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Basics concepts for linear PDEs

Our first set of time-dependent PDEs to consider are parabolic equations.
To contextualize what to expect from numerical approximations, we need some
basic theory for linear PDEs.

Consider a scalar PDE for u “ upx, tq having the form,

ut “ p

ˆ B
Bx

˙
u,

with periodic boundary conditions on x P r0, 2⇡q.
Above, p is a is an operator involving (possibly high-order) spatial derivatives of u.
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Basics concepts for linear PDEs

Our first set of time-dependent PDEs to consider are parabolic equations.
To contextualize what to expect from numerical approximations, we need some
basic theory for linear PDEs.

Consider a scalar PDE for u “ upx, tq having the form,

ut “ p

ˆ B
Bx

˙
u,

with periodic boundary conditions on x P r0, 2⇡q.
Above, p is a is an operator involving (possibly high-order) spatial derivatives of u.

Example
The opeator,

p

ˆ B
Bx

˙
“ B2

Bx2

corresponds to a prototypical parabolic equation, which we will our focus in these
slides.

This is, in many senses, the “easiest” example.
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Basics concepts for linear PDEs

Our first set of time-dependent PDEs to consider are parabolic equations.
To contextualize what to expect from numerical approximations, we need some
basic theory for linear PDEs.

Consider a scalar PDE for u “ upx, tq having the form,

ut “ p

ˆ B
Bx

˙
u,

with periodic boundary conditions on x P r0, 2⇡q.
Above, p is a is an operator involving (possibly high-order) spatial derivatives of u.

Example
The opeator,

p

ˆ B
Bx

˙
“ apxq B

Bx ` B
Bx

ˆ
pxq B

Bx

˙
` rpxq,

corresponds to a convection-reaction-diffusion problem with variable coefficients.

All of what follows applies for vector-valued problems in multiple space dimensions,
as well.
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Fourier transforms

Our main tool to understand basic PDEs will be Fourier transforms: Given a
function fpxq on r0, 2⇡q, the Fourier Transform of x is given by,

F p!q “ Frf s :“
ª 2⇡

0

fpxq�px,!qdx, �px,!q :“ 1?
2⇡

ei!x,

where ! P , and � is the complex conjugate with i “ ?´1 the imaginary unit.

The Fourier transform is an isometry between L2pr0, 2⇡s; q and `2p ; q:
ª 2⇡

0

|fpxq|2 dx “
ÿ

!P
|F p!q|2,

and in particular F and F´1 are well-defined operations,

fpxq L2

“ F´1rF p!qs “
ÿ

!P
F p!q�px,!q.

A particularly important property of Fourier transforms for us is the
!-representation of spatial derivatives:

F
ˆ

d
dx

f

˙
“ i!F p!q
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Symbols of differential operators

Fourier transforms allow us to “easily” identify solutions to PDEs:

Since p
` B

Bx
˘
u is a linear differential operator acting on u, then the Fourier

transform of this expression is a polynomial in !,

F
„
p

ˆ B
Bx

˙
upx, tq

⇢
“ P p!qUp!, tq,

where U is the Fourier transform of u.

The function P p!q is called the symbol (of the operator pp B
Bx q).
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Since p
` B

Bx
˘
u is a linear differential operator acting on u, then the Fourier

transform of this expression is a polynomial in !,

F
„
p

ˆ B
Bx

˙
upx, tq

⇢
“ P p!qUp!, tq,

where U is the Fourier transform of u.

The function P p!q is called the symbol (of the operator pp B
Bx q).

The symbol makes solving linear PDE’s “easy”:

ut “ p

ˆ B
Bx

˙
u, upx, 0q “ u0pxq

ó Fr¨s ó Fr¨s
d
dt

Up!, tq “ P p!qU, Up!, 0q “ U0p!q.

This is just a(n infinite) decoupled system of ordinary differential equations.
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Symbols of differential operators

Fourier transforms allow us to “easily” identify solutions to PDEs:

Since p
` B

Bx
˘
u is a linear differential operator acting on u, then the Fourier

transform of this expression is a polynomial in !,

F
„
p

ˆ B
Bx

˙
upx, tq

⇢
“ P p!qUp!, tq,

where U is the Fourier transform of u.

The function P p!q is called the symbol (of the operator pp B
Bx q).

The symbol makes solving linear PDE’s “easy”:

ut “ p

ˆ B
Bx

˙
u, upx, 0q “ u0pxq

ó Fr¨s ó Fr¨s
d
dt

Up!, tq “ P p!qU, Up!, 0q “ U0p!q.
This is just a(n infinite) decoupled system of ordinary differential equations.
The solution is

Up!, tq “ U0p!qeP p!qt ùñ upx, tq “
ÿ

!PZ
Up!, tq�px,!q “ 1?

2⇡

8ÿ

!“´8
U0p!qeP p!qtei!x.
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Well-posedness

ut “ p

ˆ B
Bx

˙
u, upx, 0q “ u0pxq.

upx, tq “ 1?
2⇡

ÿ

!P
U0p!qeP p!qtei!t

Although we obtained an explicit solution, there are some assumptions we need to
ensure rigor of the arguments.
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Well-posedness

ut “ p

ˆ B
Bx

˙
u, upx, 0q “ u0pxq.

upx, tq “ 1?
2⇡

ÿ

!P
U0p!qeP p!qtei!t

Although we obtained an explicit solution, there are some assumptions we need to
ensure rigor of the arguments.

Definition
The PDE above is stable if there exists K,↵ P such that

ˇ̌
ˇeP p!qt

ˇ̌
ˇ § Ke↵t, t • 0, ! P .

Stability is a natural requirement for solvability of PDEs.
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Well-posedness

ut “ p

ˆ B
Bx

˙
u, upx, 0q “ u0pxq.

upx, tq “ 1?
2⇡

ÿ

!P
U0p!qeP p!qtei!t

Although we obtained an explicit solution, there are some assumptions we need to
ensure rigor of the arguments.

Definition
The PDE above is stable if there exists K,↵ P such that

ˇ̌
ˇeP p!qt

ˇ̌
ˇ § Ke↵t, t • 0, ! P .

Stability is a natural requirement for solvability of PDEs.

Theorem (Well-posedness)

If the PDE above is stable, then the Fourier-based formula for upx, tq above is the

unique solution, and is “smooth”.
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The heat equation

Our simplest example of a parabolic equation is,

ut “ uxx, upx, 0q “ u0pxq,

with periodic boundary conditions on x P r0, 2⇡q.
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The heat equation

Our simplest example of a parabolic equation is,

ut “ uxx, upx, 0q “ u0pxq,

with periodic boundary conditions on x P r0, 2⇡q.
The symbol is rather easily computed here,

F
„ B2

Bx2
upx, tq

⇢
“ ´!2Up!, tq “: P p!qUp!, tq.

Hence, the exact solution to this problem is,

upx, tq “ 1?
2⇡

ÿ

!P
U0p!qe´!2tei!t.
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The heat equation

Our simplest example of a parabolic equation is,

ut “ uxx, upx, 0q “ u0pxq,

with periodic boundary conditions on x P r0, 2⇡q.
The symbol is rather easily computed here,

F
„ B2

Bx2
upx, tq

⇢
“ ´!2Up!, tq “: P p!qUp!, tq.

Hence, the exact solution to this problem is,

upx, tq “ 1?
2⇡

ÿ

!P
U0p!qe´!2tei!t.

The main point here is that initial frequency components U0p!q are attentuated
exponentially in time.

In particular, |eP p!qt| § 1 for all t,!, so the PDE is stable and the solution above is
unique + smooth.
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Parabolic equations, I

Equations that behave essentially like the heat equation are parabolic problems.

Let x¨, ¨y and } ¨ } be the standard L2pr0, 2⇡sq inner product and norm, respectively.

The signature behavior of the heat equation is energy dissipation according to the
derivative (variation) of u:

ut “ uxx
multiply by u, integrate›››››››››››››››Ñ d

dt
}u}2 “ ´2}ux}2.
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Equations that behave essentially like the heat equation are parabolic problems.

Let x¨, ¨y and } ¨ } be the standard L2pr0, 2⇡sq inner product and norm, respectively.

The signature behavior of the heat equation is energy dissipation according to the
derivative (variation) of u:

ut “ uxx
multiply by u, integrate›››››››››››››››Ñ d

dt
}u}2 “ ´2}ux}2.

Because of this, a linear PDE (defined by the operator p) is parabolic if

xu, puy ` xpu, uy § ´�}ux}2,

for some � ° 0.

Such an equation is “at least“ as dissipative as ut “ �uxx.

A. Narayan (U. Utah – Math/SCI) Math 6630: Finite difference methods, I



Parabolic equations, I

Equations that behave essentially like the heat equation are parabolic problems.

Let x¨, ¨y and } ¨ } be the standard L2pr0, 2⇡sq inner product and norm, respectively.

The signature behavior of the heat equation is energy dissipation according to the
derivative (variation) of u:

ut “ uxx
multiply by u, integrate›››››››››››››››Ñ d

dt
}u}2 “ ´2}ux}2.

Because of this, a linear PDE (defined by the operator p) is parabolic if

xu, puy ` xpu, uy § ´�}ux}2,

for some � ° 0.

Such an equation is “at least“ as dissipative as ut “ �uxx. For example,

ut “ B
Bx ppxquxq ,

is parabolic if infx pxq “ � ° 0.
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Parabolic equations, II

A conceptually simple example of a PDE that is not stable (certainly not parabolic)
is,

ut “ ´uxx, upx, 0q “ u0pxq,

whose symbol is P p!q “ !2. In particular, there is no K, ↵ such that,

|e!2t| § Ke↵t

for every ! P . Consequently, this is not a stable (or well-posed) PDE.
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Parabolic equations, II

A conceptually simple example of a PDE that is not stable (certainly not parabolic)
is,

ut “ ´uxx, upx, 0q “ u0pxq,

whose symbol is P p!q “ !2. In particular, there is no K, ↵ such that,

|e!2t| § Ke↵t

for every ! P . Consequently, this is not a stable (or well-posed) PDE.

When designing numerical methods, it’s helpful to understand theoretical
expectations for the scheme.
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Finite difference methods: the heat equation

With an understanding of what is expected from parabolic problems, let’s discretize
the heat equation,

ut “ uxx, upx, 0q “ u0pxq, up0, tq “ up2⇡, tq,

for x P r0, 2⇡q.
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Finite difference methods: the heat equation

With an understanding of what is expected from parabolic problems, let’s discretize
the heat equation,

ut “ uxx, upx, 0q “ u0pxq, up0, tq “ up2⇡, tq,

for x P r0, 2⇡q.
One strategy to dive right in:

– Equidistant discretization for x and t

– xj “ j
M2⇡ , j P rM s. Periodic BC’s: we identify xM Ø x0.

h “ �x “ xj`1 ´ xj

– tn “ nk, k ° 0 for n “ 0, 1, . . .
k “ �t “ tk`1 ´ tk

– un
j « upxj , tnq, un “ pun

0 , . . . , u
n
M´1qT

– use our standard D´D` discretization for uxx

– use a Forward Euler discretization for ut: D`un
j :“ 1

k pun`1
j ´ un

j q
NB: The superscript n is a temporal index, not an exponent.
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Finite difference methods: the heat equation

With an understanding of what is expected from parabolic problems, let’s discretize
the heat equation,

ut “ uxx, upx, 0q “ u0pxq, up0, tq “ up2⇡, tq,
for x P r0, 2⇡q.
One strategy to dive right in:

– Equidistant discretization for x and t

– xj “ j
M2⇡ , j P rM s. Periodic BC’s: we identify xM Ø x0.

h “ �x “ xj`1 ´ xj

– tn “ nk, k ° 0 for n “ 0, 1, . . .
k “ �t “ tk`1 ´ tk

– un
j « upxj , tnq, un “ pun

0 , . . . , u
n
M´1qT

– use our standard D´D` discretization for uxx

– use a Forward Euler discretization for ut: D`un
j :“ 1

k pun`1
j ´ un

j q
NB: The superscript n is a temporal index, not an exponent.
The scheme is then:

D`un
j “ D´D`un

j , j P rM s, n • 0.
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FD stencils

D`un
j “ D´D`un

j , j P rM s, n • 0.

This scheme, more explicity, is given by,

un`1
j “ un

j ` k
h2

`
un
j´1 ´ 2un

j ` un
j`1

˘
.

To practice this notation: here is Crank-Nicolson for the same spatial discretization,

D`un
j “ 1

2
D´D`un

j ` 1
2
D´D`un`1

j , j P rM s, n • 0,

i.e.,

un`1
j “ un

j ` k
2h2

pun
j´1 ´ 2un

j ` un
j`1

un`1
j´1 ´ 2un`1

j ` un`1
j`1 q.

“rjlfdm”
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tn
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Figure 9.1. Stencils for the methods (9.5) and (9.7).

Since the heat equation is an evolution equation that can be solved forward in time,
we set up our difference equations in a form where we can march forward in time, deter-
mining the values U nC1

i for all i from the values U n
i at the previous time level, or perhaps

using also values at earlier time levels with a multistep formula.
As an example, one natural discretization of (9.1) would be

U nC1
i ! U n

i

k
D 1

h2
.U n

i!1 ! 2U n
i C U n

iC1/: (9.4)

This uses our standard centered difference in space and a forward difference in time. This
is an explicit method since we can compute each U nC1

i explicitly in terms of the previous
data:

U nC1
i D U n

i C k

h2
.U n

i!1 ! 2U n
i C U n

iC1/: (9.5)

Figure 9.1(a) shows the stencil of this method. This is a one-step method in time, which is
also called a two-level method in the context of PDEs since it involves the solution at two
different time levels.

Another one-step method, which is much more useful in practice, as we will see
below, is the Crank–Nicolson method,

U nC1
i ! U n

i

k
D 1

2
.D2U n

i C D2U nC1
i / (9.6)

D 1

2h2
.U n

i!1 ! 2U n
i C U n

iC1 C U nC1
i!1 ! 2U nC1

i C U nC1
iC1 /;

which can be rewritten as

U nC1
i D U n

i C k

2h2
.U n

i!1 ! 2U n
i C U n

iC1 C U nC1
i!1 ! 2U nC1

i C U nC1
iC1 / (9.7)

or

!rU nC1
i!1 C .1 C 2r /U nC1

i ! rU nC1
iC1 D rU n

i!1 C .1 ! 2r /U n
i C rU n

iC1; (9.8)

where r D k=2h2. This is an implicit method and gives a tridiagonal system of equations
to solve for all the values U nC1

i simultaneously. In matrix form this is

Figure: Finite difference stencils. LeVeque 2007, Figure 9.1
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FD stencils
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FD analysis

ut “ uxx

D`un
j “ D`D´un

j .

This is our first finite difference scheme, but there are many questions we have yet
to answer:

– Stability?
– Accuracy?
– Convergence?
– Other types of discretizations?
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