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Abstract In this paper we describe a general purpose, graglistem that both reacts and diffuses, reaching (under certain
ics processing unit (GP-GPU)-based approach for solvingcumstances) a dynamic equilibrium where a stable spot-
partial differential equations (PDESs) within advection-reatiike pattern forms. Turing’s spot pattern has been widely
diffusion models. The GP-GPU-based approach provideseplicated because of its simplicity and ease of implementa-
platform for solving PDEs in parallel and can thus signiftion. Over the years, this work has been expanded in a vari-
icantly reduce solution times over traditional CPU impleety of fields by Belousov, Prigogine, Zhabotinsky, Mienhart,
mentations. This allows for a more efficient exploration déray-Scott, FitzHugh-Nagumo, and many others [9].

various advection-reaction-diffusion models, as well as, the Our goal in studying advection-reaction-diffusion mod-
parameters that govern them. Although the GPU does i#is is to create spatio-temporal patterns that can be used for
pose limitations on the size and accuracy of computationsxture synthesis [24] and the visualization of vector fields
the PDEs describing the advection-reaction-diffusion moff3]. We also want to create a system that can be used by
els of interest to us fit comfortably within these constraintshemists in their analysis of reaction-diffusion models, such
Furthermore, the GPU technology continues to rapidly ims those being investigated in [32]. Figure (1) provides ex-
crease in speed, memory, and precision, thus applying thasgples of some of the patterns formed using reaction-diffusion
techniques to larger systems should be possible in the foedels that meet these goals. Our research focuses on a class
ture. We chose to solve the PDEs using two numerical apf-advection-reaction-diffusion models that can be computed
proaches: for the diffusion, a first-order explicit forward Eudsing finite difference techniques, and that can also be solved
ler solution and a semi-implicit second order Crank-Nicholssing relatively simple first and second order numerical inte-
solution; and, for the advection and reaction, a first-order eyration techniques, such as a forward-Euler or Crank-Nicholson.
plicit solution.

The goal of this work is to provide motivation and guid-
ance to the application scientist interested in exploring t
use of the GP-GPU computational framework in the cours
of their research. In this paper, we present a rigorous cor
parison of our GPU-based advection-reaction-diffusion coc
model with a CPU-based analog, finding that the GPU mod
out-performs the CPU implementation in one-to-one con
parisons.

Fig. 1 Three examples of reaction-diffusion patterns for textym-
X thesis (left), vector field visualization (center), and lvear chemical
1 Introduction dynamics (right).

Advection-reaction-diffusion has been widely applied to solve o ) )
transport chemistry problems in scientific disciplines rang- There are numerous characteristics of the advection-reaction-
ing from atmospheric studies [28], through medical scienééfusions models that make analysis difficult. One such prop-
[29], to chemo-taxis [12]. Turing’s original paper publishe@ty is the nonlinearity of the reaction functions, which cause

in 1952, “The chemical theory of morphogenesis”, is th@e tuning of the parameter values that drive the models to-

best-known discussion [27]. In this paper, Turing describegv@rd stable pattern formation difficult. Another challenging
characteristic is the sensitivity of the numerical techniques

Scientific Computing and Imaging Institute, University ofad. E- these tunable parameters. For instance, what begins as a sta-
mail: {allen,miriah,crj,kirby}t @sci.utah.edu ble numerical integration may itself become unstable, forc-
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ing the researcher to restart the simulation using differeihie graphics pipeline altogether. However, at the time &f thi
integration parameters. Even when a researcher has sucosssing, these new languages are either not publicly avail-
fully adjusted all of the necessary parameters, solving thble (Scout), are experimental (Brook and Shallows), or are
associated PDEs can be time consuming. All of these chab longer being supported and being replaced with a com-
lenges taken together have led us to seek a system that midircial product (Sh). There is also NVIDIAs recently an-
allow a researcher to easily change parameters and quiaktyunced compute unified device architecture (CUDA) tech-
solve a series of PDEs in order to more effectively ablat nology, which provides a “C” like development environment
if questions. [3].

To create an interactive advection-reaction-diffusion sys- Another drawback to using the GPU for general purpose
tem, our research focuses on significantly reducing the PPEbcessing is the limited memory and the floating point pre-
solution time. Researchers have traditionally taken advaision currently available on the hardware. Today's com-
tage of the finite difference discretization to solve PDEs imodity level GPUs have at most 512MB of memory and
one of two ways in order to achieve such computational a@nly support up to 32-bit non-IEEE floating point precision
celerations: either in parallel on multiple processors usinigta (64 bit precision has been announced by some manufac-
the message passing interface (MPI) or parallel compiletsrers but is not yet available). While these constraints make
such as F90; or through multi-threaded methods on shathd GPU not yet practical for solving large-scale, highly pre-
memory architectures. cise engineering simulations, the problems typically inves-
tigated by scientists exploring advection-reaction-diffusion
models, such as [32], fit well within the current GPU ca-
pabilities. These computations provide stable solutions in
the Lyapunov-sense [25] — that is, under small amounts of

ﬁl%l_se the patterns remain the same. Also, advection-reaction-

1.1 Graphics Processing Units for General Processing

More recently, researchers seeking computational accel
tions have turned to Graphic Processing Units (GPUS). Si
ilar to the math co-processors of yesterday, GPUs are s
cialized add-on hardware that can be used to accelerate
cific graphics-related operations. GPUs are parallelized aﬁd
currently operate on up to 128 single-instruction-multipl ¢e
data (SIMD) instructions (the exact number is proprietar
providing a parallel desktop work environment for users
Linux, OS X, and Windows. Furthermore, the speed increa\%
2

usion problems are second-order PDEs, making them pro-

oetypical of parabolic (diffusion dominant) and hyperbolic
dvection dominant) PDEs.

Thus, advection-reaction-diffusion problems provide an
al test bed for comparing and contrasting CPU- and GPU-
ased implementations for real-world scientific problems.
e computational experiments described in this paper also
vide an indication of the future possibilities for using

of each new generation of GPUs is out-pacing Moore’s La Us for Iarge-'scale sqlentlflc computing as the evolution
one standard measure of performance increase of CPUs. Pl GPU continues to increase in speed, memory, and pre-
reasons have led GPUs to become popular for general paf&:°™
lel computing [19].

The conveniences and advantages of using a GPU, how-
ever, do not come without a cost. GPUs require research#rg Related Work
to think outside their normal paradigms because the hard-
ware is optimized specifically for computer graphics ope review of the literature shows that among the first to ex-
ations rather than for general purpose processing. Thus,pkre the use of GP-GPUs for advection were Weiskopf et
searchers using GPUs for general processing (GP-GPU) ralisf30], while some of the earliest work computing non-
understand the graphics processing pipeline (i.e. Open@ear diffusion on a GPU was proposed by Strzodka and
[31]), and how to adapt it for general processing [19]. Rumpf [26]. Harris et al. [13] presents a method for solving

The GPU further differs from the math co-processor iIRDEs using GP-GPUs, including a reaction-diffusion sys-
that it works autonomously from the CPU. As such, the dattam that utilizes an explicit Euler scheme requiring one pass
must be packaged up and specialized computational alger data dimension. Lefohn et al. [17] builds on this ap-
rithms written before shipping these pieces off to the GPpfoach for solving PDEs associated with level sets. Kruger
for processing. Although there exists high level coding laet al. [16] and Bolz et al. [7] propose more general ma-
guages that can help in these tasks, such as the OpernfBLsolvers, ranging from sparse to conjugate gradient meth-
shading language [4], Cg (C for graphics) [10], and Direct3dds, applying the solvers to simple Navier-Stokes simula-
HLSL [2], a graphics APl must still be used for handlindions and other examples. The closest related work to our
the data, such as OpenGL [31] or Direct3D. For our implewn is that of Goodnight et al. [11], who implement a multi-
mentation we have chosen to use the OpenGL and Cg ABI&l solver while discussing various implementation strate-
because they offer portability to multiple platforms, unlikgies, including a cursorary comparison of their GPU imple-
Direct3D which is available only under Windows. At thementation with a CPU analog. Our work combines aspects
same time, there has been considerable research into streafneach of these proposed ideas to create PDE solvers for
ing programming languages for the GPU, such as Brook [Hdvection-reaction-diffusion systems using GPUs, while at
Scout [21], Sh [20], and Shallows [5] that attempt to hidéhne same time, preforming a rigorous one-to-one compari-
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son between the CPU and GPU implementations for scien-
tific applications — these one-to-one comparisons are the
main contribution of our work.

2 CPU and GPU Pipédlines

We define the CPU computational pipeline for solving adveetio
reaction-diffusion problems to be comprised of five distinct
componentsarrays computational boundarigescattering
of data to processorspmputational kerneJsandmemory
Each of these components can be mapped one-for-one into
the GPU graphics pipeline @sxtures geometryrasteriza-
tion, fragment programsand theframebuffe— these com-
ponents form the basic building blocks for GP-GPU compu-
tations. Details on the complete OpenGL graphics pipeline
can be found in [31], and further details on GP-GPU basics
can be found in [19] and [22].

In the following sections we describe how to implement
a simple CPU program on the GPU, where data defined in a
simple array (e.g. a texture) with a computational boundary
(e.g. the geometry) is scattered to the processors (e.g. raster-
ized) and operated on using a computational kernel (e.g. a
fragment program), with the results stored in memory (e.g.
the framebuffer). The pipeline is illustrated in Figure (2). In-
cluded in Figure (2) is a branch showing where the fragment
program is loaded into the pipeline. There are several other
minor parts of the graphics pipeline and fragment programs,
such the initialization process, that will not be discussed i
this paper, but are covered in detail in [10].
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Fig. 2 Layout of the CPU computational pipeline in terms of the GRapdics pipeline, where data defined in a simple array (e.tpxdure)
over a computational boundary (e.g. the geometry) is seadtt the processors (e.g. rasterized) and operated orgusitomputational kernel
(e.g. a fragment program), with the results stored in menfery. the framebuffer). This example shows how a 4 pipe GRUWeaised to invert

the color of a texture.
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2.1 Arrays and Textures N

T 1
Texturesare the main memory data structures for GP-GPU 01"
applications, which store the values that would otherwise 1.1]
populate arrays in a CPU implementation. Although tradi- ,N) [ N,N)

tional graphics applications use textures to store 2D images,
these data structures can be generalized as a one, two, or
three dimensional array of data. Each element in the array
is known as aexel (texture element), and each texel can
store up to four values (representing the four color elements
used when storing an image — red, green, blue, and alpha,
also known as RGBA). Each of these values can be stored [0,0] (1,01
as a single byte, or up to a 32-bit floating point value. When a .
accessing texeldexture coordinatesire used in a similiar (0,0) (N,0)
fashion as array indices in a CPU implementation. Textures

coordinates, however, are floating point numbers that have

b_een (typically) normgllz_ed from zero to one. A_‘S will bEi':ig. 3 Example of mapping a texture onto geometry with the same
discussed, the normalization of the texture coordinates play& so that computations occur over the entire texture.gEmmetry

an important roll in the implementation the boundary condkertices (0,0), (N,0), (N,N), and (0,N) are mapped to themalized

tions. texture coordinates [0,0], [1,0], [1,1], and [0,1] respectly.
For our GP-GPU implementation we choose to use four
element (RGBA), 2D floating point textures throughout for N

reading and writing data, and also for representing the finite . '
difference discretization of the domain.

2.2 Computational Boundary and Geometry

Textures cannot be used alone and must be associated with (05021~ 01,021
somegeometry just as a painter needs a frame (geometry) (0,N/2) (N/2,N/2)
on which they can stretch their canvas (texture) for painting.
As such, a quadrilateral is analogous to the boundary of the
discrete computational domain of a CPU application. Geom-

etry is generated through the specificationvefticesthat [0.5:0] [1,0]
define a polygonal object. A mapping that associates parts | AN
of the texture with regions of the geometry is then imple- (0,0 (N/2,0)

mented by associating texture coordinates with each vertex.
For example, when using all of a 2D texture for computa-
tion, the texture can be applied to a quadrilateral of the same . .
. - . - 10. 4 Example of mapping a texture onto geometry that is one quarte
Size, matchl_ng each corner texture Coord'r_‘ate with a, Vertl‘ﬁg size so that computations occur only over the lower rigrad-
of the quadrilateral. Furthermore, a normalized mapping bant of the texture. The geometry vertices (0,0), (N/2,8)2(N/2),
tween the quadrilateral and the texture would be from zexod (0,N/2) are mapped to the normalized texture coordmaes, 0],
This one-to-one mapping is not always used, as it is of-
ten desirable to break the computational domain into a series
of sub-domains. This approach is useful for applying Neg-3 Scattering and Rasterization
mann boundary conditions when performing relaxation. For
example, if the computation was to occur on the lower rigince the four texture coordinates and geometry have been
guadrant of a texture, the quadrilateral would be one quarsgrecified they are nexasterizedby the GPU. Rasterization
the size with the normalized texture coordinates extendiirgerpolates the values across the geometry, producing a set
from one half to one, as shown in Figure (4). of fragments For example, each fragment is assigned their
Worth noting in a discussion of the geometry is the usavn set of texture corrdinates based on the texture coordi-
the GPU'’s vertex processors, which transform the geometrgtes initally specified at the four corners. Each fragment
before associating a texture with it. Although the vertex proepresents a singfgxel (picture element) and includes prop-
cessors work in parallel, and may in some cases increasedhees of the geometry such as the 3D position and texture
efficiency of a GP-GPU implementation, we have not fountbordinates as above but also the color. The fragments are
their usage to be particularly helpful in our work, and as suthen scattered to the GPU processors similarly to how data
only mention them in passing. might be scattered to multiple CPUs.
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2.4 Computational Kernels and Fragment Programs as short fragment programs and used when performing an
asymmetrical map between the geometry and a texture. For
Fragment programsre the algorithmic steps that are pelinstance, if the geometry is half the size of the texture and a
formed in parallel on each fragment in a single instructidhx 2 weighted linear average filter is specified in the frag-
multiple data (SIMD) fashion, equivalent to the computanent program, then the output written to the framebuffer
tional kernels within the inner loops of a CPU progranwill be one quarter the original size (Figure (5)). By repeat-
However, fragment programs have some limitations not ieely halving the geometry over multiple passes, the output
herent to a CPU application. For example, global scope doefl eventually be reduced to a single value that represents
not exist, thus all data necessary for the computation mtise filtered value of all the data stored in the original texture.
be passed to the fragment program in much the same m#rile this description assumes that the domain is square and
ner one would pass-by-value data to a third party librargn integer power of two, this need not be the case. The re-
Also, fragments have an implicit destination associated wittuction technique can be used on arbitrarily sized domains
them that cannot be modified. That is, a fragment with awith appropriately sized filters.
ray indices(i, j) will be written to location(i, j). This may
appear to be a computational limitation, but in practice we
have found it is rarely necessary to use different indices for

the source and destination. ’\N
For our work we utilize NVIDIAs high level shading \

language Cg (C for graphics) [10]. NVIDIA provides APIs ' 5

. . [0,1] o?

for loading the Cg fragment programs from the main pro- . R

gram, as well as a compiler for creating the graphics hard- O.N/2) ¢

ware assembly language. Using a high level language such !

as Cg greatly aids in the development of GP-GPU applica-

tions as the programming model is very similar to the well

known C paradigm. An example fragment program, imple-

mented in Cg, can be found in the Appendix.

(N/2,0)

2.5 Memory and Framebuffer

The output destination of a fragment program is fitaene-

buffer. The data stored in the framebuffer can either be disig. 5 Example of mapping a NxN texture onto smaller geometry, re-
played on a monitor, or it can be accessed as a texture tiating the texture into a result that is half the texturezesiThe geom-
has beemttachedo a data structure calledfim@mebuffer ob- etry vertices (0,0), (N/2,0), (N/2,N/2), and (0,N/2) arepped to the
ject— this texture can then be used as the input textureﬂg)glnal'zed texture coordinates [0,0], [1.0], [1.1], and ] respec-
another fragment program. Unlike CPU memory, however, v

framebuffer objects do not suppantplacewriting of data

(e.g. the source is also the destination). Further, the GPU g q1ean operations can also be performed using the GPU's
will not write the results until all fragments have been prg;

d. The imolicati £ this for i ; ilt-in hardware occlusion query. We have chosen to rely
cessed. The implications of this for iterative processes Syghi reqyction operations instead of this more sophisticated
as explicit solvers and relaxation are discussed later in

thod for performing Boolean operations for two reasons.
paper. First, using the occlusion query requires a deeper under-
standing of the graphics pipeline, including the use of the
depth buffer. And second, the occlusion query is single pur-
pose, only doing Boolean operations where as more general

Due to the absence of global scope on the GPU, it is r{&duction operations such and summation and Boolean are
’ )peeded.

possible to directly find, for example, the minimum or max-

imum value of the data stored in a texture — a process that

is easily implemented within the computational kernel of a

CPU program. This process of reducing the data into a single

value, known aseduction can be synthesized on the GPB GPUsfor Solving PDEs

through a series of steps that gradually contracts the data into

a single value. The GPU reduction operation is akin to tte the previous section we describe the basic CPU com-

restriction operation used in a multigrid implementation. putational pipeline and how it maps to the GPU graphics
To obtain different reduction operations — averagingpipeline. We now discuss our application of the GP-GPU

summation, greatest, least, equal, or Boolean — different flemponents to solving PDEs used for advection-reaction-

ters are specified. On the GPU, these filters are implementkffusion problems.

2.6 Global Scope and Reduction
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3.1 Problem Background

Jou
Advection-reaction-diffusion problems are first-order in timgy; +(@-L)u = F(u,v)+(0-oab)u (5)
and second-order in space PDES, representative of many parabolic
(diffusion dominant) and hyperbolic (advection dominant)-- + (a-0)v = G(u,v) + (0- g,0)v (6)
systems. We have chosen to implement on the GPU seco d- ] )
order finite differences in space and two commonly employ&herea: Q x [0,«) — R denotes a (possibly) spatially and
time discretization schemes: forward-Euler and a semi-imp@gaporally varying advection velocity, while, andoy de-
Crank-Nicholson. The reason for choosing these solvergigte symmetric positive definite, spatially inhomogeneous,
two-fold. First, these discretization methodologies providdnisotropic, diffusivity tensors farandv respectively. Both
adequate results for our advection-reaction-diffusion proy-andv are clamped to be positive values because of the
lems. And second, the properties of each of these solvers i¢sical impossibility for the concentration of either mor-
well known. This latter reason allows for a rigorous comPhogen to be negative. For more details on the stability-equi
parison of the solvers’ implementations on the CPU and tH@rium conditions, and other affects related to the particular
GPU, a task that may be unwieldy with more complicaté@action chosen, see [9].

solvers.
3.1.2 PDE Solvers

3.1.1 Advection-Reaction-Diffusion Basics In what is to follow, we will define everything in terms of the

. e ... morphogeru with the tacit assumption thawill be handled
Arguably the most popular reaction-diffusion model is thgmjjarly. For the purposes of our discussion, let us assume

one developed by Turing in 1952 [27]. This model describgs,t our two-dimensional domain of intere&, consists of
the chemical process between two morphogens within a $&square with periodic boundary conditions. In this domain,
ries of cells. Due to |nst_ab|I|t|es in the system, the MOY finite difference grid pointx;j, lies a distanceAx from
phogens both react and diffuse, changing their concentratitlohihoring grid points. For many reaction-diffusion mod-
within each cell. o elsAx is a dimensionless unit spacing. Let us discretize our
o S e g 1 1 Mg s Olove -t ) w0
phog : denotes discretization in time amd= 0, --- ,M with M be-
ing the total number of time steps, afidj) =0,---,(N—1)
du ) with N equal to the width of the (square) domain. For no-
o F(u,v) +dy0%u (1) tational simplicity, let us define" to be anN? x 1 vec-
tor containing the values of the morphogens over the grid
at time stept,, where the entries of the vector are given by
v 2 Uk N = U . . o
- G(u,v) +dyv. (2) Let A(u) and D(u) denote discretized finite difference
operators which, when acting upayreturns a second-order
These equations are solved on a two-dimensional doma#ntered approximation of the advection operator and the
Q with appropriate initial and boundary conditions, wherdiffusion operator respectively. For simple uniform isotropic
u(x,y,t) : Q x [0,00) — R andv(x,y,t) : Q x [0,00) — R are diffusion, the diffusion operator is
the morphogen concentratio’sandG are the (non-linear)
reaction functions controlling the production rateuatndyv;

2008, (1) o
andd, andd, are the positive diffusion rates. D2 j = (Wi + (Wira

For the particular chemical problem of interest to Turing + (Wi j—1+ (Wi j+1 — 4(W)ij ()
[27], F andG are defined as: while the advection operator is
F(uv) =s(uv—u—a (3) o Wi = (Wi
(u,v) =s5( ) O(u)i,j ((U)i,j+l—(u)i,j1 . (8)

For complete details on diffusion operators using inhomoge-
neous anisotropic diffusion, see [24].
The (explicit) forward-Euler finite difference system gen-

wherea and B are the decay and growth rate ofandv erated by discretizing Equations (5) and (6) is defined as:

respectively, and is the reaction rate. For our applications,

we allow the decay and growth rates, as well as the reactigh’™* — u"

rate, to vary across the domain. At
Expanding upon our previous work [23], we considegn+1 _yn

advection-reaction-diffusion systems of the form: A +AV") = G(U",V") +D(V") (10)

G(u,v) =s(B—uv) (4)

+AU") = F@U", V") +D(u") 9)
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where the reaction terms are assumed to be explicit eval@&2 GPU Implementation

tions of the morphogens at the grid points. This scheme is

first-order in time. Given the previous background we now discuss the specific
Equations of this form can be manipulated so that ti@P-GPU implementation for solving the PDEs that couple

unknowns at the next time step, namaly T andv™?, can the advection-reaction-diffusion equations.

be deduced explicitly from known information at time step

t, — no system inversion is required. The major advanta

of computational systems of this form is the ease of impl

mentation, while their major drawback is that the time st

used in the computation is not only dictated by accuracy,

also stability. Depending on the diffusivity of the syste

the stability constraint due to the diffusion number may

far more stringent than the accuracy constraint (and is m

constraining still than the CFL condition for the advectio

§921 Common Components

%?r the explicit and semi-implicit solvers there are three com-
on components. The firstis the use of four element (RGBA)
ntﬂoating point textures that hold the constants associattd wi
&%vection, reaction, and diffusion for each cell, and are used
AS input data to the fragment programs. These textures are
and reaction terms) [14] _S|m|Iar to the arrays one would useinaCPU |mplementafuon
' in that they are used to pass static data to the computational

One possible way to alleviate the diffusion number co ernel. These textures are referred to as ancillary textures
straint is to use a semi-implicit scheme [15], in which the a(?.—r ' y

vection and reaction terms are handled explicitly and the d fancil)-

fusion terms are handled implicitly. Such an approach yielg]sé e-(rjhi(ral '[Srggi?f%;igwggr?qeTjtt;t?&r?ggctgeggt:otsgmer%IeSch
the following system of equations to solve: P y

rent data value, but also the neighboring data values. Addi-
tionally, for inhomogeneous anisotropic diffusion it is nec-

a0 essary to also access the neighboring diffusivity terms.
At +A(U") = F(U'V) + (1- 6)D(U") In a CPU implementation, determining the offset posi-
+ QD(GnH) (11) tions of the neighbors at each data value can be explicitly

calculated, or preferably, retrieved from a precomputed lookup
table. This latter approach can be taken with a GPU by us-

VARnCv ing another texture as the lookup table. This texture, how-
AL +AV) = G(U" V) + (1-6)D(V) ever, then must be stored within the limited GPU memory.
+ DY) (12) Computing neighbor offsets could also be done using the

GPU's vertex processors, albeit at the cost of increased pro-

where 0< 6 < 1. Given the linearity of the discretized dif-gramming complexity. An alternative approach that we have

fusion operator, we can thus re-write the system to be solviéen is to explicitly pass the neighbor offsets into the frag-
as: ment program as multiple texture coordinates. To pass these

coordinates, multiple texture coordinates are specified at each
vertex of the geometry, with the rasterizer interpolating these
(I — 8AtD)I™™ = 0" 4 At(—A(I") 4 F (", V") coordinates for each fragment passed into the fragment pro-
+(1—6)Du") (13) gram. Ideally, the coordinates of all eight surrounding neigh-
bors would be passed, however most GPUs allow at most
four sets of texture coordinates to be specified per vertex. To
(I — BAtDW L ="+ At(—A(V") + G(U", V") bypass this hardware limitation we use three texture coordi-
+(1-6)DV"). (14) nates for specifying the neighbor positions — the lower left
neighbor, central coordinate, and the upper right neighbor.
wherel denotes theN? x N? identity operator and de- These three coordinates can be combined to fully specify all
notes theN? x N? linear finite difference diffusion operator.eight neighbors by accessing each component of the texture
With the choice of@ = 0, we regain the explicit forward- coordinates individually within a fragment program.
Euler scheme. Fo# > 0 we obtain a semi-implicit scheme.  The third common component to both solvers is the im-
Two commonly used values & are 6 = 1 (correspond- plementation of boundary conditions, such as periodic or
ing to first-order backward-Euler for viscous terms) #nd  first order Neumann (zero flux). For a CPU implementation
0.5 (corresponding to second-order Crank-Nicholson for tlitevould be necessary to adjust the boundary neighbor coor-
viscous terms) [15]. dinates in the lookup table, or to have conditional branches
The semi-implicit scheme witl® > 0.5 eliminates the for the calculations along the boundary. In a GPU implemen-
stability constraint due to the diffusion terms at the tradéation, these alterations are avoided by defining a texture to
off of requiring inversion of the linear operatdr— 6AtD). berepeatedor clamped The repeat definition requires that
The GP-GPU is amenable to several types of iterative somodulo operation be performed on the texture coordinates
lution techniques for matrix inversion, such as general reefore accessing a texel. Likewise, the clamped definition
laxation technigues (e.g. Jacobi) and hierarchical techeiquequires that a floor or ceil operation be performed if the
(e.g. multigrid). texture coordinates are outside the bounds. Thus, adjusting
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the texture definition to be repeated or clamped, perioB2.2 Explicit Solver
or Neumann boundary conditions respectively can be pre-
formed automatically by the GPU. Explicitly solving the advection-reaction-diffusion PDEs (E&gu

For a semi-implicit implementation utilizing Neumanrfions (9) and (10)) is straight forward, and requires only one
boundary conditions, however, it is well understood that eff@gment program per iteration. Moreover, because updat-
tra relaxation sweeps are required near the boundaries to @§-the values ofi andv are independent computations, they
tain ideal asymptotic convergence rates [8]. As such, oty be computed efficiently using the GPU vector arith-
semi-implicit implementation uses five different computdNetic operations. _
tional domains; one for the interior and four for the bound- The basic loop is as follows: store the required constants
aries, as shown is Figure (6). The thickness of the Neuma@§lvection, reaction, and diffusion rates) as ancillary texture
boundaries are dependent on the size of the grid. For the ¥&IU€S Tanci); store the initial morphogen values in an input
amples in this paper, the thicknesslds,(N), whereN is texture {Tping) that is attached to the framebuffer; use the
the grid edge length. Overlap of the boundaries at the c§iagment program to vector calculate (including clamping
ners adds only a negligible cost to the overall computatié® POSitive values) the advection-reaction-diffusion for both

while aiding in the convergence of the solution. morphogens; store the results in an output textdgng)
that is also attached to the framebuffer. The output texture

is then used as the input texture for the next iteration. The

process is repeated for a set number of iterations or until the
l N l user determines a stable solution has been reached. A flow

diagram of the complete process is shown in Figure (7), and
H example code can be found in the Appendix.

There is one aspect of the loop that must be expanded
upon — the use of the input and output textures used to hold
the current and next time step morphogen vallggsd and
Tpong)- IN @ CPU implementation, the new morphogen val-
ues would be written over the old values once the calcula-
tions have been completed, iip-placewriting. Previously
discussed under the definition of Framebuffer Objects, how-
ever, an input texture can not also be the output texture. As
such, two textures must be used and alternated as the in-
put and the output. This technique is commonly called ping-
ponging, and as long as an even number of iterations are
performed, the use of these two texture can be hidden from
the CPU.

There is no communication between the GPU and the
CPU other than to load the initial values and to obtain the fi-
nal results because the complete advection-reaction-diffusion
Fig. 6 Geometry domain using five quadrilaterals to obtain Neumarfi@lculation, including clamping the morphogen values to be
boundary conditions. positive, can be done in a single fragment program. This lack

of interaction greatly speeds up the computations by limit-
ing the communication between the GPU and CPU, which

Solving within a fragment program the PDEs that goveif often a bottleneck due to the limited amount of bandwidth
the advection-reaction-diffusion equations for both the efvailable.
plicit and semi-implicit form is very similar to a CPU-based
approach with two exceptions — the use of vector arithmeticy 3 semi-Implicit Solver
and swizzling [18] in Cg fragment programs. Vector arith-

metic allows for element-wise arithmetic operations to bgying the advection-reaction-diffusion PDEs with an implici
performed, while swizzling allows the element ordering tgo|yer can be, depending on one’s point of view, more inter-
be changed during vector operations. esting, or, more difficult. The GPU is amenable to several
Because the textures and framebuffer are four eleméypes of iterative solution techniques, such as relaxatian an
(RGBA) texels and pixels respectively, arithmetic operatiofserarchical techniques, all of which require multiple frag-
in the fragment program may be done on a vector basisent programs. For our implementation we have chosen to
greatly simplifying and speeding up the advection and difise relaxation in combination withl,,,, residual test [6].
fusion calculations. Although vectoring is of little use ireth As explained in detail below we also utilizeL&,,,, test to
reaction calculation where individual components of the telimit the number of relaxation steps. Each of these tests re-
ture are used, the swizzle operation can be used to optimigére a fragment program for the computation, as well as
the performance of other operations. one for a reduction operation, to obtain the result. All to-

«——N-2log,(N) —>

|ng(N) «~—>
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Initial Morphogen on. This limitation can partially be over come by using a red-

Values u and v black updating scheme, but requires conditional branches in
the fragment program to process the red, then black, passes.
This situation is further complicated on the GPU because it
"W Texture in Framebufer | is not possible to writén-place requiring a ping-pong tech-

nique to be integrated. These cumbersome restrictions do not
apply to the parallel Jacobi scheme, where intermediate val-
ues are not required and an even number of relaxation steps
can keep the texture ping-ponging hidden. Thus, the experi-
ments presented in this paper use a Jacobi updating strategy.
Although a preset number of relaxation steps can be per-
formed, it may be stopped early if the high frequency values

T Ancillary Constants

ping pong

Textures
Textures

Update are damped quickly and do not change significanly with sub-

Texture sequent relaxation. This is based onlgy,,, When testing
{1 o 10 for this on a CPU, a global variable would be set if one or
B GPU - Fragment Program more of the values have changed significantly after a relax-
g’l‘:r'r']c'ttg?p';‘:irﬁf\?; b:l[]:sv ation step. The setting of a global variable is not possible
P with GPUs, requiring the test to be performed through a re-

duction operation.
To perform the test, ahy,,, is calculated at each texel

using the current and previous value, and the difference is
then tested against a preset value to see if the value has
changed significantly. This is done as a boolean operation in
the fragment relaxation program and stored as one of each
texel's four elements. Once a relaxation step is completed,
the boolean results are sent to a reduction operation that uses
a summation filter to obtain a count of the values that have
Write to CPU changed significantly — if the count is non zero the relax-
ation step is repeated.

The overhead of performing the test after each relaxation
step, though, out weighs the benefits of stopping the relax-
Fig. 7 Flow diagram showing the basic steps taken using an expligition early. As such, we have empirically determined that
\f\,?]';fgrﬂ?g itr?e GPU. The process flow is represented with blacka ot -ming the test after every fourth to sixth relaxation step

puts are shown in gray. . .
provides a reasonable balance in performance. By not test-
ing after each iteration we are relying upon the behavior of
tal, five steps are necessary using three fragment prograifgative relaxation schemes to quickly remove the high fre-
and two reduction operations per iteration. The three fraguency error while taking many iterations to remove the low
ment programs are described in the following sections, witfequency error.
a succeeding section that summarizes the semi-implicit com- It should be noted that if theg,,, passes the residual
putation loop. test is still required insure that a satisfactory solution has
been found.

Next Iteration

Right Hand Side

Residuals and Clamping
The first fragment program vector calculates the right-hand-

side of Equations (13) and (14), storing the results in a teghe third fragment program calculates the residuals that are

ture (Trng) attached to the framebuffer. used to insure that the relaxation solution, which is an ap-
proximation, is satisfactory. This test is a two step operation
Relaxation For the first step, the square of the residual of Equations (13)

and (14) is calculated and stored as one of each texel’s four
The second fragment program performs the relaxation to adements in a separate textui.§q). For the second step,
tain a solution at the next time step. When performing relathe sum of squares of the difference is calculated using the
ation, a Gauss-Seidel updating scheme is usually preferreduction operation.
as it will typically converge twice as fast as Jacobi schemes While the residual values are being calculated, the mor-
[14]. For a Gauss-Seidel scheme to be implemented effhogen values are also clamped to positive values and stored
ciently in parallel, it is necessary to have a shared memay two of each texel's four elements in the residual texture
architecture. The GPU design, however, does not allow d@r.sig). If the residual test is passed, thgse-calculated
cess to the next values until all fragments have been operatéamped values can be used in the next iteration. Otherwise,
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the unclamped values can be further relaxed and re-test@ghesylts and Discussion
Though this pre-calulation of the clamped values results in

only a slight overall increase in efficiency (%), it demon-  \ye have used Turing’s reaction-diffusion model, which in its
strates the flexibility of using the GPU for general procesgimplest form produces a spot or stripe pattern as shown in
Ing. . _ _ Figures (9), to verify and validate our implementations. The
The entire process is repeated for a set number of iteggstem has been implemented on both the CPU and GPU
tions or until the user determines a stable solution has beégnexpncit and semi-implicit (Crank-Nicholson) Euler solu-

reached. tions with periodic boundary conditions on an Intel Xeon P4
running at 3.4Ghz with 2Gb of RAM and 2Gb swap, and a
Complete Loop NVIDIA GeForce 6800 Ultra graphics card with 256Mb of

memory using version 1.0-8178 of the NVIDIA Linux dis-

With this general description, the semi-implicit loop is aBlay driver.
follows: store the required constants (advection, reaction, For both integration schemes we discretize the grid using
and diffusion rates) as ancillary texture valugs{); store @ dimensionless unit spacing, which is the norm for reaction-
the initial morphogen values in an input textufigifg) that diffusion models. In addition, the largest time step possi-
is attached to the framebuffer; vector calculate the RHS fole with respect to stability limitations was used for each
u andv, storing the results in a textur@xy 9 attached to scheme. The diffusion stability bounds the explicit scheme,
the framebuffer object. Next, load the current morphoga¥hereas the reaction stability bounds the semi-implicit sehem
(Tping), RHS (Tru9) and the required constant®&fci)) tex- To facilitate a fair comparison, both the CPU and GPU
tures; use the relaxation fragment program to vector caldorplementations have the exact same capability. Becaese th
late the next value ofi andv and theLy,, for each; store GPU is able to use at most 32-bit floating point precision the
the results in an output textur&ng that is also attached to CPU version was also limited to machine single precision.
the framebuffer. Check thiy,,,, after every sixth iteration We further note that memory organization can effect per-
using the reduction operation. After the relaxation is confiermance. As such, contiguous memory allocation, which is
plete, calculate the residuals and clamped values storing teguired for the textures, was used for CPU memory layout.
results in a texturelfesig) attached to the framebuffer object.  In order to compare the results it is necessary to ensure
Sum the residuals using a reduction operation. If the resitiat the solutions obtained are the same in all cases, or at
ual is too large the relaxation process is repeated until le@st reach a preset stopping criteria typically based upon
residual is small enough or is no longer decreasing. If tledifference measure. Quantitatively comparing the solution
residual test passes, use the clamped values and repeatabelts, however, is not possible for reaction-diffusion mod-
entire process for the next iteration. A flow diagram of thels because the equilibrium reached is dynamic; meaning
complete process is shown in Figure (8). that although a stable pattern forms, the system continues
There is one aspect of the process that deserves specialhange. This problem is further compounded by the dif-
attention. In order take advantage of the arithmetic vect@rences in the implementation of the floating point standard
processing on a GPU, our implementation requires that bdtétween the CPU and GPU, which creates slightly different
u andv be operated on in a lock step manner. That is, $blutions. Thus, we use a criteria based strictly on the num-
one requires further relaxation or has large residuals it is ther of iterations, such that each solution has the same over-
same as if both failed. As a result, both morphogens will [adl integration time whether the technique used was explicit
processed with the same number of relaxation steps, whiwhimplicit, or performed on a CPU or GPU — see Table
in some cases will result in an over relaxation. It is possl-for the integration times. In Figure (10) we show a com-
ble, however, to operate on each separately through the pagson of the results for the four solution techniques that
of conditional branches, but the cost of doing so in fragmehave each reached a dynamic equilibrium; each of the so-
programs out weighs the cost of the over relaxation computions are equivalent in the Lyapunov-sense. Furthermore,
tations. Conversely, a staggered approach which would deder very close examination is it difficult to visually dis-
done on a CPU can be used. In this casendv are stored cern the differences between the CPU and GPU solutions.
and operated on separately — in our experience this resiie thus conclude that each of the solvers have reached an
in a 25% to 33% increase in computational time without argpproximately equal solution.
quantitative difference in the solution. As such, the results Although the implementations and the compilers are op-
presented in this paper utilize the more efficient lock stejmized, the times we report are not the absolute best pos-
approach for computing andv. sible. This is because the framework was developed as an
The above point highlights that when mapping algorithrapplication to explore various advection-reaction-diffusion
onto the GPU, implementing the CPU version exactly mayodels rather than to specifically compute one model. We
not always be the most algorithmically efficient scheme. Armklieve, however, that even if the computations were stream-
for some algorithms, such as a Gauss-Seidel updating schiameé, further, the relative speedups would not change signif-
the inefficiencies may preclude its use on the GPU. Thesantly. As such, the results give a good indication of the
examples illustrate how the GPU architecture can often diwewer of using the GPU for general processing on a practi-
tate the implementation. cal level.
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Table (1) shows the relative compute times for both thed memory available, GPUs have only a fixed amount of
CPU and GPU implementations using a 8822 grid. For memory. Thus, for optimal GPU performance it is necessary
all cases the total integration time is the same — 25000 séz-work within these strict memory bounds. In Figure (11)
onds — with an explicit time step of ® seconds for 50000 we show the results of the computation time as a function of
iterations, and an implicit time step of Bseconds for 2000 grid width for both the forward Euler and Crank-Nicholson
iterations. The b seconds and 12 seconds represent thamplementations. The computation time is approximatelydgatic
largest possible time steps for maintaining stability requirevith grid width, and large (102 grids are accommodated
ments. In the case of the explicit solution, the time stepvgthout a loss in performance.
bound by the diffusion, whereas with the semi-implicit solu- The next comparison is the ratio of the CPU and GPU
tion, the time step was bound by the reaction. solution times as a function of the grid width using both ex-

As one would expect, the GPU implementations are fagudicit and semi-implicit implementations. Shown in Figure
than the CPU implementations, ranging from approximate{$2), it is readily apparent that there is a consistently greater
5.0 to 117 times faster for semi-implicit and explicit solu-speed up when using an explicit solution. Furthermore, the
tions respectively. This is most evident when comparing tlspeed up ratio of the explicit solution increases with the grid
explicitimplementations where, unlike the semi-implicitimwidth at a greater rate than the semi-implicit solution due to
plementations, a single fragment program is used, resultifige increase in the number of relaxations required to smooth
in less overhead and a greater overall speed up. the fine detail in the semi-implicit solution over the larger

When comparing the CPU and GPU explicit and senm@ids. We expect that the use of hierarchical solutions, such
implicit implementations, a greater speed up is realized @8 multi-grid, will cause the relative speed ups between the
the CPU than the GPU, 3versus M respectively. This dif- explicit and implicit solutions to remain approximately con-
ference is attributed to the overhead of using multiple fragtant.
ment programs and a specialized reduction operation on theFinally, we compare the ratio of the explicit and semi-
GPU. On the CPU there is no need for an explicit reduignplicit times as a function of grid width using GPU and
tion operation because there is global scope and such €U implementations as shown in Figure (13). The rela-
culations can be done as part of the relaxation and residtie¢ speed ups are similar across the grid width, with the
operations. CPU speed up being greater than the associated GPU speed

Finally, the speed of the GPU implementations makesyp- This is again attributed to the need for multiple frag-
practical to visually study the affects of advection becau#§&ent programs and a separate reduction operation on the
of the near real time images obtained during the simulatidaPU when using semi-implicitimplementations. In fact, this
When visually studying the advection, it is preferable to ugverhead is so great on the GPU for the semi-implicit solu-
the explicit solution because more intermediate views diens that much of the computational benefits are lost. This
available for visualization, resulting in smoother motioar F Shows that not only must the problem spéten the GPU,
example, when displaying the results after every i@ra- but the implementation must alstign with the GPU archi-
tion for a 256256 grid using an explicit GPU implementatecture to achieve significant increases in the computation
tion, 6.8 frames per second can be obtained. It is possikige.
to get real time frame rates by displaying the results after In all of the experiments reported above we have ob-
every 10" iteration, which provides 22 frames per secon@erved similar trends when using Neumann boundary condi-
The overhead of this smoother visualization process, hoti@ns. As such, we conclude that the type of boundary condi-
ever, slows down the system by approximate8 Wwhen tion adds very little overhead to the overall implementation.
compared to displaying the results after everyf fi@ration.

5 Conclusions
Table1l Time, in seconds, for the four different PDE solutions of-Tur
ing’s spot pattern, along with the relative speedup for a6%22 grid. . .
The solutions use a total integration step time of 25000 rsgs;owith ,Th_e U,Se of GPUs for general purpose prqcessmg, thoth still
an explicit time step of 0.5 seconds for 50000 iterationd,@mimplicit N its infancy, has proven useful for solving the PDEs asso-

time step of 12.5 seconds for 2000 iterations. ciated with advection-reaction-diffusion models. We show
CPU GPU that both explicit and semi-implicit solutions are possible,
Forward Euler 6030 sec 27 516 sec and that good speed ups can be achieved, more so with ex-
13.3x | 1.4x plicit than semi-implicit solutions. Even with their associ

5.0x

Crank-Nicholson 1807 sec 2% 362 sec ated programming overhead, GPU implementations have a

similar structure to CPU implementations. Though global
scope is not directly available with GPU-based implemen-
tations, it can be synthesized through other native GPU op-
Another important issue is scalability. GPUs, like othegrations that mimic CPU style restriction operations. Imple-
processors, have a limited amount of memory that can be awntations of these types of operations, however, may not
cessed before explicit memory management must be udeelstraight forward to researchers without graphics program-
Unlike CPUs where there is some flexibility on the amoumbing knowledge.
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Perhaps the most surprising finding is that due to tliebecause the four GPU components presented in the paper
overhead of multiple fragment programs, the speed-ups masgs typically not updated in concert. As such, as one compo-
often associated with semi-implicit relaxation schemes ament is updated it may take time for the other components to
lost when implemented on a GPU. Though faster than CRilso utilize the newer technology.
based semi-implicit implementations, they are not signifi-
cantly greater than GPU based explicit solution. As previ-
ously noted, this shows that not only must the problem spage ck nowledgments
fit on the GPU, but the implementation must also align with

the GPU architecture. This work was supported, in part, by the DOE SciDAC Pro-
In the work presented here we use basic solvers with 2Pam and from grants from NSF, NIH, and DOE. The au-
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Fig. 8 Flow diagram showing the basic steps taken using an implicit
solver on the GPU. The process flow is represented with blecckva
while the inputs are shown in gray.
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Fig. 12 Speed up ratios between CPU and GPU solutions for square
grid widths 0f128 256, 512 and1024using an explicit (square) and
an semi-implicit (circle) implementation.
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Pseudo code that demonstrates the C++ program that is used GRth#r the explicit solver.

// Load the fragment program to be used on the GPU
cgGLBindProgram( _cg_Program );

// Enable the acillary texture
cgGLEnableTextureParameter( _cg_ConstsTex );

// Set the inputs to be the Ping Texture
cgGLSetTextureParameter( _cg_Inputs, _gl_PingTexID );

// Set the drawing (writing) to be the Pong Texture which is in FrambebufferObject 1
glDrawBuffer ( GL_COLOR_ATTACHMENT1_EXT );

// Do the drawing which invokes the fragment program
glCalllist( _gl_dl1All );

// Repeat the last three steps but this time the Pong Texture is the input and
// the Ping Texture is the output.

cgGLSetTextureParameter( _cg_Inputs, _gl_PongTexID );

glDrawBuffer ( GL_COLOR_ATTACHMENTO_EXT );

glCalllist( _gl_d1A1l );

A sample fragment program, implemented in Cg, that demonstitasesatculation of the reaction portion of the system on

the GPU.

void main(float2 texCoord0 : TEXCOORDO, // Upper left mneighbor texture coordinate
float2 texCoordl : TEXCOORD1, // Central neighbor texture coordinate
float2 texCoord2 : TEXCOORD2, // Lower right neighbor texture coordinate

uniform sampler2D inputs, // Input texture values
uniform sampler2D consts, // Constant texture values

out float4 oColor : COLOR) // Output value

// Get the current value from the input texture.
float4d ¢ = f4tex2D( inputs, texCoordl );

// Set the output to the current value.
oColor = c;

// Get constant values for this cell.
float4 c_values = f4tex2D( consts, texCoordl );

// Calculate the "Reaction" portion using float4 vector operations

// along with swizzling (eg. c.rrbb * c.ggaa).
float4 nonlinear = c.rrbb * c.ggaa * float4(1.0, -1.0, 1.0, -1.0);
float4 linear = c¢ * float4(-1.0, 0.0, -1.0, 0.0);
float4 konst = c_values.rgrg * float4(-1.0, 1.0, -1.0, 1.0);

// Add the reaction to the current value.
oColor += c_values.a * (nonlinear + linear + konst);

// Clamp the values to be positive.
if ( oColor.r < 0.0f ) oColor.r =
if ( oColor.g < 0.0f ) oColor.g =
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