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Non-periodic problems

We have considered PDE’s with periodic boundary conditions using Fourier Series.

Our main goal now is to modify our procedures appropriately for nonperiodic problems,
e.g., ones of the form,

´u
2pxq “ fpxq, up´1q “ up1q “ 0,

Our main technique to accomplish will be to approximate the solution as a polynomial.

Orthogonal polynomials are the main computational tool we’ll employ.
– For general weight functions !:

§ three-term recurrence

§ Gaussian quadrature through recurrence coefficients

– For “classical” weight functions !:
§ Sturm-Liouville operator Ñ Best L2

! convergence rates

§ Rodrigues’ formula Ñ explicit formulas for recurrence coefficients

– Classical weight functions yield Legendre, Hermite, Chebyshev, Gegenbauer, Jacobi,
and Laguerre polynomial families

Now we can address solving differential equations.
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The high-level ideas

The particular tools for solving differential equations will not change.

In particular, we’ll still use the weighted residual methods strategy:
– For (linear) stationary problems:

§ We introduce an appropriate bilinear form that yields a well-posed weak formulation for

the PDE

§ We discretize the bilinear form via Galerkin or collocation methods (or Petrov-Galerkin

methods)

– For time-dependent problems:
§ We use “strong form” Galerkin/collocation procedures

§ We discretize the bilinear form via Galerkin or collocation methods (or Petrov-Galerkin

methods)

Of particular note: all the theory we’ve covered applies quite directly, including Ceá’s
Lemma, Lax-Milgram, and stability for time-dependent problems.

A. Narayan (U. Utah – Math/SCI) Math 6630: Polynomial spectral methods, II



The high-level ideas

The particular tools for solving differential equations will not change.

In particular, we’ll still use the weighted residual methods strategy:
– For (linear) stationary problems:

§ We introduce an appropriate bilinear form that yields a well-posed weak formulation for

the PDE

§ We discretize the bilinear form via Galerkin or collocation methods (or Petrov-Galerkin

methods)

– For time-dependent problems:
§ We use “strong form” Galerkin/collocation procedures

§ We discretize the bilinear form via Galerkin or collocation methods (or Petrov-Galerkin

methods)

Of particular note: all the theory we’ve covered applies quite directly, including Ceá’s
Lemma, Lax-Milgram, and stability for time-dependent problems.

A. Narayan (U. Utah – Math/SCI) Math 6630: Polynomial spectral methods, II



The high-level ideas

The particular tools for solving differential equations will not change.

In particular, we’ll still use the weighted residual methods strategy:
– For (linear) stationary problems:

§ We introduce an appropriate bilinear form that yields a well-posed weak formulation for

the PDE

§ We discretize the bilinear form via Galerkin or collocation methods (or Petrov-Galerkin

methods)

– For time-dependent problems:
§ We use “strong form” Galerkin/collocation procedures

§ We discretize the bilinear form via Galerkin or collocation methods (or Petrov-Galerkin

methods)

Of particular note: all the theory we’ve covered applies quite directly, including Ceá’s
Lemma, Lax-Milgram, and stability for time-dependent problems.

A. Narayan (U. Utah – Math/SCI) Math 6630: Polynomial spectral methods, II



Overall types of methods

We will use either Galerkin or collocation methods. Both of these approaches require
defining a weight function !pxq.

Bilinear forms will be defined using the L
2
! inner product, and so our trial/test spaces will

be spanned by L
2
!-orthonormal polynomials p0, p1, . . ..

We will describe methods with the Galerkin/collocation label along with the name of the
basis corresponding to !. E.g., :

– A Legendre-Galerkin method is a Galerkin approach where !pxq “ 1, and we will use
Legendre polynomials as a basis for the trial/test space.

– A Chebyshev-collocation method is a collocation approach where
!pxq “ p1 ´ x

2q´1{2, and we will use Chebyshevpolynomials as a basis.
The main new (and nontrivial) issue we must contend with are boundary conditions.
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Three approaches for boundary conditions

For concreteness, we’ll consider the following ODE as an example:

´u
2pxq “ fpxq, up´1q “ up1q “ 0,

However, the procedures we describe next for handling boundary conditions apply to
essentially any type of PDE.

– Nonhomogeneous boundary conditions for linear problems: one solution is explicitly
constructed to satisfy the boundary conditions, and other is constructed to satisfy the
PDE.

– “Essential” handling of homogeneous boundary conditions: the trial basis is explicitly
constructed to satisfy the boundary conditions.

– “Natural” handling of homogeneous boundary conditions: the weak form is
constructed to weakly enforce boundary conditions.

– “Tau” handling of boundary conditions: trailing (high-frequency) cofficients are altered
to satisfy the boundary conditions

We’ll mainly describe nonhomogeneous boundary conditions and the essential boundary
conditions strategy.
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“Lifting” for non-homogeneous boundary conditions

Linearity is really nice.

Consider solving,

´u
2pxq “ fpxq, up´1q “ 3, up1q “ ´2,

One strategy to address such boundary conditions is to realize that

wpxq “ ´2
1 ` x

2
` 3

1 ´ x

2
“ ´5

2
x ` 1

2
,

satisfies the boundary conditions.

With this information, we can define

Upxq :“ upxq ´ wpxq

which implies that U satisfies the equation,

´U
2pxq “ fpxq, Up´1q “ Up1q “ 0.

One we solve this equation with homogeneous boundary conditions for U , then we simply
define

upxq “ Upxq ` wpxq.
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“Essential” treatment of boundary conditions

Because of the previous result we can, for many cases, specialize to homogeneous boundary
conditions,

´u
2pxq “ fpxq, up´1q “ up1q “ 0.

A standard Galerkin approach would utilize the trial/test space,

PN “ spantxj
ˇ̌
j “ 0, . . . , Nu,

but u P PN need not satisfy the boundary conditions.

One way to address boundary conditions is to define a space so that functions must be
from this space:

PN,0 “  
p P PN

ˇ̌
pp´1q “ 0, pp1q “ 0

(
.

The dimension of this space is dimPN,0 “ dimPN ´ 2 “ N ´ 1.

Building the boundary conditions explicitly into the approximation space is called an
essential treatment of boundary conditions.
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Essential boundary conditions

PN,0 “  
p P PN

ˇ̌
pp´1q “ 0, pp1q “ 0

(
.

For concreteness in what follows, suppose we wish to derive a Legendre-Galerkin approach.

There are two popular computational ways to realize PN,0. The first defines,

qnpxq :“ pnpxq ´ pnp´1q1 ´ x

2
´ pnp1q1 ` x

2
, n • 2,

where pn are Legendre polynomials. Thus, qnp˘1q “ 0, and we take,

PN,0 “ span
 
qn

ˇ̌
n “ 2, . . . , N

(

The second approach is similar, using instead high-degree Legendre polynomials,

rnpxq :“ pnpxq ´ �npn´1pxq ´ �npn´2pxq, n • 2,

where �n and �n are chosen to satisfy,

rnp˘1q “ 0 ùñ
ˆ

pn´1p´1q pn´2p´1q
pn´1p1q pn´2p2q

˙ ˆ
�n

�n

˙
“

ˆ
pnp´1q
pnp1q

˙
.

Finally,

PN,0 “ span
 
rn

ˇ̌
n “ 2, . . . , N

(
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A simple example

Let’s construct a Legendre-Galerkin method for,

´u
2pxq ` upxq “ fpxq, up´1q “ up1q “ 0.

To identify an appropriate bilinear form, we consider

H
1
0 pr´1, 1sq :“  

u P H
1pr´1, 1sq

ˇ̌
up˘1q “ 0

(
.

With x¨, ¨y the standard L
2 inner product on r´1, 1s and taking u, v P H

1
0 pr´1, 1sq, we

have
@´u

2
, v

D ` xu, vy “ xf, vy ùñ @
u

1
, v

1D ` xu, vy “ xf, vy .

Note that the boundary term vanishes only because v P H
1
0 .

Then the (infinite-dimensional) weak form is,

Find u P H
1
0 such that

@
u

1
, v

1D ` xu, vy “ xf, vy for all v P H
1
0

To discretize things, we’ll use the trial/test space PN,0 with basis qn. Then our scheme is

Find u P PN,0 such that
@
u

1
, v

1D ` xu, vy “ xf, vy for all v P PN,0
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Implementation

Find u P PN,0 such that
@
u

1
, v

1D “ xf, vy for all v P PN,0

This scheme can be implemented as follows:

upxq “
Nÿ

j“2

pujqjpxq,

and setting v “ qn for each n “ 2, . . . , N , we obtain a linear system for the coefficients
u “ ppujqNj“2:

pS ` Mqu “ f , f “ pfnqNn“2,

where the stiffness and mass matrices have entries, respectively,

pSqn,j “ @
q

1
n, q

1
j

D
, pMqn,j “ xqn, qjy , n, j “ 2, . . . , N.

There are two main options to compute these matrices:
– Analytical methods – use the three-term recurrence and some related properties to

compute exact expressions.
– Computational methods – use Legendre-Gauss quadrature.

§ The integrand is a polynomial of degree at most 2N , so an N ` 1-point rule is sufficient.

§ To evaluate q1
n, we need to evaluate p1

n ›Ñ differentiate the three-term recurrence to

obtain a modified recurrence relation that can evaluate p1
npxq.

In implementation, choosing qn versus rn as a basis does make a difference. E.g., choosing
rn in this case makes S diagonal.
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– Analytical methods – use the three-term recurrence and some related properties to

compute exact expressions.
– Computational methods – use Legendre-Gauss quadrature.

§ The integrand is a polynomial of degree at most 2N , so an N ` 1-point rule is sufficient.

§ To evaluate q1
n, we need to evaluate p1

n ›Ñ differentiate the three-term recurrence to

obtain a modified recurrence relation that can evaluate p1
npxq.

In implementation, choosing qn versus rn as a basis does make a difference. E.g., choosing
rn in this case makes S diagonal.
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Beyond essential boundary conditions

The previous approach works similarly for time-dependent problems.

We’ll briefly describe alternative approaches. For things like Robin/mixed boundary
conditions, e.g.,

↵up1q ` �u
1p1q “ 0, ↵,� ‰ 0,

then it’s more appropriate to “naturally” enforce boundary conditions. In particular if u, v
satisfy this condition, then via integration by parts:

@´u
2
, v

D “ @
u

1
, v

1D ´ u
1pxqvpxq

ˇ̌1
´1

“ @
u

1
, v

1D ´ u
1p1qvp1q ` . . .

“ @
u

1
, v

1D ` ↵

�
up1qvp1q ` . . . ,

where . . . corresponds to the boundary condition at x “ ´1.

Note that this bilinear form has constant (boundary) terms, but is still linear in both u and
v.

An appropriate trial/test space would not enforce any conditions essentially at x “ `1.

Instead, the scheme would enforce the condition through the bilinear form.

Such a treatment of boundary terms is a natural treatment of boundary conditions.
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“Tau” methods

Another approach to handling boundary conditions is through a “tau” approach.

The main idea: strictly enforce a boundary condition in the scheme, but remove one weak
Galerkin condition.

E.g., for our favorite problem,

´u
2pxq “ fpxq, up˘1q “ 0,

then a(n unrecommended) tau scheme would be,

Find u P PN such that
@
u

1
, v

1D ` xu, vy “ xf, vy for all v P PN´2,

along with the conditions,

up´1q “ 0, up`1q “ 0.

I.e., the PDE weak form imposes N ´ 3 conditions on expansion coefficients pun (because
dimPN´2,0 “ N ´ 3), and an additional 2 constraints on these coefficients through the
above two conditions.

One generally should not use tau methods if there are better approaches (e.g., essential
handling of boundary conditions).

However, tau methods are very useful for time-dependent problems with time-depedent
boundary conditions, e.g., up1, tq “ hptq.
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Collocation methods

If using a collocation method, e.g., Legendre-collocation, for,

´u
2pxq ` upxq “ fpxq, up´1q “ up1q “ 0,

with the strong form, then satisfying the boundary conditions in collocation form is easy if
˘1 are among our quadrature points.

Unfortunately, there are never any Gauss quadrature points lying on ˘1.

One can instead sacrifice quadrature accuracy for the freedom to place nodes at ˘1. This
results in the Gauss-Lobatto rule. In particular, this quadrature rule satisfies,

ª 1

´1
ppxq!pxqdx “

Nÿ

j“1

wjppxjq, p P P2N´3,x1 “ ´1,xN “ 1.

If we use the Legendre-Gauss-Lobatto points txjuNj“1 for collocation, along with the
Lagrange polynomial representation,

upxq “
Nÿ

j“1

uj`jpxq, `jpxkq “ �j,k,

then the scheme:
– Enforces zero PDE residual at xj for j “ 2, . . . , N ´ 1
– Sets u1 “ 0, and uN “ 0.

The inverse transform (back to orthogonal polynomial coefficient space) on the
Gauss-Lobatto points is not unitary, but it’s well-conditioned.
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