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FD for parabolic problems

We've considered the problem and FD discretization,

= . u(@,0) = uo(z) Y €0 1T )
D+’an = D_D_|_U§L,

J

with periodic boundary conditions, and

— Equidistant discretization for x and ¢

- zj = 2Z1, j € [M]. Periodic BC's: we identify zn < 0.

thac:a?jH—xj

—th=nk, k>0forn=0,1,...
k=At =1tpi1 — tx

- ’U/;L N /U/(xj,tn), 'U,n — (U(T)L,- ° . 7u§b\4—1)T

Today: Stability, accuracy, convergence, etc.
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Method of lines

DYu} = D_D;uj,
The scheme above is fully discrete.

A more transparent understanding of algorithmic behavior can be gained from
investigating the semi-discrete scheme:

Ut = Upa Discretize Space) ;-tu(t) _ A’U,(t), u — (Ul (t), UM (t))T

With periodic boundary conditions, then A is the matrix,

(—2 1 1\

1 =2 1

\ 1 1 —2 )
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Method of lines, Il

iscretize space d
Ur = Upy Discretize space, u(t) = Aul(t), u = (ui(t),... ,uM(t))T

dt

This reduction of a partial differential equation, to an ordinary one through
discretization, is called the method of lines.

Up() U(0) Us() Up—1 (@ Uppt1©)

Xo X1 X2 Xm—1 Xm  Xm+1

Figure: Method of lines visualization. LeVeque 2007, Figure 9.2
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Method of lines, Il ,
U < Au

iscretize space d
Ur = Upy Discretize space, u(t) = Aul(t), u = (ui(t),... ,uM(t))T

dt

The semi-discrete form is useful in decoupling space and time,

In particular, it's something we know how to understand from a time-integration
point of view:

— Stability (A-stabiltiy, 0-stability)
— Accuracy (time discretization)
— Convergence (conditioned on a fixed spatial discretization)

Convergernce to the solution of the original PDE solution does require some
interaction of space and time.
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Stability

d T
Eu(t) — Au(t)7 u = (u1 (t), e ,UM(t))

We understand how to generate reasonable schemes for this: any 0-stable method

could suffice.

To fix some details, one typically initially considers the simplest scheme to
understand the system: Forward Euler.
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Stability

d T
Eu(t) — Au(t)7 u = (u1 (t), e ,UM(t))

We understand how to generate reasonable schemes for this: any 0-stable method
could suffice.

To fix some details, one typically initially considers the simplest scheme to
understand the system: Forward Euler.

u" Tt =" + kAU,
This is a linear ODE, and so one simple concept to explore is A-stability.

Is it reasonable to expect behavior of the discrete solution corresponding to
A-stability?
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Stability

d T
Eu(t) — Au(t)7 u = (u1 (t), e ,UM(t))

We understand how to generate reasonable schemes for this: any 0-stable method
could suffice.

To fix some details, one typically initially considers the simplest scheme to
understand the system: Forward Euler.

u" Tt =" + kAU,
This is a linear ODE, and so one simple concept to explore is A-stability.

Is it reasonable to expect behavior of the discrete solution corresponding to
A-stability?

To determine stability, the eigenvalues/vectors of A are explicitly computable:

A o ~ (j—1, jodd |
)\](A) T _h2 S1I1 <2M> 9 j T { j, jeven ] € [M]

Note that the eigenvalues all have negative real parts ... as we hope for.
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Stiffness

Amax(A) ~ —1
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Stiffness

d
Su(t) = Au(), w=(ur(t), - uar (1)
Ai(A) 72 sin <2M> J T { 7, J even J € [M]

All these eigenvalues lie in the left half-plane, on the real axis. In particular,

4

>\min (A) - - ﬁ

~ 4M2 Amax(A) ~ —1

Therefore, there are some parts of the solution that vary slowly (small |A|) and
other parts of the solution that vary quickly (large |\|).

This is a classic sign of stiffness of an ODE — since even moderate M causes large
values of Amin/Amax, this is a stiff system for those values of M.

Although we have attempted to separate space and time, our choice of spatial
discretization will impact our time discretization.
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Stability

d

au(t) = Au(t),

S

ze (L

u = (ui1(t),...,un(t))

What does A-stability tell us about the time discretization? For Forward Euler,

recall that the region of stability is defined by,

with \ being the eigevalues of A.

2+ 1] < 1,

L=k, UT AU
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Stability

d T
&u(t) — Au(t), u = (u1 (t), . ,UM(t))

What does A-stability tell us about the time discretization? For Forward Euler,
recall that the region of stability is defined by,

|z + 1] < 1, z = Ak,
with \ being the eigevalues of A.
Since z = Ak is real-valued (and negative in this case), we really have the condition,

2
22 -2 = klAun(4)|<2 = kg%

Note that this is a rather disappointing stability requirement. (Consider, say,
h =0.01)
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OXXXX

d T
a,ul(t) — Au(t)7 u = (u1 (t), e ,UM(t))

What does A-stability tell us about the time discretization? For Forward Euler,
recall that the region of stability is defined by,

|z + 1] < 1, z = Ak,
with \ being the eigevalues of A.

Since z = Ak is real-valued (and negative in this case), we really have the condition,
h2
2

Note that this is a rather disappointing stability requirement. (Consider, say,
h =0.01)

22 -2 = EklAnin(AQ)|<2 = &k

IN

For this PDE, violating this notion of stability is bad: this PDE dissipates energy.
Violating stability causes energy to grow.

Note that changing the type of explicit time-stepping scheme (RK, multi-step, etc)
does not really change this stability condition, up to some O(1) constants.

The only real remedy is an A-stable (implicit) scheme.
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| ocal truncation error

Ut = Ugz, u(x,0) = uo(x)
DY} = D_D,uj,

J

For computing the local truncation error, considering the semi-discrete scheme does
not provide much benefit.

The LTE is the scheme residual when the exact (smooth) solution is inserted:
LTE" = DY u(xj,tn) — D_Diu(zj, tn) ~ O(h* + k).

As before, we say a scheme is consistent if limy ;o LTE™ = 0.
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| ocal truncation error

Ut = Ugz, u(x,0) = uo(x)

+ n n
D*u} = D_Du,

For computing the local truncation error, considering the semi-discrete scheme does
not provide much benefit.

The LTE is the scheme residual when the exact (smooth) solution is inserted:
LTE" = DY u(xj,tn) — D_Diu(zj, tn) ~ O(h* + k).

As before, we say a scheme is consistent if limg 0 LTE™ = 0. Naturally, the
temporal order of convergence k¥ would change depending on the LTE of the
time-stepping scheme.

Without directly considering cost of space vs time discretization, one would logically
want to balance the LTE by choosing k ~ h*, which is similar to the stability
condition.

However, we've already seen that this is not really an attractive strategy for
choosing k, motivating that this scheme is not really a good one.
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Convergence, |

As usual, the holy grail is convergence. The idea for how to proceed is similar to
what we've seen before:

Suppose numerical solution satisfies the scheme exactly:
un—l—l _ B’Ll,n _|_fn7
where as (Trkd)

— B is a matrix such/‘lgA for the Forward Euler method

— f" is any inhomogeneity in the equation (e.g., the term f in
Ut = Uge + fx, 1))
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Convergence, |

As usual, the holy grail is convergence. The idea for how to proceed is similar to
what we've seen before:

Suppose numerical solution satisfies the scheme exactly:
un—l—l _ Bun _|_fn7

where
— B is a matrix such kA for the Forward Euler method
— f" is any inhomogeneity in the equation (e.g., the term f in
Ut = Uge + fx, 1))
The exact solution u(x,t) at the grids points U (t) satisfies the scheme with an LTE
correction T,:

U(tnt1) = BU(tn) + f + k7",
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Convergence, |

As usual, the holy grail is convergence. The idea for how to proceed is similar to
what we've seen before:

Suppose numerical solution satisfies the scheme exactly:
un—l—l _ Bun _|_fn7

where

— B is a matrix such kA for the Forward Euler method
— f" is any inhomogeneity in the equation (e.g., the term f in
Ut = Uzz + f(x,1))
The exact solution u(x,t) at the grids points U (t) satisfies the scheme with an LTE
correction Ty:

U(tns1) = BU (tn) + f* + k1",
Subtracting these two, the error e,, := U (t,,) — u" satisfies,
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Convergence, |l

un—l—l _ B’U,n ‘|‘fn,
U(tni1) = BU(tn) + f™ + k7",

lterating the error equation, we conclude,

e, = B"ey + k Z Bt

Jj=1

NB: the superscripts n and n — 5 on B are exponents.
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Convergence, Il

Therefore,

len] = |1B"llleof + & Y 1B" ||

j=1
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Convergence, Il

Therefore,

len] = |1B"llleof + & Y 1B" ||

j=1
This reveals that we need to control B™, motivating a new definition.
Definition

A numerical scheme of the form u"
terminal time T is Lax-Richtmyer stable if

|B"| < C(T),

1 — Bu" + f" for computing a solution up to

for all k sufficiently small and all time indices n satisfying nk < T.
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Convergence, Il

Therefore,

len] = |1B"llleof + & Y 1B" ||

j=1
This reveals that we need to control B™, motivating a new definition.

Definition
A numerical scheme of the form u™t* = Bu™ + f™ for computing a solution up to
terminal time T is Lax-Richtmyer stable if

1B <o@, IBN<]
for all k sufficiently small and all time indices n satisfying nk < T.

In practice, showing |B| < 1 + C'k for some constant C' independent of & is

enough. "l e N C/
18" < 181" < (1+ i) ~e”
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L ax-Richtmyer, redux

Convergence of the scheme, under consistency and (Lax-Richtmyer) stability follows:

n n—j —1
len] = 1B leoll +& > |B" |||

g=1

stability i 1
< (1) [leof + knmax ||
JEn

<c@ﬂwa+Tmmwfw[

je[n]
k,h|0+ consistency
—>

0,

where we additionally need €’ — 0 as k | 0.
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L ax-Richtmyer, redux

Convergence of the scheme, under consistency and (Lax-Richtmyer) stability follows:

len] = |B"llleof + & Y 1B" |||

7=1
stability i 1
< (1) [leof + knmax ||
JE€n

j€[n]

<0@ﬂma+TmmwaL

k,h |0+ consistency
—>

0,

where we additionally need €’ — 0 as k | 0.
We have just shown part of the following result:

Theorem (Lax-Richtmyer Equivalence)

A linear scheme is convergent if and only if it is consistent and (Lax-Richtmyer)
stable.

|.e.,

Stability + Consistency = Convergence
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Achieving stability
How would we achieve (Lax-Richtmyer) stability? The general form is,
u"t = Bu" + f",
and our Forward Euler in time, central difference in space approximation is,
uw'tt = u" + kAU = (I +kA)u"”,
so for stability, say in the 2-norm, we require,

(I +EkA)"|, < 1.
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Achieving stability
How would we achieve (Lax-Richtmyer) stability? The general form is,
u"t = Bu" + f",
and our Forward Euler in time, central difference in space approximation is,
uw'tt = u" + kAU = (I +kA)u"”,
so for stability, say in the 2-norm, we require,
(T +kA)"|, < 1.
Using submutiplicativity of the norm, this is ensured with
I + kA2 <1,
which, in turn due to symmetry of I, A requires,

|1 + ]{)\j(A)| < 1.
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Achieving stability

How would we achieve (Lax-Richtmyer) stability? The general form is,
u" = Bu" + f",
and our Forward Euler in time, central difference in space approximation is,
uw' = ut + kAU = (I +kA)u”,
so for stability, say in the 2-norm, we require,
[(I+kA)"[, <1
Using submutiplicativity of the norm, this is ensured with
I +EkA|2 <1,
which, in turn due to symmetry of I, A requires,
11+ kXN (A) <1,
Since all eigenvalues of A are real and negative, this is ensured via,

h2
2

which is exactly the same requirement we obtained from A-stability.

Edmin(A)] <2 = k<
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Scheme convergence

Thus, we have that

U = Upy  — D+u;7’ =Dy D_u;

has an LTE and stability criterion:

LTE, = O(k* + h)

h2
k< —
2

Thus, under these conditions, we expect the scheme error to behave like k + h?.
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Scheme convergence

Thus, we have that

Ut = Ugpy  — D+u? =Dy D_u;

has an LTE and stability criterion:
LTE, = O(k® + h)
h2
k< —
2

Thus, under these conditions, we expect the scheme error to behave like k + hZ.

This explain many “weird” issues we observed when naively trying to ascertain
convergence of this method:

— Things are unstable if we don't satisfy k < h®. In particular k ~ h is not useful.
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Scheme convergence

Thus, we have that

Ut = Ugpy  — D+u? =Dy D_u;

has an LTE and stability criterion:
LTE, = O(k® + h)

h2
g_
K 2

Thus, under these conditions, we expect the scheme error to behave like k + hZ.

This explain many “weird” issues we observed when naively trying to ascertain
convergence of this method:

— Things are unstable if we don't satisfy k < h®. In particular k ~ h is not useful.

— How would we numerically verify h convergence? We'd need to

> Pick a smallest h, say Amin
> Fix k < hfnin/2
> Compare errors for h = hmin, 2hmin, 4Pmin, SAmin, - - -
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Scheme convergence

Thus, we have that

Ut = Ugpy  — D+u? =Dy D_u;

has an LTE and stability criterion:
LTE, = O(k® + h)

h2
g_
k 2

Thus, under these conditions, we expect the scheme error to behave like k + hZ.

This explain many “weird” issues we observed when naively trying to ascertain
convergence of this method:

— Things are unstable if we don't satisfy k < h®. In particular k ~ h is not useful.

— How would we numerically verify h convergence? We'd need to
> Pick a smallest h, say Amin
> Fix k < h2, /2
> Compare errors for h = hmin, 2hmin, 4Pmin, SAmin, - - -
— How would we numerically verify k& convergence?
> k> h? is not possible, k « h? is not possible.

> When refining k, must correspondingly refine h to satisfy, h ~ v/2k.
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Higher-order schemes?

What about “better’ schemes?

du
dt

= Au.

Suppose we choose a higher order explicit time-stepping method, say Runge-Kutta

4.
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Higher-order schemes?

What about “better’ schemes?
du
dt
Suppose we choose a higher order explicit time-stepping method, say Runge-Kutta
4.
— Stability requires k < h°
— The LTE is k* + h2.

— Fix k, and varying h to satisfy k < h?/2 would allow us to detect
h-convergence

— To detect k convergence, we require h® < k* which contradicts the stability
condition

l.e., in this case there is little benefit to using RK4 — we won't see any benefit.

= Au.
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Higher-order schemes?

What about “better’ schemes?

du
— = Au.
dt “

Suppose we choose a higher order explicit time-stepping method, say Runge-Kutta
4.

— Stability requires k < h?

— The LTE is k* + h°.

— Fix k, and varying h to satisfy k < h®/2 would allow us to detect
h-convergence

— To detect k convergence, we require h® < k* which contradicts the stability
condition

l.e., in this case there is little benefit to using RK4 — we won't see any benefit.

If we alternatively use Crank-Nicholson:
— Stability is unconditional (||[B™| < 1 is automatic)

— The LTE is k? + h*.

— Fix k, varying h to satisfy k£ < h would allow us to detect h-convergence

//\ //\

— Fix h, varying k to satisfy h < k would allow us to detect k-convergence
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Von Neumann stability, |

We've seen that it's possible to directly verify Lax-Richtmyer stability.
But in even slightly more complicated scenarios, a similar analysis is quite difficult.

An alternative notion, Von Nuemann stability, is a much easier necessary (not
sufficient) stability requirement.
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Von Neumann stability, |

We've seen that it's possible to directly verify Lax-Richtmyer stability.
But in even slightly more complicated scenarios, a similar analysis is quite difficult.

An alternative notion, Von Nuemann stability, is a much easier necessary (not
sufficient) stability requirement.

Von Neumann stability proceeds by ignoring boundary conditions, and realizing that
for linear differential equations, complex exponentials are eigenfunctions.

E.g..

(eiwx)m = C(w)e™?”.

A similar computation is true for reasonable spatial discretizations of derivatives.
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Von Neumann stability, |

We've seen that it's possible to directly verify Lax-Richtmyer stability.
But in even slightly more complicated scenarios, a similar analysis is quite difficult.

An alternative notion, Von Nuemann stability, is a much easier necessary (not
sufficient) stability requirement.

Von Neumann stability proceeds by ignoring boundary conditions, and realizing that
for linear differential equations, complex exponentials are eigenfunctions.

E.g..
<eiwx) _ C(w)eiwx.
T
A similar computation is true for reasonable spatial discretizations of derivatives.

Then a reasonable (somewhat empirical) notion of (Von Neumann) stability for a
scheme would assert that the scheme does not amplify eigenfunctions in time.
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Von Neumann stability, Il

The general strategy for von Neumann stability on linear problems is to consider the
scheme,
n—+1 n
u; = B(u")
for a linear operator B acting on the degrees of freedom at time step j. If we make
the ansatz,
n twa no_ W j iwih

u =-e —> U € = € )

then we expect that plugging this into scheme will yield the expression,

T'L-l-l _ g(w)ezwjh

Uj

Y

for some constant g(w).!

LIn principle g can depend on j, but it will not if the discretization is spatially homogeneous.
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Von Neumann stability, Il

The general strategy for von Neumann stability on linear problems is to consider the
scheme,
n—+1 n
u; = B(u")
for a linear operator B acting on the degrees of freedom at time step j. If we make
the ansatz,
n twa no_ W j iwih

u =e —>  u; =e¢ =€ :

then we expect that plugging this into scheme will yield the expression,

T'L-l-l _ g(w)ezwjh

Uj

Y

for some constant g(w).!

The function g is called the (Von Neumann) amplification factor of the scheme.

The scheme will be (Von Neumann) stable if [g(w)| < 1.2

YIn principle g can depend on j, but it will not if the discretization is spatially homogeneous.
%Like for Lax-Richtmyer stability, we'll actually just need |g(w)| < 1 + Ck.
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Examples

Example

Compute the Von Neumann stability condition for

D+u;7“ = Dou?

Setting u = 7", and u?“ = g(w)e™?" then we have,
n+l = n k n 2 n n
Uj = ’LLj + ﬁ [Uj_|_1 — Uj + uj—l]
l
w7 w7 k w7 W —tw
g(w)e Ih — ¢ jh—irﬁe Jh [e h_9ge h],
l.e.,
2k
gw) =1+ 72 (coswh —1).
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Examples

Example

Compute the Von Neumann stability condition for

D+’UJ? = Dou?

Setting u = 7", and u”Jr1 = g(w)e™?" then we have,
mn mn k
T 7,2 [wjer — 2uf + uj_]
!
iwwjh  1wjh k iwih twh 9 —twh
g(w)e =e + e e —2+e :
l.e.,
2k

g(w) = 1+ﬁ(coswh—1).

Since —2 < (coswh — 1) <0, then |g(w)| < 1 if
2k h*
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Examples

Example

Compute the Von Neumann stability condition for

D+u;7“ = Dou?

Example

Compute the Von Neumann stability condition for

A. Narayan (U. Utah — Math/SCI) Math 6630: Finite difference methods, 11



Examples

Example

Compute the Von Neumann stability condition for

D+u;7“ = Dou?

Example

Compute the Von Neumann stability condition for

Example

Compute the Von Neumann stability condition for

4+ n n
D ’U,j :D_|_D_|_Uj
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