continuous-tone images and JPEG2000 designed with the aim of providing a wide range of functionalities. These three standard image encoders cover a great variety of coding approaches. In fact, whereas JPEG2000 is transform based, JPEG-LS relies on predictive coding, and JBIG relies on context-based arithmetic coding. This diversity in coding engines might be helpful when drawing conclusions regarding the appropriateness of each of these technologies for the case of microarray image compression.

A. Experimental Results

In order to perform the experiments reported in this paper, we collected microarray images from three different publicly available sources: 1) 32 images that we refer to as the Apo AI set and which have been collected from http://www.stat.berkeley.edu/users/terry/zarray/Html/index.html (this set was previously used by Jörnsten *et al.* [2]); 2) 14 images forming the ISREC set which have been collected from http://www.isrec.isb-sib.ch/DEA/module8/P5_chip_image/images/; 3) three images previously used to test MicroZip [9], which were collected from http://www.cs.ucr.edu/~yuluo/MicroZip/. JBIG compression was obtained using version 1.6 of the JBIG Kit package,¹ with sequential coding (-q flag). JPEG2000 lossless compression was obtained using version 5.1 of the JJ2000 codec with de-

fault parameters for lossless compression.² JPEG-LS coding was obtained using version 2.2 of the SPMG JPEG-LS codec with default parameters.³ For additional reference, we also give compression results using the popular compression tool GZIP (version 1.2.4).

Table I shows the compression results, in bpp, where the first group of images corresponds to the Apo AI set, the second to the ISREC set and the third one to the MicroZip image set. Image size ranges from 1000×1000 to 5496×1956 pixels, i.e., from uncompressed sizes of about 2 megabytes to more than 20 megabytes (all images have 16 bpp). The average results presented take into account the different sizes of the images, i.e., they correspond to the total number of bits divided by the total number of image pixels.

The average results by image set show that JPEG-LS provides the highest compression in the case of the Apo AI and MicroZip images, whereas JBIG gives the best results for the ISREC set. Lossless JPEG2000 is always slightly behind these two. It is interesting to note that the set for which JBIG gave the best results is also the one requiring more bpp for encoding.

B. Sensitivity to Noise

It has been noted by Jörnsten *et al.* that, in general, the eight least significant bit-planes of cDNA microarray images are close to random and, therefore, incompressible [2]. Since this fact may result in some degradation in the compression performance of the encoders, we decided to address this problem and to study the effect of noisy bit-planes in the compression performance of the standards.

To perform this evaluation, we separated the images into a number p of most significant bit-planes and 16 - p least significant bit-planes. Whereas the p most significant bit-planes have been sent to the encoder, the 16 - p least significant bit-planes have been left uncompressed. This means that the bitrate of a given image results from the sum of the

²http://jj2000.epfl.ch.

TABLE I Compression Results, in bpp, Using Lossless JPEG2000, JBIG and JPEG-LS. For Reference, Results Are Also Given for the Popular Compression Tool GZIP

Image	Gzip	JPEG2000	JBIG	JPEG-LS
1230c1G	13.263	11.864	11.544	11.408
1230c1R	13.181	11.488	11.226	11.002
1230c2G	13.198	11.805	11.630	11.463
1230c2R	13.097	11.424	11.343	11.052
1230c3G	12.729	11.190	10.879	10.715
1230c3R	12.483	10.618	10.461	10.143
1230c4G	12.849	11.272	11.122	10.876
1230c4R	12.803	10.936	10.854	10.528
1230c5G	12.531	10.958	10.633	10.452
1230c5R	12.371	10.488	10.307	9.975
1230c6G	12.691	11.268	10.962	10.792
1230c6R	12.721	11.102	10.982	10.696
1230c7G	12.777	11.130	10.818	10.652
1230c7R	12.449	10.451	10.316	9.982
1230c8G	12.874	11.332	11.094	10.884
1230c8R	12.966	11.204	11.076	10.785
1230ko1G	12.410	10.766	10.369	10.206
1230ko1R	12.695	10.979	10.606	10.422
1230ko2G	12.465	10.852	10.618	10.410
1230ko2R	12.528	10.768	10.631	10.324
1230ko3G	12.822	11.309	11.013	10.833
1230ko3R	12.674	10.925	10.761	10.477
1230ko4G	12.510	10.976	10.697	10.516
1230ko4R	12.609	10.887	10.730	10.409
1230ko5G	12.795	11.286	11.100	10.881
1230ko5R	12.589	10.874	10.704	10.409
1230ko6G	12.594	11.086	10.917	10.679
1230ko6R	12.459	10.659	10.546	10.208
1230ko7G	12.752	11.278	10.929	10.785
1230ko/R	12.554	10.772	10.613	10.295
1230ko8G	12.669	11.173	10.965	10.737
1230ko8R	12.644	10.889	10.785	10.448
Average	12.711	11.063	10.851	10.608
Def661Cy3	12.658	11.914	11.218	11.713
Der661Cy5	11.418	9./14	9.451	9.392
Der662Cy3	11.030	10.881	11.007	10.575
Def662Cy3	12.722	11.309	11.231	11.130
Def663Cy5	12.457	10.405	10.124	10.151
Def664Cy3	12 322	11 502	10.124	11 394
Def664Cy5	12.322	11.392	11.755	11.504
Def665Cv3	13.142	12 462	12 111	12 280
Def665Cv5	14 451	13 590	13 / 29	13 557
Def666Cv3	11 768	10.946	10.132	10.659
Def666Cv5	13 116	11 727	11 748	11 572
Def667Cv3	11 690	10.540	9 9 2 3	10.248
Def667Cv5	11.807	10.304	9 951	10.033
Average	12.464	11.366	10.925	11.145
arravl	13.385	12.027	11.819	11.590
arrav2	11.470	9.272	9.071	8.737
array3	10.375	8.599	8.351	7.996
Average	11.434	9.515	9.297	8.974
Total Average	12.273	10.653	10.393	10.218

bitrate generated by encoding the p most significant bit-planes plus the 16 - p bits concerning the bit-planes that have been left uncompressed.

Table II compares average results for the three set of images regarding three situations: 1) full compression, i.e., all 16 bit-planes are encoded;2) the image is divided into the eight most significant bitplanes (which are encoded) and the eight least significant bit-planes (which are left uncompressed); 3) the optimum value of p is determined for each image. From Table II we can see that, in fact, this splitting operation can provide some additional compression gains. The best results attained provided improvements of 3.1%, 2.6% and 1.9%, respectively, for JBIG, lossless JPEG2000 and JPEG-LS.

However, finding the right value for p may require as many as 16 iterations of the compression phase, in order to find it. Moreover, from

¹http://www.cl.cam.ac.uk/~mgk25/jbigkit/.

³The original web-site of this codec, http://spmg.ece.ubc.ca, is currently unavailable. However, it can be obtained from ftp://www.ieeta.pt/~ap/codecs/jpeg_ls_v2.2.tar.gz.

565

TABLE II Average Compression Results, in bpp, When a Number of Bit-Planes Is Left Uncompressed. The Columns Labeled "8 Planes" Provide Results for the Case Where Only the 8 Most Significant Bit-Planes Have Been Encoded and the 8 Least Significant Bit-Planes Have Been Left Uncompressed. The Column Named "Best" Contains the Results for the Case Where the Separation of Most and Least Significant Bit-Planes Has Been Optimally Found

Image set	JPEG2000			JBIG			JPEG-LS		
	16 planes	8 planes	Best	16 planes	8 planes	Best	16 planes	8 planes	Best
Apo AI	11.063	10.940	10.790	10.851	10.510	10.507	10.608	10.523	10.433
ISREC	11.366	11.100	10.954	10.925	10.607	10.583	11.145	10.838	10.713
MicroZip	9.515	9.918	9.321	9.297	9.506	9.030	8.974	9.588	8.912
Total Average	10.653	10.661	10.376	10.393	10.224	10.073	10.218	10.302	10.026

the results shown in Table II, we can see that a simple separation of the bit-planes in an upper and lower half may improve the compression in some cases (Apo AI and ISREC image sets), but may also produce the opposite result (MicroZip image set).

C. Lossy-to-Lossless Compression

From the point of view of compression efficiency, and taking into account the results presented in Table I, JPEG-LS is the overall best lossless compression method, followed by JBIG and lossless JPEG2000. The difference between JPEG-LS and lossless JPEG2000 is about 4.1% and between JPEG-LS and JBIG is 1.7%. However, the better compression performance provided by JPEG-LS might be somewhat overshadowed by a potentially important functionality provided by the other two standards, which is progressive, lossy-to-lossless, decoding.

In the case of JPEG2000, this functionality results both from the multi-resolution wavelet technology used in its encoding engine and from a strategy of information encoding based on layers [4]. In the case of JBIG, this property comes from two different sources. On one hand, images with more than one bit-plane are encoded using a bit-plane by bit-plane coding approach. This provides a kind of progressive decoding, from most to least significant bit-planes, where the precision of the pixels is improved for each added bit-plane and the L_{∞} error is reduced by a factor of two. On the other hand, JBIG permits the progressive decoding of each bit-plane by progressively increasing its spatial resolution [5]. However, the compression results that we present in Table I do not take into account the additional overhead implied by this encoding mode of JBIG (we used the -q flag of the encoder, which disables this mode).

In Fig. 1, we present rate-distortion curves for image "1230c1G," obtained with the JPEG2000 and JBIG coding standards, and according to two error metrics: norm L_2 (root mean squared error) and norm L_{∞} (maximum absolute error). Regarding norm L_2 , we observe that JPEG2000 provides slightly better rate-distortion results for bitrates less than 8 bpp. For higher bitrates, this codec exhibits a sudden degradation of the rate-distortion. We believe that this phenomenon is related to the default parameters used in the encoder, which might not be well suited for images having 16 bpp. Moreover, we think that a careful setting of these parameters may lead to improvements in the rate-distortion of JPEG2000 for bitrates higher than 8 bpp, although we consider this tuning a problem that is beyond the scope of this paper.

With respect to norm L_{∞} , we observe that JBIG is the one with the best rate-distortion performance. In fact, due to its bit-plane by bit-plane approach, it guarantees an exponential and upper bounded decrease of the maximum absolute error. The upper bound of the error is given by $2^{(16-p)} - 1$, where p is the number of bit-planes already decoded. Contrarily, JPEG2000 cannot guarantee such bound, which may be a major drawback in some cases. Finally, we note that the sudden deviation of the JPEG2000 curves around bitrates of 8 bpp is probably related to the same problem pointed out earlier for the case of the L_2 norm.

Fig. 1. Rate distortion curves (image "1230c1G") showing the performance of JPEG2000 and JBIG in a lossy-to-lossless mode of operation. Results are given both for the L_2 (root mean squared error) and L_{∞} (maximum absolute error) norms.

IV. CONCLUSION

From the experimental results obtained, we conclude that JPEG-LS gives the best lossless compression performance. Moreover, according to the implementations used (not necessarily optimized for speed) it is about four times faster than the other two. However, it lacks lossy-to-lossless capability, which might be a decisive functionality if remote transmission over slow links is a requirement. Regarding the rate-distortion performance, JPEG2000 was the best algorithm according to the L_2 error metric, whereas JBIG was the most efficient considering the L_{∞} norm. Regarding lossless compression performance, JBIG was consistently better than JPEG2000.

The method that gained most from a correct separation of most significant bit-planes (that are encoded) and least significant bit-planes (that are left uncompressed) was JBIG. It is, simultaneously, the encoding technique that, due to the bit-plane by bit-plane coding, can search for the optimum point of separation more easily. In fact, this can be done by monitoring the bitrate resulting from the compression of each bit-plane, and stopping compressing when this value is over 1 bpp. It also worths mentioning that since JBIG was designed for bi-level images, the bit-planes are compressed independently. Therefore, techniques based on the same technology, but exploiting inter-bit-plane dependencies, most probably will do better. Based on these observations, it is our opinion that the technology behind JBIG seems to be in a good position for attacking the problem of microarray image coding. Moreover, and as demonstrated by the specialized methods already proposed, although the standards play an important role, we have no doubt that the future of microarray image compression depends on special-purpose, dedicated techniques.

REFERENCES

- S. K. Moore, "Making chips to probe genes," *IEEE SpectrumMag.*, vol. 38, no. 3, pp. 54–60, Mar. 2001.
- [2] R. Jörnsten, W. Wang, B. Yu, and K. Ramchandran, "Microarray image compression: SLOCO and the effect of information loss," *Signal Process.*, vol. 83, pp. 859–869, 2003.
- [3] Information Technology—JPEG 2000 Image Coding System, ISO/IEC Standard 15 444-1, 2000.
- [4] D. S. Taubman and M. W. Marcellin, JPEG 2000: Image Compression Fundamentals, Standards and Practice. Norwell, MA: Kluwer Academic, 2002.
- Information Technology—Coded Representation of Picture and Audio Information—Progressive Bi-Level Image Compression, ISO/IEC Standard 11 544, Mar. 1993.
- [6] Information Technology—Lossless and Near-Lossless Compression of Continuous-Tone Still Images, ISO/IEC Standard 14 495-1, 1999.
- [7] J. Hua, Z. Xiong, Q. Wu, and K. Castleman, "Fast segmentation and lossy-to-lossless compression of DNA microarray images," presented at the Workshop Genomic Signal Processing and Statistics, GENSIPS, Raleigh, NC, Oct. 2002.
- [8] N. Faramarzpour, S. Shirani, and J. Bondy, "Lossless DNA microarray image compression," in *Proc. 37th Asilomar Conf. Signals, Systems, and Computers*, vol. 2, Nov. 2003, pp. 1501–1504.
- [9] S. Lonardi and Y. Luo, "Gridding and compression of microarray images," presented at the *IEEE Computer Society Bioinformatics Conf.*, (CSB-2004), Stanford, CA, Aug. 2004.

Motion Artifact Reduction in Photoplethysmography Using Independent Component Analysis

Byung S. Kim and Sun K. Yoo*

Abstract—Removing the motion artifacts from measured photoplethysmography (PPG) signals is one of the important issues to be tackled for the accurate measurement of arterial oxygen saturation during movement. In this paper, the motion artifacts were reduced by exploiting the quasi-periodicity of the PPG signal and the independence between the PPG and the motion artifact signals. The combination of independent component analysis and block interleaving with low-pass filtering can reduce the motion artifacts under the condition of general dual-wavelength measurement. Experiments with synthetic and real data were performed to demonstrate the efficacy of the proposed algorithm.

Index Terms—Block interleaving, ICA, motion artifact, photoplethysmography.

I. INTRODUCTION

Photoplethysmography (PPG) is an electro-optic technique to measure the pulse wave of blood vessels. In pulse oximeter, the measuring apparatus for PPG [1], motion artifacts can limit the accuracy of the measured PPG signal during movement. Particularly, the motion artifacts cannot be easily managed because of the frequency overlapping

Manuscript received November 12, 2003; revised July 1, 2005. This work was supported by the Korea Health 21 R & D Project, Ministry of Health & Welfare, Republic of Korea under Grant 02-PJ3-PG6-EV08-0001. Asterisk indicates corresponding author.

B. S. Kim is with Graduate School of Biomedical Engineering, Yonsei university, Seoul 120–752, Korea.

*S. K. Yoo is with the Department of Medical Engineering, Center for Emergency Medical Informatics, Human Identification Research Center, Yonsei University College of Medicine, Seoul 120–752, Korea (e-mail: sunkyoo@yumc.yonsei.ac.kr).

Digital Object Identifier 10.1109/TBME.2005.869784

Fig. 1. ICA model for motion artifact separation.

between PPG and the motion artifact signals [2]. Since general frequency domain filtering methods can be unsuccessful, some methods have been researched to manage the motion artifacts from measured PPG signals [1], [2]. However, further research is still required to improve the performance of motion artifact rejection.

In this paper, the new motion artifact reduction method was proposed under the constraint of dual-wavelength measurement. We combined independent component analysis (ICA) and a signal enhancement preprocessor to separate the PPG signal from the motion artifact-contaminated measured signals. Experiments with synthetic and real data were performed to demonstrate the efficacy of the proposed algorithm.

II. MOTION ARTIFACT REDUCTION

The motion artifact reduction method, consisting of the preprocessor and the ICA, is newly designed based on the quasi-periodicity of PPG signal and the independence between the PPG and the motion artifact signals. The preprocessor enhances the PPG component from measured signal and then the ICA separates the PPG signal from preprocessed signal. The preprocessor consists of period detection, block interleaving, low-pass filtering, and block de-interleaving. In particular, the ICA model with two independent sources is considered to complement the popular dual-wavelength optical probe.

A. ICA Model for Motion Artifact Separation

The PPG and motion artifact signal sources can be assumed to be independent of each other, since the heart pulsation for the PPG signal has little correlation with the physical movement for the motion artifact signal. As shown in Fig. 1, two measured signals (\mathbf{X}), can be modeled as the linear mixture of motion artifact and PPG signal sources (\mathbf{S}) with an unknown mixing matrix (\mathbf{A}), if they are independent

$$\mathbf{X} = \mathbf{AS}.\tag{1}$$

The unknown **A** and the unknown **S** can be estimated from the measured **X** (motion artifact contaminated signals) by ICA. The separated sources **U** (= **S**), the PPG signal and the motion artifact signal, can be obtained by estimated **W** (= \mathbf{A}^{-1}). The **W** can be estimated by a fast ICA algorithm [3], [4]. In other words, the PPG source separation achieves the motion artifact reduction.

However, the actual number of independent sources contained in the measured \mathbf{X} can be more than two. The motion artifact signal is postulated as the complex combination of multiple sources [2]. In addition to the motion artifacts, other noise can be added to \mathbf{X} [1]. In order to separate PPG from multiple sources using the ICA model for two independent sources, the preprocessor should be employed to suppress noise in measured \mathbf{X} , which in turn enhances the PPG signal comparing with other noise sources, before applying the ICA model.

B. Preprocessor for PPG Signal Enhancement

In order to remove noise without the deterioration of the PPG signal, we exploited the quasi-periodicity of the PPG signal. The PPG signal