Math 6630: Numerical Solutions of Partial Differential Equations Solvers for initial value problems, Part III

See Ascher and Petzold 1998, Chapters 1-5

Akil Narayan¹

¹Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute University of Utah

February 1, 2023

Initial value problems

$$u'(t) = f(t; u), \qquad u(0) = u_0.$$
$$u_n \approx u(t_n)$$
$$u_{n+1} \approx u_n + \int_{t_n}^{t_{n+1}} f(t, u(t)) dt$$

We have previously discussed

- Simple schemes: forward/backward Euler, Crank-Nicolson
- Consistency and LTE
- 0-stability and scheme convergence
- absolute/A-stability and consequences

Now we'll delve into more advanced schemes, in particular multi-stage schemes.

Higher-order schemes

The schemes we've seen previously are relatively low order: first order for Euler-type, and second order for Crank-Nicolson.

Recall that our schemes result from discretization (approximation) of an integral:

$$\boldsymbol{u}(t_{n+1}) = \boldsymbol{u}(t_n) + \int_{t_n}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{u}(t)) dt$$
$$\boldsymbol{u}_{n+1} \approx \boldsymbol{u}_n + \int_{t_n}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{u}(t)) dt.$$

Our choices so far were to

- Use a one-point approximation using the left-hand value (forward Euler)
- Use a one-point approximation using the right-hand value (backward Euler)
- Use a two-point Trapezoidal approximation (Crank-Nicolson)

Higher-order schemes

The schemes we've seen previously are relatively low order: first order for Euler-type, and second order for Crank-Nicolson.

Recall that our schemes result from discretization (approximation) of an integral:

$$\boldsymbol{u}(t_{n+1}) = \boldsymbol{u}(t_n) + \int_{t_n}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{u}(t)) dt$$
$$\boldsymbol{u}_{n+1} \approx \boldsymbol{u}_n + \int_{t_n}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{u}(t)) dt.$$

In moving foward, we could consider the approximation

$$\int_{t_n}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{u}(t)) dt \approx \sum_{j=1}^s k b_j \boldsymbol{f}(t_{n,j}, \boldsymbol{u}(t_{n,j})), \qquad t_{n,j} = t_n + k c_j,$$

for some constants b_j and c_j and number of points s. For example, we could determine these constants by enforcing high-degree polynomial interpolation conditions.

The major problem with this approach is that it's unclear what approximation should be used for u at the intermediate time points $t_{n,j}$.

Higher-order schemes

The schemes we've seen previously are relatively low order: first order for Euler-type, and second order for Crank-Nicolson.

Recall that our schemes result from discretization (approximation) of an integral:

$$\boldsymbol{u}(t_{n+1}) = \boldsymbol{u}(t_n) + \int_{t_n}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{u}(t)) dt$$
$$\boldsymbol{u}_{n+1} \approx \boldsymbol{u}_n + \int_{t_n}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{u}(t)) dt.$$

In moving foward, we could consider the approximation

$$\int_{t_n}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{u}(t)) \mathrm{d}t \approx \sum_{j=1}^s k b_j \boldsymbol{f}(t_{n,j}, \boldsymbol{u}(t_{n,j})), \qquad t_{n,j} = t_n + k c_j,$$

for some constants b_j and c_j and number of points s. For example, we could determine these constants by enforcing high-degree polynomial interpolation conditions.

The major problem with this approach is that it's unclear what approximation should be used for u at the intermediate time points $t_{n,j}$.

A simple method

I.e., we

To illustrate what we must accomplish, let us consider a simple case.

We'll again use a one-point method to approximate the integral, but collocate the point at the midpoint of the interval:

$$\int_{t_n}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{u}(t)) dt \approx k b_1 \boldsymbol{f}(t_{n,1}, \boldsymbol{u}(t_{n,1})), \qquad t_{n,1} = t_n + \frac{k}{2}$$

have chosen $c_1 = 1/2$, and b_j must be determined. $(\boldsymbol{\zeta} = |\boldsymbol{\gamma})$

Note, however, that consistency of the approximation requires $b_1 = 1$.

Therefore, the (only) major question we have to answer is how we compute $u(t_{n,1})$ from u_n .

A straightforward idea is to approximate $u(t_{n,1})$ with, say, Euler's method:

$$oldsymbol{u}(t_n+k/2) pprox oldsymbol{U}_1 \coloneqq oldsymbol{u}_n + rac{k}{2}oldsymbol{f}(t_n,oldsymbol{u}_n)$$

 $oldsymbol{u}_{n+1} = oldsymbol{u}_n + koldsymbol{f}(t_n+k/2,oldsymbol{U}_1).$

A simple method

To illustrate what we must accomplish, let us consider a simple case.

We'll again use a one-point method to approximate the integral, but collocate the point at the midpoint of the interval:

$$\int_{t_n}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{u}(t)) \mathrm{d}t \approx k b_1 \boldsymbol{f}(t_{n,1}, \boldsymbol{u}(t_{n,1})), \qquad t_{n,1} = t_n + \frac{k}{2}$$

I.e., we have chosen $c_1 = 1/2$, and b_j must be determined.

Note, however, that consistency of the approximation requires $b_1 = 1$.

Therefore, the (only) major question we have to answer is how we compute $u(t_{n,1})$ from u_n .

A straightforward idea is to approximate $u(t_{n,1})$ with, say, Euler's method:

$$oldsymbol{u}(t_n+k/2) pprox oldsymbol{U}_1 \coloneqq oldsymbol{u}_n + rac{k}{2}oldsymbol{f}(t_n,oldsymbol{u}_n)$$

 $oldsymbol{u}_{n+1} = oldsymbol{u}_n + koldsymbol{f}(t_n+k/2,oldsymbol{U}_1).$

A simple method

To illustrate what we must accomplish, let us consider a simple case.

We'll again use a one-point method to approximate the integral, but collocate the point at the midpoint of the interval:

$$\int_{t_n}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{u}(t)) \mathrm{d}t \approx k b_1 \boldsymbol{f}(t_{n,1}, \boldsymbol{u}(t_{n,1})), \qquad t_{n,1} = t_n + \frac{k}{2}$$

I.e., we have chosen $c_1 = 1/2$, and b_j must be determined.

Note, however, that consistency of the approximation requires $b_1 = 1$.

Therefore, the (only) major question we have to answer is how we compute $u(t_{n,1})$ from u_n .

A straightforward idea is to approximate $u(t_{n,1})$ with, say, Euler's method:

$$oldsymbol{u}(t_n+k/2) pprox oldsymbol{U}_1 \coloneqq oldsymbol{u}_n + rac{k}{2}oldsymbol{f}(t_n,oldsymbol{u}_n)$$

 $oldsymbol{u}_{n+1} = oldsymbol{u}_n + koldsymbol{f}(t_n+k/2,oldsymbol{U}_1).$

Order of consistency, I

$$oldsymbol{u}(t_n+k/2) pprox oldsymbol{U}_1 \coloneqq oldsymbol{u}_n + rac{k}{2}oldsymbol{f}(t_n,oldsymbol{u}_n) \ oldsymbol{u}_{n+1} = oldsymbol{u}_n + koldsymbol{f}(t_n+k/2,oldsymbol{U}_1).$$

This idea seems fruitful, but there is a conceptual problem: Note that,

$$D^{+} \mathbf{v}_{n} = \mathbf{f}(t_{n} + k/2, \mathbf{u}(t_{n} + k/2)) + \mathcal{O}(k^{2})$$

$$\mathcal{U}(t_{n})$$
-2 scheme.

leading to an order-2 scheme.

$$D^{\dagger} u(t_{h}) = \frac{1}{k} \int_{t_{h}}^{t_{h,1}} f(t_{h} u(t_{h}) dt + \frac{1}{k} \int_{t_{h}}^{t_{h,1}} f(t_{h} u(t_{h}) f(t_{h} u(t_{h})) f(t_{h} u(t_{h}))$$

The problem is that we are approximating with U_1 , which is only first-order accurate. Neverheless, one can show that this approximation is sufficient to retain an overall second-order LTE:

$$f(t_n + k/2, U_1) \approx f(t_n + k/2, u(t_n + k/2)) + (U_1 - u(t_n + 1/2)) \frac{\partial f}{\partial u}(t_n + k/2, u(t_n + k/2)) f(t_n + k/2, u(t_n + k/2)) = f(t_n + k/2, U_1) + (u(t_n + 1/2) - U_1) \frac{\partial f}{\partial u}(t_n + k/2, u(t_n + k/2)) = f(t_n + k/2, U_1) + O(k^2).$$

The midpoint method

$$oldsymbol{u}(t_n+k/2) pprox oldsymbol{U}_1 \coloneqq oldsymbol{u}_n + rac{k}{2}oldsymbol{f}(t_n,oldsymbol{u}_n)$$

 $oldsymbol{u}_{n+1} = oldsymbol{u}_n + koldsymbol{f}(t_n+k/2,oldsymbol{U}_1).$

Thus, the procedure above is actually second-order accurate, and is our first example of an explicit second-order method.

This scheme is called the (explicit) midpoint method.

The above shows how we might hope to generate higher-order schemes using higher-order quadrature.

Some happy coincidences occurred above, in particular making computations somewhat simple. In general, things are more technical.

The midpoint method

$$oldsymbol{u}(t_n+k/2) pprox oldsymbol{U}_1 \coloneqq oldsymbol{u}_n + rac{k}{2}oldsymbol{f}(t_n,oldsymbol{u}_n)$$

 $oldsymbol{u}_{n+1} = oldsymbol{u}_n + koldsymbol{f}(t_n+k/2,oldsymbol{U}_1).$

Thus, the procedure above is actually second-order accurate, and is our first example of an explicit second-order method.

This scheme is called the (explicit) midpoint method.

The above shows how we might hope to generate higher-order schemes using higher-order quadrature.

Some happy coincidences occurred above, in particular making computations somewhat simple. In general, things are more technical.

Multi-stage methods

A generalization of our previous approach is the quadrature approximation:

$$\int_{t_n}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{u}(t)) \mathrm{d}t \approx \sum_{j=1}^s k b_j \boldsymbol{f}(t_{n,j}, \boldsymbol{u}(t_{n,j})), \qquad t_{n,j} = t_n + k c_j,$$

This leads to the following scheme:

$$\boldsymbol{u}(t_{n,j}) \approx \boldsymbol{U}_j = \boldsymbol{u}_n + k \sum_{\ell=1}^s \boldsymbol{a}_{j,\ell} \boldsymbol{f}(t_{n,\ell}, \boldsymbol{U}_\ell) \qquad t_{n,j} = t_n + k \boldsymbol{c}_j,$$
$$\boldsymbol{u}_{n+1} = \boldsymbol{u}_n + k \sum_{j=1}^s \boldsymbol{b}_j \boldsymbol{f}(t_{n,j}, \boldsymbol{U}_j),$$

where the $a_{j,\ell}$, b_j , and c_j coefficients must be identified.

Multi-stage methods

A generalization of our previous approach is the quadrature approximation:

$$\int_{t_n}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{u}(t)) dt \approx \sum_{j=1}^s k b_j \boldsymbol{f}(t_{n,j}, \boldsymbol{u}(t_{n,j})), \qquad t_{n,j} = t_n + k c_j,$$

This leads to the following scheme:

$$\boldsymbol{u}(t_{n,j}) \approx \boldsymbol{U}_{j} = \boldsymbol{u}_{n} + k \sum_{\ell=1}^{s} \boldsymbol{a}_{j,\ell} \boldsymbol{f}(t_{n,\ell}, \boldsymbol{U}_{\ell}) \qquad t_{n,j} = t_{n} + k \boldsymbol{c}_{j}, \quad \boldsymbol{s}_{j} = 1$$
$$\boldsymbol{u}_{n+1} = \boldsymbol{u}_{n} + k \sum_{j=1}^{s} \boldsymbol{b}_{j} \boldsymbol{f}(t_{n,j}, \boldsymbol{U}_{j}), \qquad \int_{\boldsymbol{v}}^{\boldsymbol{v}} \boldsymbol{f}(\boldsymbol{x}) \boldsymbol{b}_{\lambda} \simeq \frac{1}{s} \int_{\boldsymbol{s}_{j}=0}^{\boldsymbol{v}} \boldsymbol{f}(\boldsymbol{s}_{j}) \boldsymbol{b}_{\lambda}$$

where the $a_{j,\ell}$, b_j , and c_j coefficients must be identified.

The above is the general form for a multi-stage scheme with s intermediate stages. It is more commonly known as a Runge-Kutta method.

- If $a_{j,\ell} \neq 0$ for any $\ell \geq j$, then the procedure above is implicit. Otherwise it is explicit.
- If the overall scheme has order p LTE, it is typically not necessary that ${\bm U}_j$ correspond to an order p LTE.
- For $s \ge 3$, deriving and matching appropriate conditions can be quite cumbersome.

Consistency for order conditions

To see why things get hairy, first note that,

 $f = f(\epsilon^{(n)}(\epsilon))$

$$\boldsymbol{u}' = \boldsymbol{f}(t_n, \boldsymbol{u}(t_n)) = \boldsymbol{f} =: \boldsymbol{f}^{(0)}$$
$$\boldsymbol{u}'' = \frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{f} = \boldsymbol{f}_t + \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{u}}\boldsymbol{u}' =: \boldsymbol{f}^{(1)}$$
$$\boldsymbol{u}''' = \frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{f}^{(1)} = \boldsymbol{f}_t^{(1)} + \frac{\partial \boldsymbol{f}^{(1)}}{\partial \boldsymbol{u}}\boldsymbol{u}' =: \boldsymbol{f}^{(2)}$$

And by direct Taylor expansion, we have

•

$$D^+ \boldsymbol{u}(t_n) = \boldsymbol{u}' + \frac{k}{2} \boldsymbol{u}'' + \cdots$$
$$= \boldsymbol{f}^{(0)} + \frac{k}{2} \boldsymbol{f}^{(1)} + \cdots$$

Consistency for order conditions

To see why things get hairy, first note that,

$$\boldsymbol{u}' = \boldsymbol{f}(t_n, \boldsymbol{u}(t_n)) = \boldsymbol{f} \eqqcolon \boldsymbol{f}^{(0)}$$
$$\boldsymbol{u}'' = \frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{f} = \boldsymbol{f}_t + \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{u}}\boldsymbol{u}' \eqqcolon \boldsymbol{f}^{(1)}$$
$$\boldsymbol{u}''' = \frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{f}^{(1)} = \boldsymbol{f}_t^{(1)} + \frac{\partial \boldsymbol{f}^{(1)}}{\partial \boldsymbol{u}}\boldsymbol{u}' \eqqcolon \boldsymbol{f}^{(2)}$$

And by direct Taylor expansion, we have

$$D^+ \boldsymbol{u}(t_n) = \boldsymbol{u}' + \frac{k}{2} \boldsymbol{u}'' + \cdots$$
$$= \boldsymbol{f}^{(0)} + \frac{k}{2} \boldsymbol{f}^{(1)} + \cdots$$

Therefore, attaining an order p LTE amounts to enforcing,

$$\sum_{j=1}^{s} b_j \boldsymbol{f}(t_{n,j}, \boldsymbol{U}_j) = \boldsymbol{f}^{(0)} + \frac{k}{2} \boldsymbol{f}^{(1)} + \dots + \frac{k^{p-1}}{p!} \boldsymbol{f}^{(p-1)} + \mathcal{O}(k^p).$$

This then involves Taylor expansions for $f(t_{n,j}, U_j)$. \odot

A. Narayan (U. Utah - Math/SCI)

Math 6630: ODE solvers, III

Order conditions

We can count the number of required matching conditions (e.g., different types of derivatives) necessary to achieve order p:

p 1 2 3 4 5 6 7 8 # of conditions 1 2 4 8 17 37 115 200

And we can compare this to the number of free parameters for an *s*-stage method:

s 1 2 3 4 5 6 7 8 # of parameters 1 3 6 10 15 21 28 36

Order conditions

We can count the number of required matching conditions (e.g., different types of derivatives) necessary to achieve order p:

p | 1 2 3 4 5 6 7 8 # of conditions | 1 2 4 8 17 37 115 200

And we can compare this to the number of free parameters for an *s*-stage method:

S	1	2	3	4	5	6	7	8
# of parameters	1	3	6	10	15	21	28	36

This suggests that there is an order barrier, i.e., an order at which we must invest a superlinear number of stages relative to the order p. In fact, this is a theorem:

Theorem

There is no pth order Runge-Kutta method with s = p stages if $p \ge 5$.

Order conditions

We can count the number of required matching conditions (e.g., different types of derivatives) necessary to achieve order p:

p 1 2 3 4 5 6 7 8 # of conditions 1 2 4 8 17 37 115 200

And we can compare this to the number of free parameters for an *s*-stage method:

s 1 2 3 4 5 6 7 8 # of parameters 1 3 6 10 15 21 28 36

This suggests that there is an order barrier, i.e., an order at which we must invest a superlinear number of stages relative to the order p. In fact, this is a theorem:

Theorem

There is no pth order Runge-Kutta method with s = p stages if $p \ge 5$.

However, the situation is not so dire as the tables above suggest:

Stages s12345678910Achievable RK order p1234456677

In particular, this suggests that s = p = 4 is an optimal tradeoff point.

Butcher tableaus

$$t_{n,j} = t_n + kc_j, \qquad C_j \checkmark$$
$$u(t_{n,j}) \approx U_j = u_n + k \sum_{\ell=1}^s a_{j,\ell} f(t_{n,\ell}, U_\ell)$$
$$u_{n+1} = u_n + k \sum_{j=1}^s b_j f(t_{n,j}, U_j),$$

In order to compactly communicate RK schemes, the Butcher tableau is the standard tool: the parameters $a_{j,\ell}$, b_j , and c_j are collected and arranged as follows:

c_1	a_{11}	a_{12}	•••	a_{1s}
c_2	a_{21}	a_{22}	• • •	a_{2s}
	•	÷	•••	:
c_s	a_{s1}	a_{s2}	• • •	a_{ss}
	\overline{b}_1	\overline{b}_2	• • •	b_s

Some familiar schemes

Using tableau notation we can rehash some schemes we've previously seen:

Forward Euler Backward Euler Crank-Nicolson $FE: S=I, \quad U_{1}=U_{n}+\sum_{i=1}^{s}k_{i}K_{i}f(t_{n}+k_{c_{i}}, U_{i})$ $= U_n + |c_k|^{\mathcal{U}} f(t_n + kc_n, U_n)$ = Un $U_{nh} = U_n + k \sum_{i=1}^{5} f(t_n + k c_{i_1}, U_{i_2}) = U_n + k f(b_n, U_n)$

More examples

There is a one-parameter family of two-stage second-order methods:

for $c \in (0, 1]$:

- c = 1: explicit trapezoid method
- c = 1/2: explicit midpoint method

More examples

There is a one-parameter family of two-stage second-order methods:

$$\begin{array}{c|ccc}
0 & 0 & 0 \\
c & c & 0 \\
\hline
& 1 - \frac{1}{2c} & \frac{1}{2c} \\
\end{array}$$

for $c \in (0, 1]$:

- c = 1: explicit trapezoid method
- c = 1/2: explicit midpoint method

And here is the classical fourth-order RK scheme:

0	0	0	0	0
$\frac{1}{2}$	$\frac{1}{2}$	0	0	0
$\frac{1}{2}$	0	$\frac{1}{2}$	0	0
1	0	0	1	0
	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$

Stability, convergence

Multi-stage (RK) methods are 0-stable, hence we obtain convergence commensurate with the LTE.

(Recall that this does not imply practical utility of error estimates)

A more interesting investigation involves the region of stability for these methods.

Note that this investigation makes sense since for A-stability we consider a scalar problem with,

 $f(t, u) = \lambda u,$

and so intermediate stages have the form,

$$U_{j} = u_{n} + k \sum_{\ell=1}^{s} a_{j,\ell} f(t_{n,\ell}, U_{\ell}) = u_{n} + z \sum_{\ell=1}^{s} a_{j,\ell} U_{\ell},$$

where $z = \lambda k$. Therefore, the update is,

$$u_{n+1} = u_n + k \sum_{j=1}^s b_j f(t_n + kc_j, U_j) = u_n + z \sum_{j=1}^s b_j U_j,$$

which is a polynomial in z if the method is explicit.

A. Narayan (U. Utah - Math/SCI)

Regions of stability

For some "standard" explicit RK methods of orders 1 - 4, stability regions are as follows:

Figure: ROS for RK methods of order 1, 2, 3, 4. Darkest region for p = 1, lightest for p = 4. Ascher and Petzold 1998, Figure 4.4

Note that, by this measure of stability, higher order methods are more stable than lower order ones.

Practical RK methods: error estimation

In "production"-level simulations, a single time-stepping method is rarely used in isolation: methods are used in combination to empirically measure error.

The basic idea behind error estimation is to compute two approximations:

- u_n : a less accurate approximation (typically \Rightarrow lower order)
- \widetilde{u}_n : a more accurate approximation (typically \Rightarrow higher order)

Practical RK methods: error estimation

In "production"-level simulations, a single time-stepping method is rarely used in isolation: methods are used in combination to empirically measure error.

The basic idea behind error estimation is to compute two approximations:

- u_n : a less accurate approximation (typically \Rightarrow lower order)
- \widetilde{u}_n : a more accurate approximation (typically \Rightarrow higher order)

If $\widetilde{\boldsymbol{u}}_n$ is (much) more accurate than \boldsymbol{u}_n , then,

$$\|\boldsymbol{e}_n\| = \|\boldsymbol{u}_n - \boldsymbol{u}(t_n)\| \approx \|\boldsymbol{u}_n - \widetilde{\boldsymbol{u}}_n\|,$$

and the latter is computable.

A simplistic idea: use two multi-stage methods, say u_n is RK3 and \tilde{u}_n is RK4.

The downside: this essentially requires (a little more than) twice the work.

Embedded multi-stage methods

Embedded methods allow us to construct more efficient error estimation procedures.

Consider a multi-stage method,

$$t_{n,j} = t_n + kc_j,$$

$$\boldsymbol{U}_j = \boldsymbol{u}_n + k\sum_{\ell=1}^s a_{j,\ell} \boldsymbol{f}(t_{n,\ell}, \boldsymbol{U}_\ell)$$

$$\boldsymbol{u}_{n+1} = \boldsymbol{u}_n + k\sum_{j=1}^s \boldsymbol{b}_j \boldsymbol{f}(t_{n,j}, \boldsymbol{U}_j),$$

with local truncation error $LTE_n \sim k^p$.

Embedded multi-stage methods

Embedded methods allow us to construct more efficient error estimation procedures.

Consider a multi-stage method,

$$t_{n,j} = t_n + kc_j,$$

$$\boldsymbol{U}_j = \boldsymbol{u}_n + k\sum_{\ell=1}^s a_{j,\ell} \boldsymbol{f}(t_{n,\ell}, \boldsymbol{U}_\ell)$$

$$\boldsymbol{u}_{n+1} = \boldsymbol{u}_n + k\sum_{j=1}^s \boldsymbol{b}_j \boldsymbol{f}(t_{n,j}, \boldsymbol{U}_j),$$

with local truncation error $LTE_n \sim k^p$.

Suppose, somehow, we can identify other values of b_j for a different approximation:

$$\widetilde{\boldsymbol{u}}_{n+1} = \boldsymbol{u}_n + k \sum_{j=1}^s \widetilde{\boldsymbol{b}}_j \boldsymbol{u}_j, \quad \text{freensons, } \boldsymbol{u}_j$$

so that the LTE for $\widetilde{\boldsymbol{u}}_n$ obeys $\text{LTE}_n \sim k^{p+1}$.

Embedded multi-stage methods

Embedded methods allow us to construct more efficient error estimation procedures.

Consider a multi-stage method,

$$t_{n,j} = t_n + kc_j,$$

$$\boldsymbol{U}_j = \boldsymbol{u}_n + k\sum_{\ell=1}^s a_{j,\ell} \boldsymbol{f}(t_{n,\ell}, \boldsymbol{U}_\ell)$$

$$\boldsymbol{u}_{n+1} = \boldsymbol{u}_n + k\sum_{j=1}^s \boldsymbol{b}_j \boldsymbol{f}(t_{n,j}, \boldsymbol{U}_j),$$

with local truncation error $LTE_n \sim k^p$.

Suppose, somehow, we can identify other values of b_j for a different approximation:

$$\widetilde{\boldsymbol{u}}_{n+1} = \boldsymbol{u}_n + k \sum_{j=1}^s \widetilde{\boldsymbol{b}}_j \widetilde{\boldsymbol{b}}_j, \quad \text{from } \mathcal{V}_j$$

so that the LTE for \tilde{u}_n obeys $LTE_n \sim k^{p+1}$. Since $k \ll 1$, we can reasonally expect that \tilde{u}_n is much more accurate than u_n . RK methods, with two pairs of b_j coefficients corresponding to different orders, are called embedded methods.

An embedded method example

The following is a particularly well-known embedded method of order 4/5:

0							
$\frac{1}{5}$	$\frac{1}{5}$						
$\frac{3}{3}$	3	9					
10	40	40					
4	44	56	32				
$\overline{5}$	$\overline{45}$	$-\frac{15}{15}$	9				
8	19372	25360	64448	212			
$\overline{9}$	6561	-2187	6561	$-\frac{1}{729}$			
1	9017	355	46732	49	5103		
L	$\overline{3168}$	-33	5247	$\overline{176}$	-18656		
1	35	Ο	500	125	2187	11	
T	$\overline{384}$	0	$\overline{1113}$	$\overline{192}$	$-\overline{6784}$	$\overline{84}$	
	5179	0	7571	393	92097	187	1
	$\overline{57600}$	U	$\overline{16695}$	$\overline{640}$	$-\overline{339200}$	$\overline{2100}$	$\overline{40}$
	35	Ο	500	125	2187	11	Ο
	$\overline{384}$	U	$\overline{1113}$	$\overline{192}$	$-\overline{6784}$	$\overline{84}$	U

This is the Dormand-Prince 4(5) method.

Note that this has more stages (7) than a corresponding non-embedded order-5 RK method (6).

Nevertheless, this extra stage is typically worth the effort.

Embedded methods and adaptive time-stepping

With an embedded method, say of order p, we can attempt to certify error tolerances:

$$\|\boldsymbol{e}_n\| \approx \|\boldsymbol{u}_n - \widetilde{\boldsymbol{u}}_n\| \sim \mathcal{O}(k^p)$$

This implies that to achieve $||e_n|| \sim \epsilon_{tol}$, then we should choose a new time step \hat{k} satisfying,

$$\left(\frac{\widehat{k}}{k}\right)^p \|\boldsymbol{u}_n - \widetilde{\boldsymbol{u}}_n\| \approx \epsilon_{\mathrm{tol}}.$$

This furnishes a *precise*, *computable* strategy with an embedded method for adaptively choosing $k = \Delta t$.

Embedded methods and adaptive time-stepping

With an embedded method, say of order p, we can attempt to certify error tolerances: $u' = f(\xi, u)$

$$\|\boldsymbol{e}_n\| pprox \|\boldsymbol{u}_n - \widetilde{\boldsymbol{u}}_n\| \sim \mathcal{O}(k^p)$$

This implies that to achieve $\|e_n\| \sim \epsilon_{tol}$, then we should choose a new time step \hat{k} satisfying,

$$\left(\frac{\widehat{k}}{k}\right)^p \|\boldsymbol{u}_n - \widetilde{\boldsymbol{u}}_n\| \approx \epsilon_{\mathrm{tol}}.$$

This furnishes a *precise, computable* strategy with an embedded method for adaptively choosing $k = \Delta t$.

This strategy is actually what is used in many popular suites. For example, the following are implementations of a Dormand-Prince 4(5) embedded method with adaptive time-stepping:

- Matlab's ode45 command
- SciPy's integrate.ode command via the integrate.ode.set_integrator('dopri5') option
- Julia's solve(..., DP5()) command from DifferentialEquations.jl

Multi-stage odds and ends

There are *numerous* concepts in multi-stage methods we haven't discussed:

- dense output
- singly/diagonally implicit RK (S/DIRK), low-storage RK (LSRK), ...
- stiff problems and order reduction
- Gauss/-Radau/-Lobatto implicit RK methods
- error estimation/embedding for stiff problems

References I

- Ascher, Uri M. and Linda R. Petzold (1998). Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM. ISBN: 978-1-61197-139-2.
- Butcher, J. C. (2006). "General Linear Methods". In: Acta Numerica 15, pp. 157–256. ISSN: 1474-0508, 0962-4929. DOI: 10.1017/S0962492906220014.
- Dormand, J. R. and P. J. Prince (1980). "A Family of Embedded Runge-Kutta Formulae". In: Journal of Computational and Applied Mathematics 6.1, pp. 19–26. ISSN: 0377-0427. DOI: 10.1016/0771-050X(80)90013-3.
- LeVeque, Randall J. (2007). Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. SIAM. ISBN: 978-0-89871-783-9.