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Non-periodic problems

We have considered PDE’s with periodic boundary conditions using Fourier Series.

Our main goal now is to modify our procedures appropriately for nonperiodic problems,
e.g., ones of the form,

´u
2pxq “ fpxq, up´1q “ up1q “ 0,

Recall that to solve such (stationary) problems, we will essentially use Lax-Milgram and
Céa’s Lemma, which carry over directly to this case.

The real challenge is that we must now replace our basis with a non-periodic choice. The
most straightforward idea is to choose polynomials.

The main tools we are lacking are
– Identification of a suitable (computationally convenient) basis
– Fundamental estimates for polynomial approximation of smooth functions
– Knowledge of an appropriate quadrature/interpolation grid

These are among the concepts we’ll describe now (all in one spatial dimension).
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Approximation with polynomials, I

There are handful of fundamental polynomial approximation estimates that we can
exercise. We’ll use some standard notation:

L
8pDq :“  

u : D Ñ
ˇ̌

}u}L8 † 8(
, }u}L8 “ sup

xPD
|upxq|.

CpDq :“ tu : D Ñ u is continuous on Du , Pn :“ span
 
x
j

ˇ̌
0 § j § n

(
.

Perhaps the most well-known polynomial approximation estimate is the following:

Theorem (Weierstrass)

Assume u P Cpr´1, 1sq. Then given ✏ ° 0, there exists some n P and pn P Pn such that

}u ´ pn}
L8pr´1,1sq § ✏.

While the result above holds for more general intervals of , compactness of these intervals
is essential. The result can be extended to infinite intervals through extra assumptions.

Theorem

Assume u P Cpr0,8qq and that there is some � ° 0 such that limxÑ8 upxqe´�x “ 0.
Then for any ✏ ° 0, there exists some n P and pn P Pn such that,

›››pupxq ´ pnpxqqe´�x

›››
L8pr0,8qq

† ✏.
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Approximation with polynomials, II

Unfortunately, these estimation results are not constructive, and essentially rely on the
ability to solve the (well-posed) problem,

pn “ argmin
pPPn

}u ´ p}
L8 ,

which is quite difficult computationally.

Perhaps unsurprisingly, things are easier in L
2-type spaces. We need to introduce relevant

notation:

L
2
!pDq :“

!
u : D Ñ

ˇ̌
}u}

L2
!pDq † 8

)
, }u}2

L2
!pDq :“ xu, uy

L2
!pDq , xu, vy

L2
!pDq :“

ª

D

upxqvpxq!pxqdx,

where ! : D Ñ r0,8q is a non-negative weight function.

Through essentially the same argument as we applied for Fourier Series, the optimization
problem,

pn “ argmin
pPPn

}u ´ p}
L2

!
,

for u P L
2
! likewise has a unique solution, given by,

pn “
nÿ

j“0

puj�jpxq, puj :“ xu,�jy
L2

!
,

where t�juj is an(y) L
2
!-orthonormal basis for Pn.
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Orthogonal polynomials

The above motivates that it would be quite useful to construct a polynomial analogue for
the Fourier exponential basis e

ijx, i.e., to compute an orthogonal basis.

This is one of the main reasons to study orthogonal polynomials. (Though there are many
other reasons as well.)

The most straightforward way to define an orthogonal polynomial basis would be through a
Gram-Schmidt type approach.

Recall we define p0pxq :“ 1{b0. Subsequently:

rpkpxq “ x
k ´

k´1ÿ

j“0

A
x
k
, pj´1pxq

E

L2
!

pj´1, pk “ rpk
}rpk}

L2
!

, k • 1.

At the very least this serves as a basic theoretical definition for the sequence tpnu8
n“0.

This is also generally the approach with the least practical relevance: this is very
ill-conditioned.

To obtain better strategies we have to get (much) more technical.
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The three-term recurrence, I

One of the most fundamentally important properties of orthogonal polynomials is also one
of the most straightforward to prove.

Lemma (Three-term recurrence)

Suppose tpnun•0 is a sequence of L2
!-orthonormal polynomials with n “ deg pn.1 Then

there are constants an and bn satisfying an P and bn ° 0 such that,

xpn “ bn`1pn`1 ` anpn ` bnpn´1, n • 0,

where we define p´1 ” 0 and p0 ” 1{b0, with b
2
0 “ ≥

D
!pxqdx.

1We will always assume n “ deg pn in what follows.
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Fix n. We have that,

xpn “
n`1ÿ

j“0

cjpj , cj “ xxpn, pjy
L2

!
.

But for any k † n ´ 1, then

xxpn, pky
L2

!
“ xpn, xpky

L2
!

degpxpkq†n“ 0.
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The three-term recurrence, II

xpn “ bn`1pn`1 ` anpn ` bnpn´1, n • 0,

I.e.,

pn`1 “ 1

bn`1
px ´ anq pn ´ bn

bn`1
pn´1.

From a computational standpoint, evaluating pnpxq through the recurrence above is much
more stable than using Gram-Schmidt-type approaches.

Clearly an “ anp!q and bn “ bnp!q, but we don’t yet have a way to compute these
coefficients.

The converse of the three-term recurrence is also true: I.e., if a sequence of polynomials
tpnun•0 satisfies the three-term recurrence above with an P and bn ° 0, then tpnun is
a sequence that is orthonormal with respect to some positive-definite linear functional L.
I.e., Lppkpnq “ �kn and Lpp2nq ° 0.

This converse result is called Favard’s Theorem.
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The Christoffel-Darboux formula

A second fundamental property of orthogonal polynomials that is worth stating is the
Christoffel-Darboux formula:

Theorem

If tpnun•0 is a sequence of orthonormal polynomials with recurrence coefficients an and
bn, then for every n • 0:

nÿ

k“0

pkpxqpkpyq “ bn`1
pn`1pxqpnpyq ´ pn`1pyqpnpxq

x ´ y
, x ‰ y

nÿ

k“0

p
2
k

pxq “ bn`1
“
p

1
n`1pxqpnpxq ´ pn`1pxqp1

npxq‰
,

The proof is induction on n.

This relation may seem like an oddity, but it allows us to derive very practically useful
properties.

We won’t discuss enough to reveal its direct utility, but to hint at the importance of the
Christoffel-Darboux relation, note that Knpx, yq “ ∞

n´1
k“0 pkpxqpkpyq is a reproducing

kernel :

xpp¨q,Knp¨, yqy
L2

!
“ ppyq, p P Pn´1
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Quadrature

The next useful property of orthogonal polynomials is in obtaining useful quadrature
formula. However, what is “useful”?

In the Fourier Series case, we took equidistant points xj and uniform weights on r0, 2⇡q:

xj “ 2⇡j

p2N ` 1q , wj “ 2⇡

2N ` 1
.

We showed that this choice of quadrature resulted in several nice properties (including
stable interpolation).

But what was the fundamental property that made this choice so useful?

Recall that this quadrature satisfied,
ª 2⇡

0
e
ikxdx “

2N`1ÿ

m“1

wme
ikxm , |k| † 2N ` 1

It turns out that this is the property, accurate quadrature for as many basis functions as
possible, that made everything work out so nicely for Fourier Series.

(One can also show that with only 2N ` 1 points it’s not possible to integrate exactly for
|k| § 2N ` 1.)

Therefore, our first goal should be to devise polynomial quadrature with a similar goal:
integrate as many polynomials as possible.
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Polynomial quadrature, I

Given the quadrature rule,
ª

D

ppxqdx «
nÿ

j“1

wnppxnq,

our goal is to make the above equality for all p P Pm, where m should be as large as
possible.

One way to do this is via direct moment matching, which results in a system of 2n
nonlinear equations with 2n unknowns.

Note that the nonlinearity enters in the dependence on xj , and the dependence on wj is
only linear. Hence, the “hard” part of this is actually determining the nodes.

However, this is not a very practical way to proceed for even moderately large n. A more
elegant strategy is as follows: First, the node polynomial associated to a quadrature rule is
defined as,

dpxq :“
nπ

j“1

px ´ xjq

Note that the node polynomial characterizes the “hard” part of the quadrature rule.
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Polynomial quadrature, II

Our first fundamental result in polynomial quadrature rather precisely characterizes node
polynomials for accurate quadrature rules.

Theorem (Jacobi)

Let dpxq P Pn be the node polynomial for an n-point quadrature rule with nodes txjujPrns.
Let k be such that 0 § k § n. Then the following two statements are equivalent:

– There are quadrature weights twjujPrns such that,

ª

D

ppxq!pxqdx “
nÿ

j“1

wjppxjq, @ p P Pn`k´1.

– The node polynomial d satisfies,

xd, py
L2

!
“ 0, @ p P Pk´1,

which is called a quasi-orthogonality condition.

Note: taking k ° n is not possible. Hence, the optimal quadrature rule is associated to
k “ n: n quadrature points exactly integrate polynomials up to degree 2n ´ 1. This is
called a Gauss(ian) quadrature rule.
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Sketch of a portion of the proof

To see why the quasi-orthogonality condition,

xd, py
L2

!
“ 0, @ p P Pk´1,

implies a quadrature rule with a certain amount of exactness, note that any polynomial
p P Pn`k´1 can be written as,

ppxq “ dpxqqpxq ` rpxq, q P Pk´1, r P Pn´1,

where q and r are the (polynomial) quotient and remainder resulting from dividing p by d.

Now let the quadrature weights twjun
j“1 be the interpolatory weights, i.e., the weights wj

corresponding to (i) interpolating a polynomial Pn´1, and (ii) exactly integatinng this
interpolant. 2

This then implies that,
ª

D

ppxq!pxqdx “
ª

D

dpxqqpxq!pxqdx `
ª

D

rpxq!pxqdx.

The proof is completed by noting that
– The first integral is exactly zero (quasi-orthogonality of dpxq), and the quadrature rule

exactly integrates this because each xj is a root of dpxq.
– The second integral is exactly integrated by the quadrature rule since r P Pn´1.
2That these weights exist requires unisolvence of polynomial interpolation.
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Zeros of orthogonal polynomials

We have learned that in order to develop quadrature rules that are as accurate as possible
(Gaussian rules), we must find the roots of orthogonal polynomials.
(The weights are somewhat easier to obtain once we know the roots.)

Of course, such optimal quadrature rules require that the orthogonal polynomial pn has
exactly n simple roots (we needed this for interpolation unisolvence). We actually have a
stronger, much better result.

Theorem

Let tpnun•0 be a sequence of orthogonal polynomials in L
2
!pDq, where D is an interval

(possibly infinite) on the real line. Then for every n, pn has exactly n simple roots inside D.

Proof idea: if pn has r † n real-valued roots txjur
j“1 in D, then pn

±
r

j“1px ´ xjq is
single-signed on D and so must have non-zero integral, but the integral must be zero since
pn is orthogonal to every polynomial of degree r † n. A similar argument allows one to
conclude that the roots in D must be simple.
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Weights for Gaussian quadrature

We have established that Gaussian quadrature is well-posed, i.e., that for any fixed n P ,
the set of points txjun

j“1 “ p
´1
n p0q are the (unique!) nodes that ensure,

ª

D

ppxq!pxqdx “
nÿ

j“1

wjppxjq, @ p P P2n´1.

The quadrature weights wj are well-defined by interpolation unisolvence, but what are their
values?

Theorem

The n-point Gaussian quadrature weights are given by,

wj “ 1

Knpxjq , Knpxq “ Knpx, xq “
n´1ÿ

j“0

p
2
j

pxq
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We have established that Gaussian quadrature is well-posed, i.e., that for any fixed n P ,
the set of points txjun

j“1 “ p
´1
n p0q are the (unique!) nodes that ensure,

ª

D

ppxq!pxqdx “
nÿ

j“1

wjppxjq, @ p P P2n´1.

The quadrature weights wj are well-defined by interpolation unisolvence, but what are their
values?

Theorem

The n-point Gaussian quadrature weights are given by,

wj “ 1

Knpxjq , Knpxq “ Knpx, xq “
n´1ÿ

j“0

p
2
j

pxq

Here is a linear algebraic proof: define

V “
¨

˝ p0pxq p1pxq ¨ ¨ ¨ pn´1pxq
˛

‚, x “

¨

˚̊
˚̋

x1

x2

...
xn

˛

‹‹‹‚, W “ diagpw1, . . . , wnq
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We have established that Gaussian quadrature is well-posed, i.e., that for any fixed n P ,
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n p0q are the (unique!) nodes that ensure,
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nÿ

j“1
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values?

Theorem

The n-point Gaussian quadrature weights are given by,

wj “ 1

Knpxjq , Knpxq “ Knpx, xq “
n´1ÿ

j“0

p
2
j

pxq

By direct matrix multiplication:

G :“ V TWV , pGq`´1,k´1 “
nÿ

j“1

wjp`pxjqpkpxjq.

Since p`pk P P2n´1, then exactness of the Gaussian quadrature rule implies,

G “ I ùñ V TWV “ I
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Weights for Gaussian quadrature

We have established that Gaussian quadrature is well-posed, i.e., that for any fixed n P ,
the set of points txjun

j“1 “ p
´1
n p0q are the (unique!) nodes that ensure,
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D

ppxq!pxqdx “
nÿ

j“1

wjppxjq, @ p P P2n´1.

The quadrature weights wj are well-defined by interpolation unisolvence, but what are their
values?

Theorem

The n-point Gaussian quadrature weights are given by,

wj “ 1

Knpxjq , Knpxq “ Knpx, xq “
n´1ÿ

j“0

p
2
j

pxq

If we assume the weights wj are non-negative:

V TWV “ I ùñ rV :“
?
WV is unitary ùñ V V T “ W´1

Comparing diagonal entries of this final equality proves the result.
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n p0q are the (unique!) nodes that ensure,
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D

ppxq!pxqdx “
nÿ

j“1

wjppxjq, @ p P P2n´1.

The quadrature weights wj are well-defined by interpolation unisolvence, but what are their
values?

Theorem

The n-point Gaussian quadrature weights are given by,

wj “ 1

Knpxjq , Knpxq “ Knpx, xq “
n´1ÿ

j“0

p
2
j

pxq

If we assume the weights wj are non-negative:

V TWV “ I ùñ rV :“
?
WV is unitary ùñ V V T “ W´1

Comparing diagonal entries of this final equality proves the result.

The matrix rV is unitary, and hence is the analogue of the DFT in the polynomial setting:
a well-conditioned, isometric map between point values and expansion coefficients.
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Gaussian quadrature

We have established that the quadrature rule,

txjun
j“1 “ p

´1
n p0q, wj “ 1

Knpxjq ,

but we still don’t know how to compute the nodes xj .

The following fundamental observation, excercising only the three-term recurrence, is key:

xp0 “ a0p0 ` b1p1

xp1 “ b1p0 ` a1p1 ` b2p2

xp2 “ b2p1 ` a2p2 ` b3p3

...
. . .

. . .

If we truncate this at n rows and write in matrix-vector form:

xppxq “ Jppxq ` bnpnpxqen, ppxq “ pp0pxq, . . . , pn´1pxqqT ,

with en the unit vector with 1 in location n and zero elsewhere.
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The Jacobi matrix

xppxq “ Jppxq ` bnpnpxqen, ppxq “ pp0pxq, . . . , pn´1pxqqT ,

The matrix J is called the Jacobi matrix:

J :“

¨

˚̊
˚̋

a0 b1

b1 a1 b2

b2 a2 b3

. . .
. . .

˛

‹‹‹‚

Note that it is symmetric, tridiagonal, and depends only on the recurrence coefficients.

What is relevant for us is the realization that:

pnpx0q “ 0 ñ Jppx0q “ x0ppx0q,
i.e.,

p
´1
n p0q “ �pJq,

where �pJq is the spectrum of J .

Something even better is true: since xj is an eigenvalue of J with corresponding
eigenvector ppxjq, then suppose

Jv “ xjv, }v} “ 1.

Then wj “ v1, the first component of v.
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Quadrature through linear algebra

In summary, the optimal (Gaussian) quadrature rule,

ª

D

ppxq!pxqdx “
nÿ

j“1

wjppxjq, @ p P P2n´1.

has nodes txjun
j“1 and weights twjun

j“1 that can be computed by,

txjun
j“1 “ p

´1
n p0q “ �pJq,

and if V is a matrix whose columns contain unit-norm eigenvectors for J , then the weights
wj are the first row of V (first components of each eigenvector).

Of particular note: all of this requires only the recurrence coefficients an, bn.

Thus, in addition to (stable) evaluation of polynomials, the three-term recurrence gives us
a direct procedure to compute optimal quadrature (which also serves as a stable
interpolation grid).
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Classical orthogonal polynomials

There is no explicit analytic expression for recurrence coefficients for a general weight !pxq.

But orthogonal polynomials associated to certain choices of !pxq happen to be solutions to
classical types of differential equations, and this connection allows explicit determination of
the recurrence coefficients.

We begin with a more general setting of Sturm-Liouville problems:

´ d

dx

„
Qpxq!pxqdy

dx

⇢
´ �!pxqypxq “ 0,

where
– !pxq is a weight/density function,
– Qpxq is an at-most quadratic polynomial related to the boundary conditions
– � is a constant

The study of such differential equations (and their associated solutions ypxq) is rich and
deep.

For special choices of !, Q, the solutions to such equations are orthogonal polynomials,
and such families of orthogonal polynomials are classical orthogonal polynomials.

A. Narayan (U. Utah – Math/SCI) Math 6630: Polynomial spectral methods, I



Classical orthogonal polynomials

There is no explicit analytic expression for recurrence coefficients for a general weight !pxq.

But orthogonal polynomials associated to certain choices of !pxq happen to be solutions to
classical types of differential equations, and this connection allows explicit determination of
the recurrence coefficients.

We begin with a more general setting of Sturm-Liouville problems:

´ d

dx

„
Qpxq!pxqdy

dx

⇢
´ �!pxqypxq “ 0,

where
– !pxq is a weight/density function,
– Qpxq is an at-most quadratic polynomial related to the boundary conditions
– � is a constant

The study of such differential equations (and their associated solutions ypxq) is rich and
deep.

For special choices of !, Q, the solutions to such equations are orthogonal polynomials,
and such families of orthogonal polynomials are classical orthogonal polynomials.

A. Narayan (U. Utah – Math/SCI) Math 6630: Polynomial spectral methods, I



Classical orthogonal polynomials

There is no explicit analytic expression for recurrence coefficients for a general weight !pxq.

But orthogonal polynomials associated to certain choices of !pxq happen to be solutions to
classical types of differential equations, and this connection allows explicit determination of
the recurrence coefficients.

We begin with a more general setting of Sturm-Liouville problems:

´ d

dx

„
Qpxq!pxqdy

dx

⇢
´ �!pxqypxq “ 0,

where
– !pxq is a weight/density function,
– Qpxq is an at-most quadratic polynomial related to the boundary conditions
– � is a constant

The study of such differential equations (and their associated solutions ypxq) is rich and
deep.

For special choices of !, Q, the solutions to such equations are orthogonal polynomials,
and such families of orthogonal polynomials are classical orthogonal polynomials.

A. Narayan (U. Utah – Math/SCI) Math 6630: Polynomial spectral methods, I



Solutions as orthogonal polynomials

´ d

dx

„
Qpxq!pxqdy

dx

⇢
´ �!pxqypxq “ 0,

A non-trivial solution to this problem is a pair pypxq,�q. The value of � is a called an
eigenvalue, since,

Spyq “ �y, Spyq :“ ´ 1

!pxq
d

dx

„
Qpxq!pxqdy

dx

⇢
.

Note in particular that S (with appropriate boundary conditions) is a self-adjoint operator:
S “ S˚.

In addition S is positive semi-definite, so the eigenvalues � are positive.

These facts (with some additional technical details) implies that two linearly independent
solutions are orthogonal in L

2
! (and are complete in the same space).

Of interest to us is that special choices of Q an ! lead to polynomial solutions, hence they
are L

2
!-orthogonal polynomials: tpn,�nu8

n“0.
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Rodrigues’ formula

One particularly powerful consequence of Sturm-Liouville theory occurs if we assume that
! satisfies the following Pearson differential equation:

!
1pxq “ Lpxq

Qpxq!pxq,

where Lpxq is an at-most linear polynomial.

When this is the case and we have polynomial solutions pn, then the Sturm-Liouville
equation implies the following somewhat explicit formula for orthogonal polynomials, called
Rodrigues’ formula:

pnpxq9 1

!pxq
dn

dxn
rQpxqn!pxqs .

This formula, and its subsequent manipulation, allows explicit computation of the
recurrence coefficients an, bn.
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Examples

At long last, here are some examples of classical orthogonal polynomial families:

Example (Legendre polynomials)

Take !pxq ” 1 for x P r´1, 1s.
Define Qpxq “ p1 ´ xqp1 ` xq “ p1 ´ x

2q.
Then tpnun•0 satisfy a Sturm-Liouville equation with eigenvalues,

Spn “ �npn, �n “ npn ` 1q „ n
2
.

There is also a Rodrigues’ formula, and the recurrence coefficients are for n ° 0:

b0 “ 1?
2
, an “ 0, bn “ n?

4n2 ´ 1
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Examples

At long last, here are some examples of classical orthogonal polynomial families:

Example (Hermite polynomials)

Take !pxq “ e
´x

2
for x P .

Define Qpxq “ 1.

Then tpnun•0 satisfy a Sturm-Liouville equation with eigenvalues,

Spn “ �npn, �n “ 2n

There is also a Rodrigues’ formula, and the recurrence coefficients are for n ° 0:

b0 “ 1

⇡1{4 , an “ 0, bn “
c

n

2
.
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Examples

At long last, here are some examples of classical orthogonal polynomial families:

Example (Chebyshev polynomials)

Take !pxq “ p1 ´ x
2q´1{2 for x P p´1, 1q.

Define Qpxq “ p1 ´ x
2q.

Then tpnun•0 satisfy a Sturm-Liouville equation with eigenvalues,

Spn “ �npn, �n “ n
2

Again, Rodrigues’ formula provides explicit recurrence coefficients.

It is also well-known that pnpxq9 cospn arccosxq, and this connection furnishes many
useful properties, perhaps the most useful that forward- and inverse- interpolation problems
with Chebyshev polynomials can be written in terms of the DFT, and hence can be
accomplished with the fast Fourier transform.
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Examples

At long last, here are some examples of classical orthogonal polynomial families:

Example (Jacobi polynomials)

This family generalizes Legendre and Chebyshev polynomials.

Take !pxq “ p1 ´ xq↵p1 ` xq� for x P p´1, 1q and any fixed ↵,� ° ´1.

Define Qpxq “ p1 ´ x
2q.

Then tpnun•0 satisfy a Sturm-Liouville equation with eigenvalues,

Spn “ �npn, �n “ npn ` ↵ ` � ` 1q

Again, Rodrigues’ formula provides explicit recurrence coefficients.
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Examples

At long last, here are some examples of classical orthogonal polynomial families:

Example (Laguerre polynomials)

Take !pxq “ x
↵
e

´x for x P p0,8q and any fixed ↵ ° ´1.

Define Qpxq “ x.

Then tpnun•0 satisfy a Sturm-Liouville equation with eigenvalues,

Spn “ �npn, �n “ n

Again, Rodrigues’ formula provides explicit recurrence coefficients.
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Approximation with polynomials

We have covered some practical mechanics with orthogonal polynomials, in particular:
generation and quadrature, all of which boil down to knowing and manipulating recurrence
coefficients.

Back to our aim of solving differential equations: are there approximation estimates?

The precise details are far more technical than with Fourier Series, but the basic idea can
be described without these details.

We’ll describe the idea through an analogy: we showed one strategy to derive
approximation estimates with Fourier Series, but here is an alternative, essentially
equivalent method:

Consider the differential equation/eigenvalue problem,

´ d2

dx2
ypxq “ �ypxq,

with periodic boundary conditions. Let us use the notation:

Spyq “ ´ d2

dx2
y.

It is not difficult to see that,

Sp�nq “ �n�n, �npxq “ 1?
2⇡

e
inx

, �n “ n
2
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Fourier Series, revisited

To compute error estimates for Fourier Series approximation, we defined the L
2-orthogonal

projection coefficients for a function u:

pun “ xu,�ny ,
and with orthonormality and completeness of �n, we computed a bound on the tail sum,

ÿ

n°N

|pun|2,

by directly estimating how fast |pun| decays with n.

Here is a way to do this, where we hide details surrounding boundary condition
enforcement.

First observe that S is self-adjoint through integration by parts:

xSpuq,�ny “ xu,Sp�nqy .
Then we have:

|pun| “ |xu,�ny| “ 1

�n

|xu,�n�ny| “ 1

�n

|xu,Sp�nqy| “ 1

�n

|xSpuq,�ny|

“ 1

�n

ˇ̌@
u

2pxq,�n

Dˇ̌

“ 1

�n

ˇ̌
ˇzpu2q

ˇ̌
ˇ
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Fourier Series, revisited

Thus, we have

|pun| “ 1

�n

ˇ̌
ˇzpu2q

ˇ̌
ˇ ,

and so using that �n`1 ° �n along with Parseval’s equality,

ÿ

n°N

|pun|2 À 1

�
2
N

}u2}2
L2

In other words, we can repeatedly use this trick of multiplying and dividing by �n to show
that if u P H

2s
p , then

ÿ

n°N

|pun|2 À 1

�
2s
N

}up2sq}2
L2 ,

i.e.,

}u ´ uN }
L2 À 1

�
s

N

}u}
H2s „ N

´2s}u}
H2s ,

which is exactly what we concluded before.

The difference now: this works almost exactly the same way for polynomial approximation.
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Polynomial approximation via Sturm-Liouville theory

Therefore, note that with Sppnq “ �npn our Sturm-Liouville eigenpairs, then we have
essentially the same argument:

|xu, pny| “ 1

�n

|xu,Sppnqy| “ 1

�n

|xSpuq, pny| .

Note the difference here is that Spuq is not the standard second differentiation operator.
Therefore, one needs special kinds of norms to properly articulate estimates.

For example, for Legendre polynomial approximation (!pxq “ 1 for x P r´1, 1s), define,

rHs :“
!
u P L

2pr´1, 1sq
ˇ̌
u

pjq P L
2
Qj , j “ 1, . . . , s

)
,

where Qpxq “ 1 ´ x
2. Then if u P rHs,

}u ´ PNu}
L2 À N

´s}upsq}
L

2
Qs

,

where PN is the L
2-orthogonal projection onto degree-N polynomials, PN .

Of special note is that for polynomial methods, one does not in general obtain the optimal
convergence rates for measuring errors of higher derivatives.
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Spectral methods

}u ´ PNu}
L2 À N

´s}upsq}
L

2
Qs

,

Note that N
´s dependence, more explicity written out comes from the fact that,

�
s{2
N

„ N
s
,

since �n „ n
2 for Legendre polynomials.

Hence, the rate of approximation comes entirely from the regularity of u and the
asymptotic behavior of the spectrum of the Sturm-Liouville operator S.

Approximation schemes (especially in the context of differential equations) whose
approximation rates have such an origin are called spectral methods.
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On to differential equations

We have provided concrete answers to the following challenges we pointed out at the
beginning of this discussion:

– Identification of a suitable (computationally convenient) basis (orthogonal
polynomials)

– Fundamental estimates for polynomial approximation of smooth functions (spectral
method estimates)

– Knowledge of an appropriate quadrature/interpolation grid (Gaussian quadrature)
Our next goal is to exercise these tools for solving differential equations.
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