Math 6630: Numerical Solutions of Partial Differential Equations Interpolation with Fourier Series
 See Hesthaven, S. Gottlieb, and D. Gottlieb 2007, Chapters 2-3,
 Canuto et al. 2011, Chapter 2.1,
 Shen, Tang, and Wang 2011, Chapter 2

Akil Narayan ${ }^{1}$
${ }^{1}$ Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute University of Utah

March 15, 2023

THE

Fourier Series approximations

We have established that Fourier series approximations u_{N},

$$
u_{N}(x)=\sum_{|k| \leqslant N} \widehat{u}_{k} \phi_{k}(x), \quad \phi_{k}(x)=\frac{1}{\sqrt{2 \pi}} e^{i k x}, \quad \widehat{u}_{k}=\left\langle u, \phi_{k}\right\rangle
$$

have orders of convergence that depend on the smoothness of u :

$$
u \in H_{p}^{s} \quad \Longrightarrow \quad\left\|u-u_{N}\right\|_{L^{2}} \leqslant N^{-s}\|u\|_{H^{s}}
$$

I.e.,

Smoothness \Longrightarrow Compressibility

Fourier Series approximations

We have established that Fourier series approximations u_{N},

$$
u_{N}(x)=\sum_{|k| \leqslant N} \widehat{u}_{k} \phi_{k}(x), \quad \phi_{k}(x)=\frac{1}{\sqrt{2 \pi}} e^{i k x}, \quad \widehat{u}_{k}=\left\langle u, \phi_{k}\right\rangle
$$

have orders of convergence that depend on the smoothness of u :

$$
u \in H_{p}^{s} \quad \Longrightarrow \quad\left\|u-u_{N}\right\|_{L^{2}} \leqslant N^{-s}\|u\|_{H^{s}}
$$

I.e.,

$$
\text { Smoothness } \Longrightarrow \text { Compressibility }
$$

One major outstanding question is how we actually compute \widehat{u}_{k} in practice.

Quadrature

The expansion coefficients require computing an integral,

$$
\widehat{u}_{k}=\frac{1}{\sqrt{2 \pi}} \int_{0}^{2 \pi} u(x) e^{-i k x} \mathrm{~d} x
$$

which can be intractable, even if an explicit formula for u is available.

Quadrature

The expansion coefficients require computing an integral,

$$
\widehat{u}_{k}=\frac{1}{\sqrt{2 \pi}} \int_{0}^{2 \pi} u(x) e^{-i k x} \mathrm{~d} x
$$

which can be intractable, even if an explicit formula for u is available.
A standard recourse is to approximate the integral with quadrature:

$$
\frac{1}{\sqrt{2 \pi}} \int_{0}^{2 \pi} u(x) e^{-i k x} \mathrm{~d} x \approx \sum_{j=1}^{M} w_{k, j} u\left(x_{j}\right), \quad w_{k, j}=\frac{\sqrt{2 \pi}}{M} e^{-i k x_{j}}, \quad x_{j}=\frac{2 \pi(j-1)}{M}
$$

where we have made particular choices:
$-x_{j}$ are equispaced on $[0,2 \pi]$ for $j \in[M]$

- $w_{k, j}$ correspond to a uniform quadrature rule

Quadrature

The expansion coefficients require computing an integral,

$$
\widehat{u}_{k}=\frac{1}{\sqrt{2 \pi}} \int_{0}^{2 \pi} u(x) e^{-i k x} \mathrm{~d} x
$$

which can be intractable, even if an explicit formula for u is available.
A standard recourse is to approximate the integral with quadrature:

$$
\frac{1}{\sqrt{2 \pi}} \int_{0}^{2 \pi} u(x) e^{-i k x} \mathrm{~d} x \approx \sum_{j=1}^{M} w_{k, j} u\left(x_{j}\right), \quad w_{k, j}=\frac{\sqrt{2 \pi}}{M} e^{-i k x_{j}}, \quad x_{j}=\frac{2 \pi(j-1)}{M},
$$

where we have made particular choices:

- x_{j} are equispaced on $[0,2 \pi]$ for $j \in[M]$
- $w_{k, j}$ correspond to a uniform quadrature rule
- We'll also assume that $M=2 N+1$. (Quadrature nodes $=$ expansion coefficients)

Note that this is just the trapezoid rule on $[0,2 \pi]$ with periodic boundary conditions.
One can make other choices, but these choices are most convenient for discussing the major concepts surrounding theory and computation.

Quadrature as linear algebra

$$
\widehat{u}_{k} \approx \tilde{u}_{k}:=\sum_{j=1}^{M} w_{k, j} u\left(x_{j}\right), \quad w_{k, j}=\frac{\sqrt{2 \pi}}{M} e^{-i k x_{j}}, \quad x_{j}=\frac{2 \pi(j-1)}{M}
$$

We compute these coefficients for all $|k| \leqslant N$, with $M=2 N+1$.

Quadrature as linear algebra

$$
\widehat{u}_{k} \approx \widetilde{u}_{k}:=\sum_{j=1}^{M} w_{k, j} u\left(x_{j}\right), \quad w_{k, j}=\frac{\sqrt{2 \pi}}{M} e^{-i k x_{j}}, \quad x_{j}=\frac{2 \pi(j-1)}{M} .
$$

We compute these coefficients for all $|k| \leqslant N$, with $M=2 N+1$.
A simple implementation quadrature of amounts to matrix-vector algebra:

$$
\boldsymbol{u}:=\left(\begin{array}{c}
u\left(x_{1}\right) \\
u\left(x_{2}\right) \\
\vdots \\
u\left(x_{M}\right)
\end{array}\right), \quad \widetilde{\boldsymbol{u}}:=\left(\begin{array}{c}
\widetilde{u}_{-N} \\
\widetilde{u}_{-N+1} \\
\vdots \\
\widetilde{u}_{N}
\end{array}\right) \Longrightarrow \widetilde{\boldsymbol{u}}=\widetilde{\boldsymbol{V}}^{*} \boldsymbol{u},
$$

where $\tilde{\boldsymbol{V}}^{*}$ is the conjugate transpose of $\tilde{\boldsymbol{V}}$, which in turn is given by,

$$
\tilde{\boldsymbol{V}}=\sqrt{\frac{2 \pi}{M}} \boldsymbol{V}, \quad \boldsymbol{V}=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\boldsymbol{v}_{-N} & \boldsymbol{v}_{-N+1} & \cdots & \boldsymbol{v}_{N} \\
\mid & \mid & & \mid
\end{array}\right), \quad \boldsymbol{v}_{k}=\sqrt{\frac{2 \pi}{M}} \phi_{k}(\boldsymbol{x}),
$$

and $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{M}\right)^{T}$.

Duality of Fourier Series with quadrature

$$
\tilde{\boldsymbol{V}}=\sqrt{\frac{2 \pi}{M}} \boldsymbol{V}, \quad \boldsymbol{V}=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\boldsymbol{v}_{-N} & \boldsymbol{v}_{-N+1} & \cdots & \boldsymbol{v}_{N} \\
\mid & \mid & & \mid
\end{array}\right), \quad \boldsymbol{v}_{k}=\sqrt{\frac{2 \pi}{M}} \phi_{k}(\boldsymbol{x}),
$$

A somewhat straightforward computation shows:

$$
\left\langle\boldsymbol{v}_{\ell}, \boldsymbol{v}_{k}\right\rangle=\frac{1}{M} \sum_{j=1}^{M} e^{i(\ell-k) 2 \pi(j-1) / M}=\frac{1}{M} \sum_{j=0}^{M-1}\left(e^{i(\ell-k) 2 \pi / M}\right)^{j}
$$

Duality of Fourier Series with quadrature

$$
\tilde{\boldsymbol{V}}=\sqrt{\frac{2 \pi}{M}} \boldsymbol{V}, \quad \boldsymbol{V}=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\boldsymbol{v}_{-N} & \boldsymbol{v}_{-N+1} & \cdots & \boldsymbol{v}_{N} \\
\mid & \mid & & \mid
\end{array}\right), \quad \boldsymbol{v}_{k}=\sqrt{\frac{2 \pi}{M}} \phi_{k}(\boldsymbol{x}),
$$

A somewhat straightforward computation shows:

$$
\left\langle\boldsymbol{v}_{\ell}, \boldsymbol{v}_{k}\right\rangle=\frac{1}{M} \sum_{j=1}^{M} e^{i(\ell-k) 2 \pi(j-1) / M}=\frac{1}{M} \sum_{j=0}^{M-1}\left(e^{i(\ell-k) 2 \pi / M}\right)^{j}
$$

Thus, in particular if $\ell=k$ then $\left\langle\boldsymbol{v}_{\ell}, \boldsymbol{v}_{k}\right\rangle=1$, and for $\ell \neq k$ and $|\ell-k| \leqslant M-1$:

$$
\left\langle\boldsymbol{v}_{\ell}, \boldsymbol{v}_{k}\right\rangle=\frac{1}{M} \frac{1-\left(e^{i(\ell-k) 2 \pi / M}\right)^{M}}{1-e^{i(\ell-k) 2 \pi / M}}=0
$$

I.e., $\left\{\boldsymbol{v}_{\boldsymbol{K}}\right\}_{|k| \leqslant N}$ are orthonormal vectors.

Duality of Fourier Series with quadrature

$$
\tilde{\boldsymbol{V}}=\sqrt{\frac{2 \pi}{M}} \boldsymbol{V}, \quad \boldsymbol{V}=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\boldsymbol{v}_{-N} & \boldsymbol{v}_{-N+1} & \cdots & \boldsymbol{v}_{N} \\
\mid & \mid & & \mid
\end{array}\right), \quad \boldsymbol{v}_{k}=\sqrt{\frac{2 \pi}{M}} \phi_{k}(\boldsymbol{x}),
$$

A somewhat straightforward computation shows:

$$
\left\langle\boldsymbol{v}_{\ell}, \boldsymbol{v}_{k}\right\rangle=\frac{1}{M} \sum_{j=1}^{M} e^{i(\ell-k) 2 \pi(j-1) / M}=\frac{1}{M} \sum_{j=0}^{M-1}\left(e^{i(\ell-k) 2 \pi / M}\right)^{j}
$$

Thus, in particular if $\ell=k$ then $\left\langle\boldsymbol{v}_{\ell}, \boldsymbol{v}_{k}\right\rangle=1$, and for $\ell \neq k$ and $|\ell-k| \leqslant M-1$:

$$
\left\langle\boldsymbol{v}_{\ell}, \boldsymbol{v}_{k}\right\rangle=\frac{1}{M} \frac{1-\left(e^{i(\ell-k) 2 \pi / M}\right)^{M}}{1-e^{i(\ell-k) 2 \pi / M}}=0
$$

l.e., $\{\boldsymbol{v}\}_{|k| \leqslant N}$ are orthonormal vectors.

This shows the important property that \boldsymbol{V} is a unitary matrix:

$$
V^{*} \boldsymbol{V}=\boldsymbol{I} \quad \Longrightarrow \quad V^{-1}=\boldsymbol{V}^{*}
$$

Inverting the Fourier Series

Putting everything together:

$$
\widetilde{\boldsymbol{u}}=\tilde{\boldsymbol{V}}^{*} \boldsymbol{u}, \quad \quad \tilde{\boldsymbol{V}}=\sqrt{\frac{2 \pi}{M}} \boldsymbol{V}, \quad \quad \boldsymbol{V}^{-1}=\boldsymbol{V}^{*}
$$

This implies that:

$$
\boldsymbol{u}=\left(\tilde{\boldsymbol{V}}^{*}\right)^{-1} \tilde{\boldsymbol{u}}=\sqrt{\frac{M}{2 \pi}}\left(\boldsymbol{V}^{*}\right)^{-1} \tilde{\boldsymbol{u}}=\sqrt{\frac{M}{2 \pi}} \boldsymbol{V} \tilde{\boldsymbol{u}}=\frac{M}{2 \pi} \tilde{\boldsymbol{V}} \tilde{\boldsymbol{u}}
$$

Inverting the Fourier Series

Putting everything together:

$$
\widetilde{\boldsymbol{u}}=\tilde{\boldsymbol{V}}^{*} \boldsymbol{u}, \quad \quad \tilde{\boldsymbol{V}}=\sqrt{\frac{2 \pi}{M}} \boldsymbol{V}, \quad \quad \boldsymbol{V}^{-1}=\boldsymbol{V}^{*}
$$

This implies that:

$$
\boldsymbol{u}=\left(\widetilde{\boldsymbol{V}}^{*}\right)^{-1} \widetilde{\boldsymbol{u}}=\sqrt{\frac{M}{2 \pi}}\left(\boldsymbol{V}^{*}\right)^{-1} \widetilde{\boldsymbol{u}}=\sqrt{\frac{M}{2 \pi}} \boldsymbol{V} \widetilde{\boldsymbol{u}}=\frac{M}{2 \pi} \tilde{\boldsymbol{V}} \widetilde{\boldsymbol{u}} .
$$

I.e., the map between \boldsymbol{u} and $\widetilde{\boldsymbol{u}}$ is invertible and quite explicit:

$$
\widetilde{\boldsymbol{u}}=\tilde{\boldsymbol{V}}^{*} \boldsymbol{u}, \quad \boldsymbol{u}=\frac{M}{2 \pi} \tilde{\boldsymbol{V}} \widetilde{\boldsymbol{u}}
$$

This invertible map is called the Discrete Fourier Transform (DFT). As a consequence of \boldsymbol{V} being unitary, we have also shown that the DFT is a (scaled) isometry,

$$
\int_{0}^{2 \pi}|u(x)|^{2} \mathrm{~d} x \approx \frac{2 \pi}{M}\|\boldsymbol{u}\|_{2}^{2}=\|\widetilde{\boldsymbol{u}}\|_{2}^{2}
$$

which is the discrete analogue of Parseval's identity.

The Fast Fourier Transform, I

The inverse/DFT is relatively expensive:

$$
\boldsymbol{u} \xrightarrow{\mathcal{O}\left(M^{2}\right)} \tilde{\boldsymbol{V}}^{*} \boldsymbol{u}, \quad \tilde{\boldsymbol{u}} \xrightarrow{\mathcal{O}\left(M^{2}\right)} \frac{M}{2 \pi} \tilde{\boldsymbol{V}}
$$

One of the most well-known algorithms is the fast Fourier transform, which is a fast algorithm for accomplishing the particular matrix-vector multiplication $\tilde{\boldsymbol{V}}^{*} \boldsymbol{u}$.

It is simpler to explain the basic idea if M is even, in which case we have:

$$
\begin{aligned}
\frac{M}{\sqrt{2 \pi}} \widetilde{u}_{k} & =\sum_{j=1}^{M} u\left(x_{j}\right) e^{-i k x_{j}}=\sum_{j=1}^{M} u\left(x_{j}\right) e^{-i k 2 \pi(j-1) / M} \\
& =\sum_{j=1}^{M / 2} u\left(x_{2 j}\right) e^{-i k 2 \pi 2(j-1) / M}+\sum_{j=1}^{M / 2} u\left(x_{2 j-1}\right) e^{-i k 2 \pi(2 j-1) / M}
\end{aligned}
$$

The Fast Fourier Transform, I

The inverse/DFT is relatively expensive:

$$
\boldsymbol{u} \xrightarrow{\mathcal{O}\left(M^{2}\right)} \tilde{\boldsymbol{V}}^{*} \boldsymbol{u}, \quad \tilde{\boldsymbol{u}} \xrightarrow{\mathcal{O}\left(M^{2}\right)} \frac{M}{2 \pi} \tilde{\boldsymbol{V}}
$$

One of the most well-known algorithms is the fast Fourier transform, which is a fast algorithm for accomplishing the particular matrix-vector multiplication $\tilde{\boldsymbol{V}}^{*} \boldsymbol{u}$.

It is simpler to explain the basic idea if M is even, in which case we have:

$$
\begin{aligned}
\frac{M}{\sqrt{2 \pi}} \widetilde{u}_{k} & =\sum_{j=1}^{M} u\left(x_{j}\right) e^{-i k x_{j}}=\sum_{j=1}^{M} u\left(x_{j}\right) e^{-i k 2 \pi(j-1) / M} \\
& =\sum_{j=1}^{M / 2} u\left(x_{2 j}\right) e^{-i k 2 \pi 2(j-1) / M}+\sum_{j=1}^{M / 2} u\left(x_{2 j-1}\right) e^{-i k 2 \pi(2 j-1) / M} \\
& =\sum_{j=1}^{M / 2} u\left(x_{2 j}\right) e^{-i k 2 \pi 2(j-1) / M}+e^{i k 2 \pi / M} \sum_{j=1}^{M / 2} u\left(x_{2 j-1}\right) e^{-i k 2 \pi(2 j-2) / M}
\end{aligned}
$$

Note that the last two sums are $M / 2$-point DFT coefficients associated with half the data (either at $x_{2 j}$ or at $x_{2 j-1}$).
I.e., with some book-keeping, we can compute the M-point DFT using $2 M / 2$-point DFT's.

[^0]
The Fast Fourier Transform, II

This logic can be repeated, showing that actually we can compute the M-point DFT using $J(M / J)$-point DFT's, where J is a power of two. This yields the simplest, radix 2 fast Fourier transform (FFT) algorithm.

Through this divide-and-conquer strategy, an M-point DFT that naively requires $\mathcal{O}\left(M^{2}\right)$ complexity can be accomplished in $\mathcal{O}(M \log M)$ time.

Interpolation

$$
\widetilde{\boldsymbol{u}}=\tilde{\boldsymbol{V}}^{*} \boldsymbol{u}, \quad \boldsymbol{u}=\frac{M}{2 \pi} \tilde{\boldsymbol{V}} \widetilde{\boldsymbol{u}}
$$

We have introduced the DFT via quadrature, but an alternative and illustrative viewpoint is interpolation.

Note that the coefficients $\widetilde{\boldsymbol{u}}$ are determined by the conditions,

$$
\frac{M}{2 \pi} \tilde{\boldsymbol{V}} \tilde{\boldsymbol{u}}=\boldsymbol{u} \quad \Longrightarrow \quad\left(\begin{array}{cccc}
\mid & \mid & \mid \\
\boldsymbol{\phi}_{-N} & \boldsymbol{\phi}_{-N+1} & \cdots & \boldsymbol{\phi}_{N} \\
\mid & \mid & & \mid
\end{array}\right) \widetilde{\boldsymbol{u}}=\boldsymbol{u}
$$

Note that these are "just" interpolation conditions for the $\widetilde{\boldsymbol{u}}$ at the data points $x_{j}, j \in[M]$.

Interpolation

$$
\widetilde{\boldsymbol{u}}=\tilde{\boldsymbol{V}}^{*} \boldsymbol{u}, \quad \boldsymbol{u}=\frac{M}{2 \pi} \tilde{\boldsymbol{V}} \widetilde{\boldsymbol{u}}
$$

We have introduced the DFT via quadrature, but an alternative and illustrative viewpoint is interpolation.

Note that the coefficients $\widetilde{\boldsymbol{u}}$ are determined by the conditions,

$$
\frac{M}{2 \pi} \tilde{\boldsymbol{V}} \tilde{\boldsymbol{u}}=\boldsymbol{u} \quad \Longrightarrow \quad\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\phi_{-N} & \phi_{-N+1} & \cdots & \boldsymbol{\phi}_{N} \\
\mid & \mid & & \mid
\end{array}\right) \widetilde{\boldsymbol{u}}=\boldsymbol{u}
$$

Note that these are "just" interpolation conditions for the $\widetilde{\boldsymbol{u}}$ at the data points $x_{j}, j \in[M]$. Hence, $u_{N}(x)=\sum_{|k| \leqslant N} \widetilde{u}_{k} \phi_{k}(x)$ interpolates the data \boldsymbol{u}.

We have already concluded that this interpolation problem is unisolvent. Hence, there are cardinal basis functions $\ell_{j}(x), j \in[M]$ such that,

$$
u_{N}(x)=\sum_{j \in[M]} u\left(x_{j}\right) \ell_{j}(x), \quad \quad \ell_{j}\left(x_{r}\right)=\delta_{j, r}
$$

I.e., u_{N} has a Lagrange form.

Cardinal Lagrange basis

The cardinal Lagrange functions yield insight into the interpolation process.

Figure 2.3 of Hesthaven, S. Gottlieb, and D. Gottlieb 2007
Note that interpolation implies

$$
u(x) \in V_{N}:=\operatorname{span}\left\{e^{i k x}\right\}_{|k| \leqslant N} \quad \Longrightarrow \quad I_{N} u:=\sum_{|k| \leqslant N} \widetilde{u}_{k} \phi_{k}(x)=u(x)
$$

Aliasing

The fact that our DFT is an interpolation process reveals a significant issue that we must be cognizant of: aliasing error.

Figure 2.7 of Hesthaven, S. Gottlieb, and D. Gottlieb 2007

Aliasing

The fact that our DFT is an interpolation process reveals a significant issue that we must be cognizant of: aliasing error.

Figure 2.7 of Hesthaven, S. Gottlieb, and D. Gottlieb 2007
So, for example, even if $\left\langle e^{i \ell x}, \phi_{k}(x)\right\rangle=0$ for $\ell>N$, it's possible that $I_{N} u \neq 0$.
I.e., the interpolation/DFT procedure is a projection operator, it's just an oblique one.

Aliasing error

Aliasing is not just an academic curiosity: with P_{N} the L^{2}-orthogonal projection operator onto

$$
V_{N}=\operatorname{span}\left\{e^{i k x}\right\}_{|k| \leqslant N}
$$

recall that $u \in H_{p}^{s}$ implies that $\left\|u-P_{N} u\right\|_{L^{2}} \lesssim N^{-s}$.
Ok, but what about $I_{N} u$?

Aliasing error

Aliasing is not just an academic curiosity: with P_{N} the L^{2}-orthogonal projection operator onto

$$
V_{N}=\operatorname{span}\left\{e^{i k x}\right\}_{|k| \leqslant N}
$$

recall that $u \in H_{p}^{s}$ implies that $\left\|u-P_{N} u\right\|_{L^{2}} \lesssim N^{-s}$.
Ok, but what about $I_{N} u$?
The main strategy to understanding this is to estimate the aliasing error. Note that for the L^{2} norm,

$$
\begin{aligned}
\left\|u-I_{N} u\right\|=\left\|\left(u-P_{N} u\right)+\left(P_{N} u-I_{N} u\right)\right\| & \leqslant\left\|u-P_{N} u\right\|+\left\|P_{N} u-I_{N} u\right\| \\
& =:\left\|u-P_{N} u\right\|+\left\|A_{N} u\right\|,
\end{aligned}
$$

where we have defined the aliasing error $A_{N} u$.

Bounding the aliasing error

$$
A_{N} u=P_{N} u-I_{N} u
$$

The following observations are crucial:

- If $u \in V_{N}$, then $I_{N} u=P_{N} u=u$, so $A_{N} u=0$. Therefore, $A_{N} u=A_{N}\left(I-P_{N}\right) u$. The aliasing error is only affected by truncation error.

Bounding the aliasing error

$$
A_{N} u=P_{N} u-I_{N} u
$$

$$
\left\|_{4}-P_{\mu} u\right\| \sim N^{-S}
$$

The following observations are crucial:

- If $u \in V_{N}$, then $I_{N} u=P_{N} u=u$, so $A_{N} u=0$. Therefore, $A_{N} u=A_{N}\left(I-P_{N}\right) u$. The aliasing error is only affected by truncation error.
- We know that $\left(I-P_{N}\right) u$ is small. Therefore, if A_{N} is "behaves well", then $A_{N} u$ will be small.
The truncation error is small, but does A_{N} amplify small inputs?

Bounding the aliasing error

$$
A_{N} u=P_{N} u-I_{N} u
$$

The following observations are crucial:

- If $u \in V_{N}$, then $I_{N} u=P_{N} u=u$, so $A_{N} u=0$. Therefore, $A_{N} u=A_{N}\left(I-P_{N}\right) u$. The aliasing error is only affected by truncation error.
- We know that $\left(I-P_{N}\right) u$ is small. Therefore, if A_{N} is "behaves well", then $A_{N} u$ will be small.
The truncation error is small, but does A_{N} amplify small inputs?
- A_{N} is well-behaved: for $|k| \leqslant N$,

$$
I_{N} \not A_{N} e^{i(k+(2 N+1)) x}=e^{i k x}
$$

$$
P_{N} e^{i(k+12 N+1)) x}=0
$$

and thus in particular,

$$
u=\sum_{|k| \leqslant N} \widehat{u}_{k} \phi_{k}(x) \quad \Longrightarrow \quad \widetilde{u}_{k}=\sum_{\ell \in \mathbb{Z}} \widehat{u}_{k+\ell(2 N+1)} .
$$

A_{N} does not amplify small inputs.

Bounding the aliasing error

$$
A_{N} u=P_{N} u-I_{N} u
$$

The following observations are crucial:

- If $u \in V_{N}$, then $I_{N} u=P_{N} u=u$, so $A_{N} u=0$. Therefore, $A_{N} u=A_{N}\left(I-P_{N}\right) u$. The aliasing error is only affected by truncation error.
- We know that $\left(I-P_{N}\right) u$ is small. Therefore, if A_{N} is "behaves well", then $A_{N} u$ will be small.
The truncation error is small, but does A_{N} amplify small inputs?
- A_{N} is well-behaved: for $|k| \leqslant N$,
and thus in particular,

$$
\begin{aligned}
& \text { IN }_{N} e^{i(k+(2 N+1)) x}=e^{i k x}, \\
& \text {, }
\end{aligned}
$$

$$
u=\sum_{|k| \leqslant N} \widehat{u}_{k} \phi_{k}(x) \Longrightarrow \quad \widetilde{u}_{k}=\sum_{\ell \in \mathbb{Z}} \widehat{u}_{k+\ell(2 N+1)}
$$

A_{N} does not amplify small inputs. $|\ell| \leq N:\left\langle I_{N} U, Q_{\ell}\right\rangle=\sum_{k \in \mathbb{Z}} \hat{U}_{k}\left\langle I_{N} \Phi_{k} Q_{l}\right\rangle$ Therefore, if $\widehat{u}_{k+\ell(2 N+1)}$ decays quickly for large $|\ell|$, then we can $k \in \mathbb{K} \in \mathbb{Z}$ oct the aliased coefficients \widetilde{u}_{k} to be "close" to \widehat{u}_{k}.

$$
=\sum_{k_{k \in \mathbb{Z}}} \hat{u}_{k} \delta_{k_{1} \ell+(2 N+1)} q
$$

Math 6630: Approximation with Fourier Series

Interpolation estimates

While we have only discussed the high-level ideas, going through the details produces the following estimate:

Theorem

Assume $u \in H_{p}^{s}$ with $s>1 / 2$. Then

$$
\begin{aligned}
\left\|u-I_{N} u\right\|_{L^{2}} & \lesssim N^{-s}\|u\|_{H^{s}} \\
\left\|u-I_{N} u\right\|_{H^{r}} & \lesssim N^{-(s-r)}\|u\|_{H^{s}},
\end{aligned} \quad r<s .
$$

Note that this is exactly the asymptotic behavior for the exact orthogonal projector P_{N}. Thus, one can expect the DFT to produce good results.

The DFT in practice

Figure 2.4 of Hesthaven, S. Gottlieb, and D. Gottlieb 2007

$$
u(x)=\frac{3}{5-4 \cos x}
$$

The DFT in practice

Figure 2.4 of Hesthaven, S. Gottlieb, and D. Gottlieb 2007

$$
u(x)=\sin (x / 2)
$$

References I

Canuto, Claudio et al. (2011). Spectral Methods: Fundamentals in Single Domains. 1st ed. 2006. Corr. 4th printing 2010 edition. Berlin ; New York: Springer. ISBN: 978-3-540-30725-9.

Hesthaven, Jan S., Sigal Gottlieb, and David Gottlieb (2007). Spectral Methods for Time-Dependent Problems. Cambridge University Press. ISBN: 0-521-79211-8.Shen, Jie, Tao Tang, and Li-Lian Wang (2011). Spectral Methods: Algorithms, Analysis and Applications. Springer Science \& Business Media. ISBN: 978-3-540-71041-7.

[^0]: A. Narayan (U. Utah - Math/SCI)

 Math 6630: Approximation with Fourier Series

