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Motivation

I Kernel PCA provides an analytical solution to nonlinear
PCA. But. . .

I What do the projections mean (in input space)?

I Is Kernel PCA better than (linear) PCA? If so, Why?
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Cost function of PCA and Kernel PCA

I PCA cost function:

J(w) = wT E
{

xxT
}

w − λ(wT w − 1). (1)

I Kernel PCA cost function:

J(w) = wT E
{
Φ(x)Φ(x)T

}
w − λ(wT w − 1). (2)
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Kernel PCA in feature space

I C = E
{
Φ(x)Φ(x)T }

is the covariance matrix of the vectors
in the feature space;

I Solutions are the same as the eigenvalue problem

Cw = λw. (3)

I But solving (3) is complicated. Kernel PCA provides a
workaround for this.

Theorem
Kernel PCA is simply PCA applied in the feature space!
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Rényi’s quadratic entropy and Information Potential

I Rényi’s quadratic entropy is defined, for a r.v. x with pdf
f (x), as

HR2(x) = − log
∫ ∞

−∞
f 2(x)dx . (4)

I For optimization purposes is simpler to work with the
argument of the logarithm,

V (x) =

∫ ∞

−∞
f 2(x)dx = E {f (x)} , (5)

named Information Potential.
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Estimating the Information Potential directly from data

I First, use Parzen windowing to state a pdf estimate in
terms of the data

f̂ (x) =
1
N

N∑
i=1

κσ/
√

2(x, xi). (6)

I Substituting (6) in (5) yields

V̂ (x) =
1

N2

N∑
i=1

N∑
j=1

κσ(xi , xj). (7)

I There is no approximation involved in this substitution!
I No need to explicitly estimate the pdf.

António Paiva, Jian-Wu Xu and José Príncipe Computational NeuroEngineering Laboratory, University of Florida



Introduction Understanding Kernel PCA projections in input space Conclusions

Estimating the Information Potential directly from data

I First, use Parzen windowing to state a pdf estimate in
terms of the data

f̂ (x) =
1
N

N∑
i=1

κσ/
√

2(x, xi). (6)

I Substituting (6) in (5) yields

V̂ (x) =
1

N2

N∑
i=1

N∑
j=1

κσ(xi , xj). (7)

I There is no approximation involved in this substitution!
I No need to explicitly estimate the pdf.

António Paiva, Jian-Wu Xu and José Príncipe Computational NeuroEngineering Laboratory, University of Florida



Introduction Understanding Kernel PCA projections in input space Conclusions

Outline

Introduction
Motivation
Cost function of Kernel PCA
Information-Theoretic Learning concepts

Understanding Kernel PCA projections in input space

Conclusions

António Paiva, Jian-Wu Xu and José Príncipe Computational NeuroEngineering Laboratory, University of Florida



Introduction Understanding Kernel PCA projections in input space Conclusions

Information potential in the feature space

I Using the kernel trick,

κσ(xi , xj) =
〈
Φ(xi),Φ(xj)

〉
,

we can rewrite the information potential as

V̂ (x) =
1

N2

N∑
i=1

N∑
j=1

〈
Φ(xi),Φ(xj)

〉
=

〈
1
N

N∑
i=1

Φ(xi),
1
N

N∑
j=1

Φ(xj)

〉
=‖ µΦ ‖2, (8)

where µΦ is the mean of the feature vectors.
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Variance measured in the feature space

I The variance of the vectors in the feature space is

var(Φ(x)) = E
{
Φ(x)T Φ(x)

}
− E {Φ(x)}T E {Φ(x)}

= E {κ(x, x)} − V (x), (9)

where:
I E {κ(x, x)} is the maximum value of the information

potential;
I E {Φ(x)}T E {Φ(x)} is the information potential of x , V (x),

as shown previously.
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Example
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I Generated 100 samples
from 2-D multimodal
Gaussian distribution.

I Plot the contours of
constant projection.

I Used MLP (2-4-1) for
minimization of
information potential.

I Notice dependence on
the Kernel PCA solution
on the kernel size, and
different solution due to
different basis functions.
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Conclusions

I Reviewing:
I Kernel PCA finds projections of maximum variance in

feature space.

I From (9) (variance of the feature vectors), this implies the
minimization of the information potential V (x).

I Information potential is inversely proportional to the entropy
in input space.

Theorem
Kernel PCA finds the principal components (basis) for
projections with maximum entropy.
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