Math 6630: Numerical Solutions of Partial Differential Equations Finite difference methods for time-dependent problems, Part I
 See LeVeque 2007, Chapter 9,
 Langtangen and Linge 2017, Chapter 3,
 Kreiss, Oliger, and Gustafsson 2013, Chapters 1, 3, 6

Akil Narayan ${ }^{1}$
${ }^{1}$ Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute University of Utah

February 15, 2023

Basics concepts for linear PDEs

$$
u_{t}=u_{x x}
$$

Our first set of time-dependent PDEs to consider are parabolic equations. To contextualize what to expect from numerical approximations, we need some basic theory for linear PDEs.

Consider a scalar PDE for $u=u(x, t)$ having the form,

with periodic boundary conditions on $x \in[0,2 \pi)$.
Above, p is a is an operator involving (possibly high-order) spatial derivatives of u.

Basics concepts for linear PDEs

Our first set of time-dependent PDEs to consider are parabolic equations.
To contextualize what to expect from numerical approximations, we need some basic theory for linear PDEs.

Consider a scalar PDE for $u=u(x, t)$ having the form,

$$
u_{t}=p\left(\frac{\partial}{\partial x}\right) u
$$

with periodic boundary conditions on $x \in[0,2 \pi)$.
Above, p is a is an operator involving (possibly high-order) spatial derivatives of u.

Basics concepts for linear PDEs

Our first set of time-dependent PDEs to consider are parabolic equations.
To contextualize what to expect from numerical approximations, we need some basic theory for linear PDEs.

Consider a scalar PDE for $u=u(x, t)$ having the form,

$$
u_{t}=p\left(\frac{\partial}{\partial x}\right) u
$$

with periodic boundary conditions on $x \in[0,2 \pi)$.
Above, p is a is an operator involving (possibly high-order) spatial derivatives of u.

Example

The opeator,

$$
p\left(\frac{\partial}{\partial x}\right)=\frac{\partial^{2}}{\partial x^{2}}
$$

corresponds to a prototypical parabolic equation, which we will our focus in these slides.

This is, in many senses, the "easiest" example.

Basics concepts for linear PDEs

Our first set of time-dependent PDEs to consider are parabolic equations.
To contextualize what to expect from numerical approximations, we need some basic theory for linear PDEs.

Consider a scalar PDE for $u=u(x, t)$ having the form,

$$
u_{t}=p\left(\frac{\partial}{\partial x}\right) u
$$

with periodic boundary conditions on $x \in[0,2 \pi)$.
Above, p is a is an operator involving (possibly high-order) spatial derivatives of u.

Example

The opeator,

$$
p\left(\frac{\partial}{\partial x}\right)=a(x) \frac{\partial}{\partial x}+\frac{\partial}{\partial x}\left(\kappa(x) \frac{\partial}{\partial x}\right)+r(x)
$$

corresponds to a convection-reaction-diffusion problem with variable coefficients.
All of what follows applies for vector-valued problems in multiple space dimensions, as well.

Fourier transforms

Our main tool to understand basic PDEs will be Fourier transforms: Given a function $f(x)$ on $[0,2 \pi)$, the Fourier Transform of x is given by,

$$
F(\omega) \stackrel{x^{\prime}}{\mathcal{F}}[f]:=\int_{0}^{2 \pi} f(x) \overline{\phi(x, \omega)} \mathrm{d} x, \quad \phi(x, \omega):=\frac{1}{\sqrt{2 \pi}} e^{i \omega x}
$$

where $\omega \in \mathbb{Z}$, and $\bar{\phi}$ is the complex conjugate with $i=\sqrt{-1}$ the imaginary unit.

The Fourier transform is an isometry between $L^{2}([0,2 \pi] ; \mathbb{C})$ and $\ell^{2}(\mathbb{Z} ; \mathbb{C})$:

$$
\int_{0}^{2 \pi}|f(x)|^{2} \mathrm{~d} x=\sum_{\omega \in \mathbb{Z}}|F(\omega)|^{2}
$$

and in particular \mathcal{F} and \mathcal{F}^{-1} are well-defined operations,

$$
f(x) \stackrel{L^{2}}{=} \mathcal{F}^{-1}[F(\omega)]=\sum_{\omega \in \mathbb{Z}} F(\omega) \phi(x, \omega)
$$

A particularly important property of Fourier transforms for us is the ω-representation of spatial derivatives:

Fourier transforms

Our main tool to understand basic PDEs will be Fourier transforms: Given a function $f(x)$ on $[0,2 \pi)$, the Fourier Transform of x is given by,

$$
F(\omega)=\mathcal{F}[f]:=\int_{0}^{2 \pi} f(x) \overline{\phi(x, \omega)} \mathrm{d} x, \quad \phi(x, \omega):=\frac{1}{\sqrt{2 \pi}} e^{i \omega x}
$$

where $\omega \in \mathbb{Z}$, and $\bar{\phi}$ is the complex conjugate with $i=\sqrt{-1}$ the imaginary unit.
The Fourier transform is an isometry between $L^{2}([0,2 \pi] ; \mathbb{C})$ and $\ell^{2}(\mathbb{Z} ; \mathbb{C})$:

$$
\int_{0}^{2 \pi}|f(x)|^{2} \mathrm{~d} x=\sum_{\omega \in \mathbb{Z}}|F(\omega)|^{2}
$$

and in particular \mathcal{F} and \mathcal{F}^{-1} are well-defined operations,

$$
f(x) \stackrel{L^{2}}{=} \mathcal{F}^{-1}[F(\omega)]=\sum_{\omega \in \mathbb{Z}} F(\omega) \phi(x, \omega) .
$$

A particularly important property of Fourier transforms for us is the ω-representation of spatial derivatives:

Fourier transforms

Our main tool to understand basic PDEs will be Fourier transforms: Given a function $f(x)$ on $[0,2 \pi)$, the Fourier Transform of x is given by,

$$
F(\omega)=\mathcal{F}[f]:=\int_{0}^{2 \pi} f(x) \overline{\phi(x, \omega)} \mathrm{d} x, \quad \phi(x, \omega):=\frac{1}{\sqrt{2 \pi}} e^{i \omega x}
$$

where $\omega \in \mathbb{Z}$, and $\bar{\phi}$ is the complex conjugate with $i=\sqrt{-1}$ the imaginary unit.
The Fourier transform is an isometry between $L^{2}([0,2 \pi] ; \mathbb{C})$ and $\ell^{2}(\mathbb{Z} ; \mathbb{C})$:

$$
\int_{0}^{2 \pi}|f(x)|^{2} \mathrm{~d} x=\sum_{\omega \in \mathbb{Z}}|F(\omega)|^{2}
$$

and in particular \mathcal{F} and \mathcal{F}^{-1} are well-defined operations,

$$
f(x) \stackrel{L^{2}}{=} \mathcal{F}^{-1}[F(\omega)]=\sum_{\omega \in \mathbb{Z}} F(\omega) \phi(x, \omega) .
$$

A particularly important property of Fourier transforms for us is the ω-representation of spatial derivatives:

$$
\mathcal{F}\left(\frac{\mathrm{d}}{\mathrm{~d} x} f\right)=i \omega F(\omega)
$$

Symbols of differential operators

Fourier transforms allow us to "easily" identify solutions to PDEs:
Since $p\left(\frac{\partial}{\partial x}\right) u$ is a linear differential operator acting on u, then the Fourier transform of this expression is a polynomial in ω,

$$
\mathcal{F}\left[p\left(\frac{\partial}{\partial x}\right) u(x, t)\right]=P(\omega) U(\omega, t)
$$

where U is the Fourier transform of u.
The function $P(\omega)$ is called the symbol (of the operator $p\left(\frac{\partial}{\partial x}\right)$).

Symbols of differential operators

Fourier transforms allow us to "easily" identify solutions to PDEs:
Since $p\left(\frac{\partial}{\partial x}\right) u$ is a linear differential operator acting on u, then the Fourier transform of this expression is a polynomial in ω,

$$
\mathcal{F}\left[p\left(\frac{\partial}{\partial x}\right) u(x, t)\right]=P(\omega) U(\omega, t)
$$

where U is the Fourier transform of u.
The function $P(\omega)$ is called the symbol (of the operator $p\left(\frac{\partial}{\partial x}\right)$).
The symbol makes solving linear PDE's "easy":

$$
\begin{array}{rlrl}
u_{t} & =p\left(\frac{\partial}{\partial x}\right) u, & u(x, 0) & =u_{0}(x) \\
& \Downarrow \mathcal{F}[\cdot] & \Downarrow \mathcal{F}[\cdot] \\
\frac{\mathrm{d}}{\mathrm{~d} t} U(\omega, t) & =P(\omega) U, & U(\omega, 0) & =U_{0}(\omega) .
\end{array}
$$

This is just a(n infinite) decoupled system of ordinary differential equations.

Symbols of differential operators

Fourier transforms allow us to "easily" identify solutions to PDEs:
Since $p\left(\frac{\partial}{\partial x}\right) u$ is a linear differential operator acting on u, then the Fourier transform of this expression is a polynomial in ω,

$$
\mathcal{F}\left[p\left(\frac{\partial}{\partial x}\right) u(x, t)\right]=P(\omega) U(\omega, t)
$$

where U is the Fourier transform of u.
The function $P(\omega)$ is called the symbol (of the operator $p\left(\frac{\partial}{\partial x}\right)$).
The symbol makes solving linear PDE's "easy":

$$
\begin{array}{rlrl}
u_{t} & =p\left(\frac{\partial}{\partial x}\right) u, & u(x, 0) & =u_{0}(x) \\
& \Downarrow \mathcal{F}[\cdot] & \Downarrow \mathcal{F}[\cdot] \\
\frac{\mathrm{d}}{\mathrm{~d} t} U(\omega, t) & =P(\omega) U, & U(\omega, 0) & =U_{0}(\omega) .
\end{array}
$$

This is just a(n infinite) decoupled system of ordinary differential equations.
The solution is
$U(\omega, t)=U_{0}(\omega) e^{P(\omega) t} \Longrightarrow u(x, t)=\sum_{\omega \in \mathbb{Z}} U(\omega, t) \phi(x, \omega)=\frac{\sqrt{2 \pi}}{\sqrt{2 \pi}} \sum_{\omega \bar{Z}}^{\infty} U_{0}(\omega) e^{P(\omega) t} e^{i \omega}$

Well-posedness

$$
\begin{array}{rlr}
u_{t} & =p\left(\frac{\partial}{\partial x}\right) u, & u(x, 0)=u_{0}(x) \\
u(x, t) & =\frac{1}{\sqrt{2 \pi}} \sum_{\omega \in \mathbb{Z}} U_{0}(\omega) e^{P(\omega) t} e^{i \omega t}
\end{array}
$$

Although we obtained an explicit solution, there are some assumptions we need to ensure rigor of the arguments.

Well-posedness

$$
\begin{array}{rlr}
u_{t} & =p\left(\frac{\partial}{\partial x}\right) u, & u(x, 0)=u_{0}(x) \\
u(x, t) & =\frac{1}{\sqrt{2 \pi}} \sum_{\omega \in \mathbb{Z}} U_{0}(\omega) e^{P(\omega) t} e^{i \omega t}
\end{array}
$$

Although we obtained an explicit solution, there are some assumptions we need to ensure rigor of the arguments.

Definition

The PDE above is stable if there exists $K, \alpha \in \mathbb{R}$ such that

$$
\left|e^{P(\omega) t}\right| \leqslant K e^{\alpha t}, \quad t \geqslant 0, \omega \in \mathbb{Z}
$$

Stability is a natural requirement for solvability of PDEs.

Well-posedness

$$
\begin{array}{rlrl}
u_{t} & =p\left(\frac{\partial}{\partial x}\right) u, & u(x, 0)=u_{0}(x) \\
u(x, t) & =\frac{1}{\sqrt{2 \pi}} \sum_{\omega \in \mathbb{Z}} U_{0}(\omega) e^{P(\omega) t} e^{i \omega t}
\end{array}
$$

Although we obtained an explicit solution, there are some assumptions we need to ensure rigor of the arguments.

Definition

The PDE above is stable if there exists $K, \alpha \in \mathbb{R}$ such that

$$
\left|e^{P(\omega) t}\right| \leqslant K e^{\alpha t}, \quad t \geqslant 0, \omega \in \mathbb{Z}
$$

Stability is a natural requirement for solvability of PDEs.

Theorem (Well-posedness)

If the PDE above is stable, then the Fourier-based formula for $u(x, t)$ above is the unique solution, and is "smooth".

The heat equation

Our simplest example of a parabolic equation is,

$$
u_{t}=u_{x x}, \quad u(x, 0)=u_{0}(x)
$$

with periodic boundary conditions on $x \in[0,2 \pi)$.

The heat equation

Our simplest example of a parabolic equation is,

$$
u_{t}=u_{x x}, \quad u(x, 0)=u_{0}(x),
$$

with periodic boundary conditions on $x \in[0,2 \pi)$.
The symbol is rather easily computed here,

$$
\mathcal{F}\left[\frac{\partial^{2}}{\partial x^{2}} u(x, t)\right]=-\omega^{2} U(\omega, t)=: P(\omega) U(\omega, t)
$$

Hence, the exact solution to this problem is, $e^{P(\omega) t} \div e^{-\omega^{2} t} \leq e^{0 \cdot t} \forall t \geq 0$

$$
u(x, t)=\frac{1}{\sqrt{2 \pi}} \sum_{\omega \in \mathbb{Z}} U_{0}(\omega) e^{-\omega^{2} t} e^{i \omega t}
$$

The heat equation

Our simplest example of a parabolic equation is,

$$
u_{t}=u_{x x}, \quad u(x, 0)=u_{0}(x)
$$

with periodic boundary conditions on $x \in[0,2 \pi)$.
The symbol is rather easily computed here,

$$
U_{0}(w)=\mathscr{L}\left\{u_{0}(x)\right\}
$$

$$
\mathcal{F}\left[\frac{\partial^{2}}{\partial x^{2}} u(x, t)\right]=-\omega^{2} U(\omega, t)=: P(\omega) U(\omega, t)
$$

Hence, the exact solution to this problem is,

$$
u(x, t)=\frac{1}{\sqrt{2 \pi}} \sum_{\omega \in \mathbb{Z}} U_{0}(\omega) e^{-\omega^{2} t} e^{i \omega t}
$$

The main point here is that initial frequency components $U_{0}(\omega)$ are attentuated exponentially in time.

In particular, $\left|e^{P(\omega) t}\right| \leqslant 1$ for all t, ω, so the PDE is stable and the solution above is unique + smooth.

Parabolic equations, I

Equations that behave essentially like the heat equation are parabolic problems.
Let $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$ be the standard $L^{2}([0,2 \pi])$ inner product and norm, respectively.
The signature behavior of the heat equation is energy dissipation according to the derivative (variation) of u :

$$
\begin{aligned}
& u_{t}=u_{x x} \xrightarrow{\text { multiply by } u, \text { integrate }} \frac{\mathrm{d}}{\mathrm{~d} t}\|u\|^{2}=-2\left\|u_{x}\right\|^{2} . \\
& u_{f^{-}}=\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} U^{2}
\end{aligned}
$$

Parabolic equations, I

Equations that behave essentially like the heat equation are parabolic problems.
Let $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$ be the standard $L^{2}([0,2 \pi])$ inner product and norm, respectively.
The signature behavior of the heat equation is energy dissipation according to the derivative (variation) of u :

$$
u_{t}=u_{x x} \xrightarrow{\text { multiply by } u, \text { integrate }} \frac{\mathrm{d}}{\mathrm{~d} t}\|u\|^{2}=-2\left\|u_{x}\right\|^{2}
$$

Because of this, a linear PDE (defined by the operator p) is parabolic if
for some $\delta>0$.

$$
\begin{gathered}
\langle u, p u\rangle+\langle p u, u\rangle \leqslant-\delta\left\|u_{x}\right\|^{2} \\
P(w)+\overline{P(w)} \leq \delta
\end{gathered}
$$

Such an equation is "at least" as dissipative as $u_{t}=\delta u_{x x}$.

Parabolic equations, I

Equations that behave essentially like the heat equation are parabolic problems.
Let $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$ be the standard $L^{2}([0,2 \pi])$ inner product and norm, respectively.
The signature behavior of the heat equation is energy dissipation according to the derivative (variation) of u :

$$
u_{t}=u_{x x} \xrightarrow{\text { multiply by } u, \text { integrate }} \frac{\mathrm{d}}{\mathrm{~d} t}\|u\|^{2}=-2\left\|u_{x}\right\|^{2}
$$

Because of this, a linear PDE (defined by the operator p) is parabolic if

$$
\langle u, p u\rangle+\langle p u, u\rangle \leqslant-\delta\left\|u_{x}\right\|^{2},
$$

for some $\delta>0$.
Such an equation is "at least" as dissipative as $u_{t}=\delta u_{x x}$. For example,

$$
u_{t}=\frac{\partial}{\partial x}\left(\kappa(x) u_{x}\right)
$$

is parabolic if $\inf _{x} \kappa(x)=\delta>0$.

Parabolic equations, II

A conceptually simple example of a PDE that is not stable (certainly not parabolic) is,

$$
u_{t}=-u_{x x}, \quad u(x, 0)=u_{0}(x),
$$

whose symbol is $P(\omega)=\omega^{2}$. In particular, there is no K, α such that,

$$
\left|e^{\omega^{2} t}\right| \leqslant K e^{\alpha t}
$$

for every $\omega \in \mathbb{Z}$. Consequently, this is not a stable (or well-posed) PDE.

Parabolic equations, II

A conceptually simple example of a PDE that is not stable (certainly not parabolic) is,

$$
u_{t}=-u_{x x}, \quad u(x, 0)=u_{0}(x),
$$

whose symbol is $P(\omega)=\omega^{2}$. In particular, there is no K, α such that,

$$
\left|e^{\omega^{2} t}\right| \leqslant K e^{\alpha t}
$$

for every $\omega \in \mathbb{Z}$. Consequently, this is not a stable (or well-posed) PDE.
When designing numerical methods, it's helpful to understand theoretical expectations for the scheme.

Finite difference methods: the heat equation

With an understanding of what is expected from parabolic problems, let's discretize the heat equation,

$$
u_{t}=u_{x x}, \quad u(x, 0)=u_{0}(x), \quad u(0, t)=u(2 \pi, t)
$$

for $x \in[0,2 \pi)$.

Finite difference methods: the heat equation
With an understanding of what is expected from parabolic problems, let's discretize the heat equation,

$$
u_{t}=u_{x x}, \quad u(x, 0)=u_{0}(x), \quad u(0, t)=u(2 \pi, t)
$$

for $x \in[0,2 \pi)$.
One strategy to dive right in:

- Equidistant discretization for x and t
$-x_{j}=\frac{j}{M 2 \pi}, j \in[M]$. Periodic BC's: we identify $x_{M} \leftrightarrow x_{0}$. $h=\Delta x=x_{j+1}-x_{j}$
- $t_{n}=n k, k>0$ for $n=0,1, \ldots$ $k=\Delta t=t_{k+1}-t_{k}$
$-u_{j}^{n} \approx u\left(x_{j}, t_{n}\right), \boldsymbol{u}^{n}=\left(u_{0}^{n}, \ldots, u_{M-1}^{n}\right)^{T}$
- use our standard $D_{-} D_{+}$discretization for $u_{x x}$
- use a Forward Euler discretization for $u_{t}: D^{+} u_{j}^{n}:=\frac{1}{k}\left(u_{j}^{n+1}-u_{j}^{n}\right)$

NB: The superscript n is a temporal index, not an exponent.

Finite difference methods: the heat equation
With an understanding of what is expected from parabolic problems, let's discretize the heat equation,

$$
u_{t}=u_{x x}, \quad u(x, 0)=u_{0}(x), \quad u(0, t)=u(2 \pi, t),
$$

for $x \in[0,2 \pi)$.

$$
2 \pi_{j j}^{u(x, 0)=u_{0}(x),}
$$

One strategy to dive right in:

- Equidistant-discretization for x and t
$-x_{j}=\frac{\downarrow / 2}{M / 2 \pi}, j \in[M]$. Periodic BC's: we identify $x_{M} \leftrightarrow x_{0}$. $h=\Delta x=x_{j+1}-x_{j}$
- $t_{n}=n k, k>0$ for $n=0,1, \ldots$
$k=\Delta t=t_{k+1}-t_{k}$
$-u_{j}^{n} \approx u\left(x_{j}, t_{n}\right), \boldsymbol{u}^{n}=\left(u_{0}^{n}, \ldots, u_{M-1}^{n}\right)^{T}$
- use our standard $D_{-} D_{+}$discretization for $u_{x x}$
- use a Forward Euler discretization for $u_{t}: D^{+} u_{j}^{n}:=\frac{1}{k}\left(u_{j}^{n+1}-u_{j}^{n}\right)$

NB: The superscript n is a temporal index, not an exponent.
The scheme is then:

$$
D^{+} u_{j}^{n}=D_{-} D_{+} u_{j}^{n}, \quad j \in[M], \quad n \geqslant 0
$$

FD stencils

$$
D^{+} u_{j}^{n}=D_{-} D_{+} u_{j}^{n}, \quad j \in[M], \quad n \geqslant 0
$$

This scheme, more explicity, is given by,

$$
u_{j}^{n+1}=u_{j}^{n}+\frac{k}{h^{2}}\left(u_{j-1}^{n}-2 u_{j}^{n}+u_{j+1}^{n}\right) .
$$

To practice this notation: here is Crank-Nicolson for the same spatial discretization,

Figure: Finite difference stencils. LeVeque 2007, Figure 9.1

FD stencils

$$
D^{+} u_{j}^{n}=D_{-} D_{+} u_{j}^{n}, \quad j \in[M], \quad n \geqslant 0
$$

This scheme, more explicity, is given by,

$$
u_{j}^{n+1}=u_{j}^{n}+\frac{k}{h^{2}}\left(u_{j-1}^{n}-2 u_{j}^{n}+u_{j+1}^{n}\right) .
$$

To practice this notation: here is Crank-Nicolson for the same spatial discretization,

$$
D^{+} u_{j}^{n}=\frac{1}{2} D_{-} D_{+} u_{j}^{n}+\frac{1}{2} D_{-} D_{+} u_{j}^{n+1}, \quad j \in[M], \quad n \geqslant 0
$$

i.e.,

$$
\begin{aligned}
& u_{j}^{n+1}=u_{j}^{n}+\frac{k}{2 h^{2}}\left(u_{j-1}^{n}-2 u_{j}^{n}+u_{j+1}^{n}\right. \\
&\left.u_{j-1}^{n+1}-2 u_{j}^{n+1}+u_{j+1}^{n+1}\right) .
\end{aligned}
$$

Figure: Finite difference stencils. LeVeque 2007, Figure 9.1

FD analysis

$$
\begin{aligned}
u_{t} & =u_{x x} \\
D^{+} u_{j}^{n} & =D_{+} D_{-} u_{j}^{n} .
\end{aligned}
$$

This is our first finite difference scheme, but there are many questions we have yet to answer:

- Stability?
- Accuracy?
- Convergence?
- Other types of discretizations?

References I

屢 Kreiss, Heinz-Otto, Joseph Oliger, and Bertil Gustafsson (2013). Time-Dependent Problems and Difference Methods. John Wiley \& Sons. ISBN: 978-1-118-54852-3.
Langtangen, Hans Petter and Svein Linge (2017). Finite Difference Computing with PDEs: A Modern Software Approach. Springer. ISBN: 978-3-319-55456-3.
LeVeque, Randall J. (2007). Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. SIAM. ISBN: 978-0-89871-783-9.

