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Basics concepts for linear PDEs
| P | Uy~ U

Our first set of time-dependent PDEs to consider are parabolic equations.
To contextualize what to expect from numerical approximations, we need some

basic theory for linear PDEs.
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Basics concepts for linear PDEs

Our first set of time-dependent PDEs to consider are parabolic equations.
To contextualize what to expect from numerical approximations, we need some
basic theory for linear PDEs.

Consider a scalar PDE for u = u(«,t) having the form,

%
Ut :p<5_x> u,

with periodic boundary conditions on x € [0, 27).
Above, p is a is an operator involving (possibly high-order) spatial derivatives of w.
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Basics concepts for linear PDEs

Our first set of time-dependent PDEs to consider are parabolic equations.
To contextualize what to expect from numerical approximations, we need some
basic theory for linear PDEs.

Consider a scalar PDE for u = u(«,t) having the form,

%
Ut zp(%> u,

with periodic boundary conditions on x € [0, 27).
Above, p is a is an operator involving (possibly high-order) spatial derivatives of w.

Example

The opeator,

0N _ &
P\oz )~ o2
corresponds to a prototypical parabolic equation, which we will our focus in these

slides.

This is, in many senses, the “easiest’ example.
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Basics concepts for linear PDEs

Our first set of time-dependent PDEs to consider are parabolic equations.
To contextualize what to expect from numerical approximations, we need some
basic theory for linear PDEs.

Consider a scalar PDE for u = u(«,t) having the form,

%
Ut :p(ﬁ_x) u,

with periodic boundary conditions on x € [0, 27).
Above, p is a is an operator involving (possibly high-order) spatial derivatives of w.

Example

The opeator,

p (a%) _ o(z) ai: T jx <K,(a;)a%) T (o),

corresponds to a convection-reaction-diffusion problem with variable coefficients.

All of what follows applies for vector-valued problems in multiple space dimensions,
as well.
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Fourier transforms

Our main tool to understand basic PDEs will be Fourier transforms: Given a
function f(z) on [0, 27), the Fourier Transform of x is given by,

1 TWXI

S o
F(w) = Ff] = f F(2) 8@, w)dz, @) 1= ="

where w € Z, and ¢ is the complex conjugate with i = v/—1 the imaginary unit.
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Fourier transforms

Our main tool to understand basic PDEs will be Fourier transforms: Given a
function f(z) on [0, 27), the Fourier Transform of x is given by,

2T 1 .
F = F = 9 d 9 9 = waa
@ =FU = | f@dE@dr, o) = =
where w € Z, and ¢ is the complex conjugate with i = v/—1 the imaginary unit.

The Fourier transform is an isometry between L*([0, 27]; C) and ¢*(%; C):

2T

| 1r@ra =X 1P@)
0 WEZ

and in particular F and F ! are well-defined operations,

f@)E FUFW)] = Y Fw)d(,w).

WEZ
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Fourier transforms

Our main tool to understand basic PDEs will be Fourier transforms: Given a
function f(z) on [0, 27), the Fourier Transform of x is given by,

2T 1 .
F = F = 9 d 9 9 = waa
@ =FU = | f@dE@dr, o) = =
where w € Z, and ¢ is the complex conjugate with i = v/—1 the imaginary unit.

The Fourier transform is an isometry between L*([0, 27]; C) and ¢*(%; C):

f @ Pde= S P

0 WEZ
and in particular F and F ! are well-defined operations,
2
fl@) = FFW)] = ), Flw)é(z,w).
WEZ

A particularly important property of Fourier transforms for us is the
w-representation of spatial derivatives:

F (%f) — W F (w)
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Symbols of differential operators

Fourier transforms allow us to “easily” identify solutions to PDEs:

Since p (%) u is a linear differential operator acting on wu, then the Fourier
transform of this expression is a polynomial in w,

F o (5 ) uted)| = P@UE@.0),

where U is the Fourier transform of w.

The function P(w) is called the symbol (of the operator p(2)).
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Symbols of differential operators

Fourier transforms allow us to “easily” identify solutions to PDEs:

Since p (%) u is a linear differential operator acting on wu, then the Fourier
transform of this expression is a polynomial in w,

F o (5 ) uted)| = P@UE@.0),

where U is the Fourier transform of w.

The function P(w) is called the symbol (of the operator p(2)).

The symbol makes solving linear PDE's “easy’:

mzp(éju, w(z,0) = uo(x)
V7l V7l
d

—U(w, 1) = PW)U, U(w,0) = Up(w)-

This is just a(n infinite) decoupled system of ordinary differential equations.
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Symbols of differential operators

Fourier transforms allow us to “easily” identify solutions to PDEs:

Since p (%) u is a linear differential operator acting on wu, then the Fourier
transform of this expression is a polynomial in w,

%
F o () ule0)| = PG,
where U is the Fourier transform of w.

The function P(w) is called the symbol (of the operator p(<)).

The symbol makes solving linear PDE's “easy’:

mzp(gﬁu, u(z,0) = uo(x)

I FL] I FL
§U@@=P@W, U (w,0) = Us(w).
This is just a(n infinite) decoupled system of ordinary dlfferentlal equatlons e L
The solution is i U ( )e’ v
J_n
. P(w)t P(w)t iw
U(w,t) = Up(w)e —  u(x,t) Zth = /ﬁ _Z Us( e
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Well-posedness

we = p (%) u, u(z,0) = uo(x).

Although we obtained an explicit solution, there are some assumptions we need to
ensure rigor of the arguments.
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Well-posedness

we = p (%) u, u(z,0) = uo(x).

Although we obtained an explicit solution, there are some assumptions we need to
ensure rigor of the arguments.

Definition

The PDE above is stable if there exists K, « € R such that

|6P(w)t < Ke™, t>0, weZ.

Stability is a natural requirement for solvability of PDEs.
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Well-posedness

%
U =P (ﬁ_x) u, u(z,0) = uo(x).
( Z U P(w)t twt

wEZ
Although we obtained an explicit solution, there are some assumptions we need to
ensure rigor of the arguments.
Definition
The PDE above is stable if there exists K, « € R such that

|6P(w)t < Ke*, t>0, weZ.

Stability is a natural requirement for solvability of PDEs.

Theorem (Well-posedness)

If the PDE above is stable, then the Fourier-based formula for u(x,t) above is the
unique solution, and is “smooth”.
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The heat equation
Our simplest example of a parabolic equation is,
Ut = Ugz, u(z,0) = uo(x),

with periodic boundary conditions on x € [0, 27).
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The heat equation

Our simplest example of a parabolic equation is,
Ut = Ugz, u(z,0) = uo(x),

with periodic boundary conditions on x € [0, 27).

The symbol is rather easily computed here,
0* 2
F @u(w t)| = —wU(w,t) = P(w)U(w, t)
P(VJH', - ~W ‘t £ )
Hence, the exact solution to this problem is, e - ¢ € \/ t20

( Z UO —w 2t zwt.
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The heat equation

Our simplest example of a parabolic equation is,

Ut = Ugz, u(z,0) = uo(x),

with periodic boundary conditions on x € [0, 27). uo(w) - j éuo [X)}

The symbol is rather easily computed here,

F [a—2u(:p t)] = —w’U(w,t) = P(w)U(w,t).

ox?

Hence, the exact solution to this problem is,

( Z UO —w 2t zwt.

The main point here is that initial frequency components Up(w) are attentuated
exponentially in time.

P(“’)t| < 1 for all t,w, so the PDE is stable and the solution above is

unique 4+ smooth.
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Parabolic equations, |

Equations that behave essentially like the heat equation are parabolic problems.
Let (-,-> and | - || be the standard L?([0,27]) inner product and norm, respectively.

The signature behavior of the heat equation is energy dissipation according to the
derivative (variation) of u:

multiply by wu, integrate d 2 2

AT

)«ab

\

¢
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Parabolic equations, |

Equations that behave essentially like the heat equation are parabolic problems.
Let (-,-> and | - || be the standard L?([0,27]) inner product and norm, respectively.

The signature behavior of the heat equation is energy dissipation according to the
derivative (variation) of u:

multiply by wu, integrate d 2 2
> —[ul” = —2]ue|".

dt

Ut = Ugxx

Because of this, a linear PDE (defined by the operator p) is parabolic if

<u7pu> + <pu7 U’> < _5Hu$H27

for some § > 0. P(u}):\' m = g

Such an equation is “at least” as dissipative as u; = duz,.
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Parabolic equations, |

Equations that behave essentially like the heat equation are parabolic problems.
Let (-,-> and | - || be the standard L?([0,27]) inner product and norm, respectively.

The signature behavior of the heat equation is energy dissipation according to the
derivative (variation) of u:

U = U multiply by wu, in’cegrate> d HUH2 _ —QH’U, H2
t rx dt x| -
Because of this, a linear PDE (defined by the operator p) is parabolic if
<u7pu> + <pu7 ’U,> < _5Hu$H27

for some 6 > 0.

Such an equation is “at least” as dissipative as u; = du,,. For example,

%

ur = 4 (r(e)us),

is parabolic if inf, x(x) = § > 0.
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Parabolic equations, Il

A conceptually simple example of a PDE that is not stable (certainly not parabolic)
IS,

Ut = —Ugpsg, u(z,0) = uo(x),
whose symbol is P(w) = w?. In particular, there is no K, « such that,
w2t at
e’ | < Ke

for every w € Z. Consequently, this is not a stable (or well-posed) PDE.
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Parabolic equations, Il

A conceptually simple example of a PDE that is not stable (certainly not parabolic)
IS,

Ut = —Ugpsg, u(z,0) = uo(x),
whose symbol is P(w) = w?. In particular, there is no K, « such that,
w2t at
e’ | < Ke

for every w € Z. Consequently, this is not a stable (or well-posed) PDE.

When designing numerical methods, it's helpful to understand theoretical
expectations for the scheme.
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Finite difference methods: the heat equation

With an understanding of what is expected from parabolic problems, let's discretize

the heat equation,

Ut = Uz, u(z,0) = uo(x), u(0,t) = u(2m,t),

for x € [0, 27).
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Finite difference methods: the heat equation

With an understanding of what is expected from parabolic problems, let's discretize
the heat equation,

Ut = Uz, u(z,0) = uo(x), u(0,t) = u(2m,t),

for x € [0, 27).
One strategy to dive right in:

— Equidistant discretization for x and ¢

— Tj = 375=, j € |[M]. Periodic BC's: we identify zs < xo.

h=A$=$j+1—:Bj

— th,=nk, k>0forn=0,1,...
k=At =1tpi1 — tg

S ’u,(xj,tn), u = (Ug, .. 7U?W—1)T

— use our standard D_ D, discretization for u;.

— use a Forward Euler discretization for us;: DT u} = 1 (u u;

+1
i)

NB: The superscript n is a temporal index, not an exponent.
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Finite difference methods: the heat equation

With an understanding of what is expected from parabolic problems, let's discretize
the heat equation,

Ut = Ugg, u(x,0) = uo(x), u(0,t) = u(2m,t),
for x € |0, 2m). l’Wz\//\/\

One strategy to dive yight in:

iscretization for  and ¢

- xj = 4L, j € [M]. Periodic BC's: we identify zas <> 0.
h =A% = Lj4+1 — Ty

—tp, =nk,k>0forn=0,1,...
k= At =ty — ts

mn mn

- uy ~u(zj,tn), u" = (ug, . ur—1)"

— use our standard D_ D discretization for u,.

— use a Forward Euler discretization for u;: D¥ ) = %(u?“ —u;)
NB: The superscript n is a temporal index, not an exponent.
The scheme is then:
D u} = D_D.uj, j e [M], n = 0.
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FD stencils

DY} = D_Diu}, j e [M], n =0
This scheme, more explicity, is given by,
mn n k n mn mn
Uj+1 = Uy + ﬁ (uj—l — 2’11/]' + ’le_|_1) .

Xj—1 Xj Xj+1

Figure: Finite difference stencils. LeVeque 2007, Figure 9.1
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FD stencils

D u} = D_D.uj, j e [M], n =0
This scheme, more explicity, is given by,
n—+1 n k n n n
Uj = Uy + ﬁ (uj—l — 2’U/j + Uj_|_1) .
To practice this notation: here is Crank-Nicolson for the same spatial discretization,
1 1 .
D+u;-‘ = iD_DJru? + §D_D+u?+1, j e |M], n =0,
le.,
n+l  n k n 2 n n
Uj = U + 2—h2(uj_1 — 2Uj + Uj41
n—+1 n—l—l n—+1
uj_1 —2u +ujiq)
a1 o o
tn V—[—4 o————— 0
Xj—1 Xj Xj+1

Figure: Finite difference stencils. LeVeque 2007, Figure 9.1
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FD analysis

Ut = Uzx
DY u} = DyD_uj.
This is our first finite difference scheme, but there are many questions we have yet
to answer:
— Stability?
— Accuracy?
— Convergence?

— Other types of discretizations?
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