Math 6630: Numerical Solutions of Partial Differential Equations Solvers for initial value problems, Part III

 See Ascher and Petzold 1998, Chapters 1-5

 See Ascher and Petzold 1998, Chapters 1-5}

Akil Narayan ${ }^{1}$
${ }^{1}$ Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute
University of Utah

February 1, 2023

Initial value problems

$$
\begin{aligned}
\boldsymbol{u}^{\prime}(t) & =\boldsymbol{f}(t ; \boldsymbol{u}), \\
\boldsymbol{u}_{n} & \approx \boldsymbol{u}\left(t_{n}\right) \\
\boldsymbol{u}_{n+1} & \approx \boldsymbol{u}_{n}+\int_{t_{n}}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{u}(t)) \mathrm{d} t
\end{aligned}
$$

We have previously discussed

- Simple schemes: forward/backward Euler, Crank-Nicolson
- Consistency and LTE
- 0-stability and scheme convergence
- absolute/A-stability and consequences

Now we'll delve into more advanced schemes, in particular multi-stage schemes.

Higher-order schemes
The schemes we've seen previously are relatively low order: first order for Euler-type, and second order for Crank-Nicolson.

Recall that our schemes result from discretization (approximation) of an integral:

$$
\begin{aligned}
\boldsymbol{u}\left(t_{n+1}\right) & =\boldsymbol{u}\left(t_{n}\right)+\int_{t_{n}}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{u}(t)) \mathrm{d} t \\
\boldsymbol{u}_{n+1} & \approx \boldsymbol{u}_{n}+\int_{t_{n}}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{u}(t)) \mathrm{d} t
\end{aligned}
$$

Our choices so far were to

- Use a one-point approximation using the left-hand value (forward Euler)
- Use a one-point approximation using the right-hand value (backward Euler)
- Use a two-point Trapezoidal approximation (Crank-Nicolson)

Higher-order schemes
The schemes we've seen previously are relatively low order: first order for Euler-type, and second order for Crank-Nicolson.

Recall that our schemes result from discretization (approximation) of an integral:

$$
\begin{aligned}
\boldsymbol{u}\left(t_{n+1}\right) & =\boldsymbol{u}\left(t_{n}\right)+\int_{t_{n}}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{u}(t)) \mathrm{d} t \\
\boldsymbol{u}_{n+1} & \approx \boldsymbol{u}_{n}+\int_{t_{n}}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{u}(t)) \mathrm{d} t
\end{aligned}
$$

In moving foward, we could consider the approximation

$$
\int_{t_{n}}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{u}(t)) \mathrm{d} t \approx \sum_{j=1}^{s} k b_{j} \boldsymbol{f}\left(t_{n, j}, \boldsymbol{u}\left(t_{n, j}\right)\right), \quad t_{n, j}=t_{n}+k c_{j}
$$

for some constants b_{j} and c_{j} and number of points s.
For example, we could determine these constants by enforcing high-degree polynomial interpolation conditions.

The major problem with this approach is that it's unclear what approximation should be used for \boldsymbol{u} at the intermediate time points $t_{n, j}$.

Higher-order schemes
The schemes we've seen previously are relatively low order: first order for Euler-type, and second order for Crank-Nicolson.

Recall that our schemes result from discretization (approximation) of an integral:

$$
\begin{align*}
\boldsymbol{u}\left(t_{n+1}\right) & =\boldsymbol{u}\left(t_{n}\right)+\int_{t_{n}}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{u}(t)) \mathrm{d} t \\
\boldsymbol{u}_{n+1} & \approx \boldsymbol{u}_{n}+\int_{t_{n}}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{u}(t)) \mathrm{d} t . \tag{t}
\end{align*}
$$

In moving foward, we could consider the approximation

$$
\int_{t_{n}}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{u}(t)) \mathrm{d} t \approx \sum_{j=1}^{s} k b_{j} \boldsymbol{f}\left(t_{n, j}, \boldsymbol{u}\left(t_{n, j}\right)\right), \quad t_{n, j}=t_{n}+k c_{j}
$$

for some constants b_{j} and c_{j} and number of points s.
For example, we could determine these constants by enforcing high-degree polynomial interpolation conditions.

The major problem with this approach is that it's unclear what approximation should be used for \boldsymbol{u} at the intermediate time points $t_{n, j}$.

A simple method
To illustrate what we must accomplish, let us consider a simple case.
We'll again use a one-point method to approximate the integral, but collocate the point at the midpoint of the interval:

$$
\int_{t_{n}}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{u}(t)) \mathrm{d} t \approx k b_{1} \boldsymbol{f}\left(t_{n, 1}, \boldsymbol{u}\left(t_{n, 1}\right)\right), \quad t_{n, 1}=t_{n}+\frac{k}{2}
$$

I.e., we have chosen $c_{1}=1 / 2$, and b_{j} must be determined. $(S=\mid)$

Note, however, that consistency of the approximation requires $b_{1}=1$.
Therefore, the (only) major question we have to answer is how we compute $\boldsymbol{u}\left(t_{n, 1}\right)$ from \boldsymbol{u}_{n}.

A straightforward idea is to approximate $\boldsymbol{u}\left(t_{n, 1}\right)$ with, say, Euler's method:

$$
\begin{aligned}
u\left(t_{n}+k / 2\right) & \approx U_{1}:=u_{n}+\frac{k}{2} f\left(t_{n}, u_{n}\right) \\
u_{n+1} & =u_{n}+k f\left(t_{n}+k / 2, U_{1}\right)
\end{aligned}
$$

A simple method
To illustrate what we must accomplish, let us consider a simple case.
We'll again use a one-point method to approximate the integral, but collocate the point at the midpoint of the interval:

$$
\int_{t_{n}}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{u}(t)) \mathrm{d} t \approx k b_{1} \boldsymbol{f}\left(t_{n, 1}, \boldsymbol{u}\left(t_{n, 1}\right)\right), \quad t_{n, 1}=t_{n}+\frac{k}{2}
$$

l.e., we have chosen $c_{1}=1 / 2$, and b_{j} must be determined.

Note, however, that consistency of the approximation requires $b_{1}=1$.

Therefore, the (only) major question we have to answer is how we compute $\boldsymbol{u}\left(t_{n, 1}\right)$ from \boldsymbol{u}_{n}.

A straightforward idea is to approximate $\boldsymbol{u}\left(t_{n, 1}\right)$ with, say, Euler's method:

$$
\begin{aligned}
u\left(t_{n}+k / 2\right) & \approx U_{1}:=u_{n}+\frac{k}{2} f\left(t_{n}, u_{n}\right) \\
u_{n+1} & =u_{n}+k f\left(t_{n}+k / 2, U_{1}\right)
\end{aligned}
$$

A simple method
To illustrate what we must accomplish, let us consider a simple case.
We'll again use a one-point method to approximate the integral, but collocate the point at the midpoint of the interval:

$$
\int_{t_{n}}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{u}(t)) \mathrm{d} t \approx k b_{1} \boldsymbol{f}\left(t_{n, 1}, \boldsymbol{u}\left(t_{n, 1}\right)\right), \quad \quad t_{n, 1}=t_{n}+\frac{k}{2}
$$

l.e., we have chosen $c_{1}=1 / 2$, and b_{j} must be determined.

Note, however, that consistency of the approximation requires $b_{1}=1$.

Therefore, the (only) major question we have to answer is how we compute $\boldsymbol{u}\left(t_{n, 1}\right)$ from \boldsymbol{u}_{n}.

A straightforward idea is to approximate $\boldsymbol{u}\left(t_{n, 1}\right)$ with, say, Euler's method:

$$
\begin{aligned}
\boldsymbol{u}\left(t_{n}+k / 2\right) & \approx \boldsymbol{U}_{1}:=\boldsymbol{u}_{n}+\frac{k}{2} \boldsymbol{f}\left(t_{n}, \boldsymbol{u}_{n}\right) \\
\boldsymbol{u}_{n+1} & =\boldsymbol{u}_{n}+k \boldsymbol{f}\left(t_{n}+k / 2, \boldsymbol{U}_{1}\right)
\end{aligned}
$$

Order of consistency, I

$$
\begin{aligned}
\boldsymbol{u}\left(t_{n}+k / 2\right) & \approx \boldsymbol{U}_{1}:=\boldsymbol{u}_{n}+\frac{k}{2} \boldsymbol{f}\left(t_{n}, \boldsymbol{u}_{n}\right) \\
\boldsymbol{u}_{n+1} & =\boldsymbol{u}_{n}+k \boldsymbol{f}\left(t_{n}+k / 2, \boldsymbol{U}_{1}\right)
\end{aligned}
$$

This idea seems fruitful, but there is a conceptual problem: Note that,

$$
D^{+} \boldsymbol{u}_{n}=\boldsymbol{f}\left(t_{n}+k / 2, \boldsymbol{u}\left(t_{n}+k / 2\right)\right)+\mathcal{O}\left(k^{2}\right)
$$

leading to an order-2 scheme.

$$
D^{t} u\left(t_{n}\right)=\frac{1}{k} \int_{t_{n}}^{t_{n d_{1}}} f(t, u(t)) d z \quad,\left\{\begin{array}{r}
f(t, u(t)) \simeq f\left(t_{n}+k / 2, u\left(t_{n}+r / 2\right)\right) \\
\\
\quad=\left(t-\left(t_{n}+k / 2\right)\right) f^{\prime} \\
f+\frac{1}{2}\left(t-\left(t_{n}+k / 2\right)\right)^{2} f^{\prime \prime}+\cdots\left(k^{3}\right)
\end{array}\right.
$$

Order of consistency, II

$$
\begin{aligned}
& \frac{u\left(t_{1 \text { q. }}\right)-u\left(t_{n}\right)}{k}=f\left(t_{n, ~}, f\left(t_{n}\right)\right)+0(k) \rightarrow u\left(t_{n+1}\right)= \\
& \boldsymbol{u}\left(t_{n}+k / 2\right)\left.\approx \boldsymbol{U}_{1}:=\boldsymbol{u}_{n}+\frac{k}{2} \boldsymbol{f}\left(t_{n}\right)+\boldsymbol{u}_{n}\right) \\
& \boldsymbol{u}_{n+1}=\boldsymbol{u}_{n}+k \boldsymbol{f}\left(t_{n}+k / 2, \boldsymbol{U}_{1}\right) \\
& D_{n+1} \\
& \boldsymbol{u}_{n}\left.=\boldsymbol{f}\left(t_{n}+k / 2, \boldsymbol{u}\left(t_{n}+k / 2\right)\right)+\mathcal{O}\left(k_{n}\right)\right)+0\left(k^{2}\right)
\end{aligned}
$$

The problem is that we are approximating with \boldsymbol{U}_{1}, which is only first-order accurate. Neverheless, one can show that this approximation is sufficient to retain an overall second-order LTE:

$$
\begin{aligned}
\boldsymbol{f}\left(t_{n}+k / 2, \boldsymbol{U}_{1}\right) \approx & \boldsymbol{f}\left(t_{n}+k / 2, \boldsymbol{u}\left(t_{n}+k / 2\right)\right) \\
& +\left(\boldsymbol{U}_{1}-\boldsymbol{u}\left(t_{n}+1 / 2\right)\right) \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{u}}\left(t_{n}+k / 2, \boldsymbol{u}\left(t_{n}+k / 2\right)\right) \\
\boldsymbol{f}\left(t_{n}+k / 2, \boldsymbol{u}\left(t_{n}+k / 2\right)\right)= & \boldsymbol{f}\left(t_{n}+k / 2, \boldsymbol{U}_{1}\right) \\
& +\left(\boldsymbol{u}\left(t_{n}+1 / 2\right)-\boldsymbol{U}_{1}\right) \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{u}}\left(t_{n}+k / 2, \boldsymbol{u}\left(t_{n}+k / 2\right)\right) \\
= & \boldsymbol{f}\left(t_{n}+k / 2, \boldsymbol{U}_{1}\right)+\mathcal{O}\left(k^{2}\right)
\end{aligned}
$$

The midpoint method

$$
\begin{aligned}
\boldsymbol{u}\left(t_{n}+k / 2\right) & \approx \boldsymbol{U}_{1}:=\boldsymbol{u}_{n}+\frac{k}{2} \boldsymbol{f}\left(t_{n}, \boldsymbol{u}_{n}\right) \\
\boldsymbol{u}_{n+1} & =\boldsymbol{u}_{n}+k \boldsymbol{f}\left(t_{n}+k / 2, \boldsymbol{U}_{1}\right)
\end{aligned}
$$

Thus, the procedure above is actually second-order accurate, and is our first example of an explicit second-order method.

This scheme is called the (explicit) midpoint method.

The above shows how we might hope to generate higher-order schemes using higher-order quadrature.

Some happy coincidences occurred above, in particular making computations somewhat simple. In general, things are more technical.

The midpoint method

$$
\begin{aligned}
\boldsymbol{u}\left(t_{n}+k / 2\right) & \approx \boldsymbol{U}_{1}:=\boldsymbol{u}_{n}+\frac{k}{2} \boldsymbol{f}\left(t_{n}, \boldsymbol{u}_{n}\right) \\
\boldsymbol{u}_{n+1} & =\boldsymbol{u}_{n}+k \boldsymbol{f}\left(t_{n}+k / 2, \boldsymbol{U}_{1}\right)
\end{aligned}
$$

Thus, the procedure above is actually second-order accurate, and is our first example of an explicit second-order method.

This scheme is called the (explicit) midpoint method.

The above shows how we might hope to generate higher-order schemes using higher-order quadrature.

Some happy coincidences occurred above, in particular making computations somewhat simple. In general, things are more technical.

Multi-stage methods

A generalization of our previous approach is the quadrature approximation:

$$
\int_{t_{n}}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{u}(t)) \mathrm{d} t \approx \sum_{j=1}^{s} k b_{j} \boldsymbol{f}\left(t_{n, j}, \boldsymbol{u}\left(t_{n, j}\right)\right), \quad t_{n, j}=t_{n}+k c_{j}
$$

This leads to the following scheme:

$$
\begin{aligned}
\boldsymbol{u}\left(t_{n, j}\right) \approx \boldsymbol{U}_{j} & =\boldsymbol{u}_{n}+k \sum_{\ell=1}^{s} a_{j, \ell} \boldsymbol{f}\left(t_{n, \ell}, \boldsymbol{U}_{\ell}\right) \quad t_{n, j}=t_{n}+k c_{j} \\
\boldsymbol{u}_{n+1} & =\boldsymbol{u}_{n}+k \sum_{j=1}^{s} b_{j} \boldsymbol{f}\left(t_{n, j}, \boldsymbol{U}_{j}\right)
\end{aligned}
$$

where the $a_{j, \ell}, b_{j}$, and c_{j} coefficients must be identified.

Multi-stage methods

A generalization of our previous approach is the quadrature approximation:

$$
\int_{t_{n}}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{u}(t)) \mathrm{d} t \approx \sum_{j=1}^{s} k b_{j} \boldsymbol{f}\left(t_{n, j}, \boldsymbol{u}\left(t_{n, j}\right)\right), \quad t_{n, j}=t_{n}+k c_{j}
$$

This leads to the following scheme:

$$
\begin{aligned}
\boldsymbol{u}\left(t_{n, j}\right) \approx \boldsymbol{U}_{j}=\boldsymbol{u}_{n}+k \sum_{\ell=1}^{s} a_{j, \ell} \boldsymbol{f}\left(t_{n, \ell}, \boldsymbol{U}_{\ell}\right) & t_{n, j}=t_{n}+k c_{j}, \rho-1 \\
\boldsymbol{u}_{n+1}=\boldsymbol{u}_{n}+k \sum_{j=1}^{s} b_{j} \boldsymbol{f}\left(t_{n, j}, \boldsymbol{U}_{j}\right), & \int_{0}^{1} f(x) d \boldsymbol{d} \approx \frac{1}{s} \sum_{j=0} f(j / s)
\end{aligned}
$$

where the $a_{j, \ell}, b_{j}$, and c_{j} coefficients must be identified.
The above is the general form for a multi-stage scheme with s intermediate stages.
It is more commonly known as a Runge-Kutta method.

- If $a_{j, \ell} \neq 0$ for any $\ell \geq j$, then the procedure above is implicit. Otherwise it is explicit.
- If the overall scheme has order p LTE, it is typically not necessary that \boldsymbol{U}_{j} correspond to an order p LTE.
- For $s \geqslant 3$, deriving and matching appropriate conditions can be quite cumbersome.

Consistency for order conditions
To see why things get hairy, first note that, $f=f(t, u / t))$

$$
\begin{aligned}
\boldsymbol{u}^{\prime} & =\boldsymbol{f}\left(t_{n}, \boldsymbol{u}\left(t_{n}\right)\right)=\boldsymbol{f}=: \boldsymbol{f}^{(0)} \\
\boldsymbol{u}^{\prime \prime} & =\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{f}=\boldsymbol{f}_{t}+\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{u}} \boldsymbol{u}^{\prime}=: \boldsymbol{f}^{(1)} \\
\boldsymbol{u}^{\prime \prime \prime} & =\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{f}^{(1)}=\boldsymbol{f}_{t}^{(1)}+\frac{\partial \boldsymbol{f}^{(\mathbf{1})}}{\partial \boldsymbol{u}} \boldsymbol{u}^{\prime}=: \boldsymbol{f}^{(2)}
\end{aligned}
$$

And by direct Taylor expansion, we have

$$
\begin{gathered}
D^{+} \boldsymbol{u}\left(t_{n}\right)=\boldsymbol{u}^{\prime}+\frac{k}{2} \boldsymbol{u}^{\prime \prime}+\cdots \\
=\boldsymbol{f}^{(0)}+\frac{k}{2} \boldsymbol{f}^{(1)}+\cdots
\end{gathered}
$$

Consistency for order conditions

To see why things get hairy, first note that,

$$
\begin{aligned}
\boldsymbol{u}^{\prime} & =\boldsymbol{f}\left(t_{n}, \boldsymbol{u}\left(t_{n}\right)\right)=\boldsymbol{f}=: \boldsymbol{f}^{(0)} \\
\boldsymbol{u}^{\prime \prime} & =\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{f}=\boldsymbol{f}_{t}+\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{u}} \boldsymbol{u}^{\prime}=: \boldsymbol{f}^{(1)} \\
\boldsymbol{u}^{\prime \prime \prime} & =\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{f}^{(1)}=\boldsymbol{f}_{t}^{(1)}+\frac{\partial \boldsymbol{f}^{(\mathbf{1})}}{\partial \boldsymbol{u}} \boldsymbol{u}^{\prime}=: \boldsymbol{f}^{(2)}
\end{aligned}
$$

And by direct Taylor expansion, we have

$$
\begin{array}{r}
D^{+} \boldsymbol{u}\left(t_{n}\right)=\boldsymbol{u}^{\prime}+\frac{k}{2} \boldsymbol{u}^{\prime \prime}+\cdots \\
\quad=\boldsymbol{f}^{(0)}+\frac{k}{2} \boldsymbol{f}^{(1)}+\cdots
\end{array}
$$

Therefore, attaining an order p LTE amounts to enforcing,

$$
\sum_{j=1}^{s} b_{j} \boldsymbol{f}\left(t_{n, j}, \boldsymbol{U}_{j}\right)=\boldsymbol{f}^{(0)}+\frac{k}{2} \boldsymbol{f}^{(1)}+\cdots+\frac{k^{p-1}}{p!} \boldsymbol{f}^{(p-1)}+\mathcal{O}\left(k^{p}\right)
$$

This then involves Taylor expansions for $\boldsymbol{f}\left(t_{n, j}, \boldsymbol{U}_{j}\right)$. ©

Order conditions

We can count the number of required matching conditions (e.g., different types of derivatives) necessary to achieve order p :

$$
\begin{array}{r|cccccccc}
\mathrm{p} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\text { \# of conditions } & 1 & 2 & 4 & 8 & 17 & 37 & 115 & 200
\end{array}
$$

And we can compare this to the number of free parameters for an s-stage method:

$$
\begin{array}{r|cccccccc}
\mathrm{s} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\text { \# of parameters } & 1 & 3 & 6 & 10 & 15 & 21 & 28 & 36
\end{array}
$$

Order conditions

We can count the number of required matching conditions (e.g., different types of derivatives) necessary to achieve order p :

$$
\begin{array}{r|cccccccc}
\mathrm{p} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\text { \# of conditions } & 1 & 2 & 4 & 8 & 17 & 37 & 115 & 200
\end{array}
$$

And we can compare this to the number of free parameters for an s-stage method:

$$
\begin{array}{r|cccccccc}
\mathrm{s} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\text { \# of parameters } & 1 & 3 & 6 & 10 & 15 & 21 & 28 & 36
\end{array}
$$

This suggests that there is an order barrier, i.e., an order at which we must invest a superlinear number of stages relative to the order p. In fact, this is a theorem:

Theorem

There is no pth order Runge-Kutta method with $s=p$ stages if $p \geqslant 5$.

Order conditions

We can count the number of required matching conditions (e.g., different types of derivatives) necessary to achieve order p :

$$
\begin{array}{r|cccccccc}
\mathrm{p} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\text { \# of conditions } & 1 & 2 & 4 & 8 & 17 & 37 & 115 & 200
\end{array}
$$

And we can compare this to the number of free parameters for an s-stage method:

$$
\begin{array}{r|cccccccc}
\mathrm{s} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\text { \# of parameters } & 1 & 3 & 6 & 10 & 15 & 21 & 28 & 36
\end{array}
$$

This suggests that there is an order barrier, i.e., an order at which we must invest a superlinear number of stages relative to the order p. In fact, this is a theorem:

Theorem

There is no p th order Runge-Kutta method with $s=p$ stages if $p \geqslant 5$.
However, the situation is not so dire as the tables above suggest:

Stages	s	1	2	3	4	5	6	7	8	9
10										
Achievable RK order	p	1	2	3	4	4	5	6	6	7
7										

In particular, this suggests that $s=p=4$ is an optimal tradeoff point.

Butcher tableaus

$$
\begin{aligned}
t_{n, j} & =t_{n}+k c_{j}, \quad C_{j} \leftharpoonup 1 \\
\boldsymbol{u}\left(t_{n, j}\right) \approx \boldsymbol{U}_{j} & =\boldsymbol{u}_{n}+k \sum_{\ell=1}^{s} a_{j, \ell} \boldsymbol{f}\left(t_{n, \ell}, \boldsymbol{U}_{\ell}\right) \\
\boldsymbol{u}_{n+1} & =\boldsymbol{u}_{n}+k \sum_{j=1}^{s} b_{j} \boldsymbol{f}\left(t_{n, j}, \boldsymbol{U}_{j}\right)
\end{aligned}
$$

In order to compactly communicate RK schemes, the Butcher tableau is the standard tool: the parameters $a_{j, \ell}, b_{j}$, and c_{j} are collected and arranged as follows:

c_{1}	a_{11}	a_{12}	\cdots	$a_{1 s}$
c_{2}	a_{21}	a_{22}	\cdots	$a_{2 s}$
\vdots	\vdots	\vdots	\ddots	\vdots
c_{s}	$a_{s 1}$	$a_{s 2}$	\cdots	$a_{s s}$
	b_{1}	b_{2}	\cdots	b_{s}

Some familiar schemes
Using tableau notation we can rehash some schemes we've previously seen:

1	1
	1

0	0	0
1	$\frac{1}{2}$	$\frac{1}{2}$
	$\frac{1}{2}$	$\frac{1}{2}$

Forward Euler Backward Euler Crank-Nicolson
$F E: s=1$

$$
\begin{aligned}
u_{1} & =u_{n}+\sum_{j=1}^{s} k b_{j} f\left(t_{n}+k c_{j}, u_{j}\right) \\
& =u_{n}+k b_{1} f\left(t_{n}+k c_{1}, u_{1}\right) \\
& =u_{n} \\
u_{n+} & =u_{n}+k \sum_{s=1}^{s} b_{j} f\left(t_{n}+k c_{j}, u_{j}\right)=u_{n}+k f\left(b_{n}, u_{n}\right)
\end{aligned}
$$

More examples

There is a one-parameter family of two-stage second-order methods:

0	0	0
c	c	0
	$1-\frac{1}{2 c}$	$\frac{1}{2 c}$

for $c \in(0,1]$:

- $c=1$: explicit trapezoid method
- $c=1 / 2$: explicit midpoint method

More examples

There is a one-parameter family of two-stage second-order methods:

0	0	0
c	c	0
	$1-\frac{1}{2 c}$	$\frac{1}{2 c}$

for $c \in(0,1]$:

- $c=1$: explicit trapezoid method
- $c=1 / 2$: explicit midpoint method

$$
\begin{gathered}
a_{j, \ell}=0 \quad l \geq j \\
\underset{\text { explicit }}{ }=0
\end{gathered}
$$

And here is the classical fourth-order RK scheme:

0	0	0	0	0
$\frac{1}{2}$	$\frac{1}{2}$	0	0	0
$\frac{1}{2}$	0	$\frac{1}{2}$	0	0
1	0	0	1	0
	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$

Stability, convergence

Multi-stage (RK) methods are 0-stable, hence we obtain convergence commensurate with the LTE.
(Recall that this does not imply practical utility of error estimates)
A more interesting investigation involves the region of stability for these methods.

Note that this investigation makes sense since for A-stability we consider a scalar problem with,

$$
f(t, u)=\lambda u
$$

and so intermediate stages have the form,

$$
U_{j}=u_{n}+k \sum_{\ell=1}^{s} a_{j, \ell} \boldsymbol{f}\left(t_{n, \ell}, U_{\ell}\right)=u_{n}+z \sum_{\ell=1}^{s} a_{j, \ell} U_{\ell}
$$

where $z=\lambda k$. Therefore, the update is,

$$
u_{n+1}=u_{n}+k \sum_{j=1}^{s} b_{j} f\left(t_{n}+k c_{j}, U_{j}\right)=u_{n}+z \sum_{j=1}^{s} b_{j} U_{j}
$$

which is a polynomial in z if the method is explicit.

Regions of stability

For some "standard" explicit RK methods of orders $1-4$, stability regions are as follows:

Figure: ROS for RK methods of order 1, 2, 3, 4. Darkest region for $p=1$, lightest for $p=4$. Ascher and Petzold 1998, Figure 4.4

Note that, by this measure of stability, higher order methods are more stable than lower order ones.

Practical RK methods: error estimation

In "production"-level simulations, a single time-stepping method is rarely used in isolation: methods are used in combination to empirically measure error.

The basic idea behind error estimation is to compute two approximations:

- \boldsymbol{u}_{n} : a less accurate approximation (typically \Rightarrow lower order)
- $\widetilde{\boldsymbol{u}}_{n}$: a more accurate approximation (typically \Rightarrow higher order)

Practical RK methods: error estimation

In "production"-level simulations, a single time-stepping method is rarely used in isolation: methods are used in combination to empirically measure error.

The basic idea behind error estimation is to compute two approximations:

- \boldsymbol{u}_{n} : a less accurate approximation (typically \Rightarrow lower order)
- $\widetilde{\boldsymbol{u}}_{n}$: a more accurate approximation (typically \Rightarrow higher order)

If $\widetilde{\boldsymbol{u}}_{n}$ is (much) more accurate than \boldsymbol{u}_{n}, then,

$$
\left\|\boldsymbol{e}_{n}\right\|=\left\|\boldsymbol{u}_{n}-\boldsymbol{u}\left(t_{n}\right)\right\| \approx\left\|\boldsymbol{u}_{n}-\tilde{\boldsymbol{u}}_{n}\right\|
$$

and the latter is computable.
A simplistic idea: use two multi-stage methods, say \boldsymbol{u}_{n} is RK3 and $\widetilde{\boldsymbol{u}}_{n}$ is RK4.
The downside: this essentially requires (a little more than) twice the work.

Embedded multi-stage methods

Embedded methods allow us to construct more efficient error estimation procedures.

Consider a multi-stage method,

$$
\begin{aligned}
t_{n, j} & =t_{n}+k c_{j} \\
\boldsymbol{U}_{j} & =\boldsymbol{u}_{n}+k \sum_{\ell=1}^{s} a_{j, \ell} \boldsymbol{f}\left(t_{n, \ell}, \boldsymbol{U}_{\ell}\right) \\
\boldsymbol{u}_{n+1} & =\boldsymbol{u}_{n}+k \sum_{j=1}^{s} b_{j} \boldsymbol{f}\left(t_{n, j}, \boldsymbol{U}_{j}\right),
\end{aligned}
$$

with local truncation error $\operatorname{LTE}_{n} \sim k^{p}$.

Embedded multi-stage methods

Embedded methods allow us to construct more efficient error estimation procedures.

Consider a multi-stage method,

$$
\begin{aligned}
t_{n, j} & =t_{n}+k c_{j} \\
\boldsymbol{U}_{j} & =\boldsymbol{u}_{n}+k \sum_{\ell=1}^{s} a_{j, \ell} \boldsymbol{f}\left(t_{n, \ell}, \boldsymbol{U}_{\ell}\right) \\
\boldsymbol{u}_{n+1} & =\boldsymbol{u}_{n}+k \sum_{j=1}^{s} b_{j} \boldsymbol{f}\left(t_{n, j}, \boldsymbol{U}_{j}\right),
\end{aligned}
$$

with local truncation error $\operatorname{LTE}_{n} \sim k^{p}$.

Suppose, somehow, we can identify other values of b_{j} for a different approximation:

$$
\widetilde{\boldsymbol{u}}_{n+1}=\boldsymbol{u}_{n}+k \sum_{j=1}^{s} \widetilde{b}_{j}\left(\underline{d}(k), f\left(t_{n_{0} j}, U_{j}\right)\right.
$$

so that the LTE for $\widetilde{\boldsymbol{u}}_{n}$ obeys $\operatorname{LTE}_{n} \sim k^{p+1}$.

Embedded multi-stage methods

Embedded methods allow us to construct more efficient error estimation procedures.

Consider a multi-stage method,

$$
\begin{aligned}
t_{n, j} & =t_{n}+k c_{j} \\
\boldsymbol{U}_{j} & =\boldsymbol{u}_{n}+k \sum_{\ell=1}^{s} a_{j, \ell} \boldsymbol{f}\left(t_{n, \ell}, \boldsymbol{U}_{\ell}\right) \\
\boldsymbol{u}_{n+1} & =\boldsymbol{u}_{n}+k \sum_{j=1}^{s} b_{j} \boldsymbol{f}\left(t_{n, j}, \boldsymbol{U}_{j}\right)
\end{aligned}
$$

with local truncation error $\operatorname{LTE}_{n} \sim k^{p}$.

Suppose, somehow, we can identify other values of b_{j} for a different approximation:

$$
\widetilde{\boldsymbol{u}}_{n+1}=\boldsymbol{u}_{n}+k \sum_{j=1}^{s} \widetilde{b}_{j} j_{j}, f\left(\varepsilon_{M_{j j}}, U_{j}\right)
$$

so that the LTE for $\widetilde{\boldsymbol{u}}_{n}$ obeys $\operatorname{LTE}_{n} \sim k^{p+1}$. Since $k \ll 1$, we can reasonbly expect that $\widetilde{\boldsymbol{u}}_{n}$ is much more accurate than \boldsymbol{u}_{n}.
RK methods, with two pairs of b_{j} coefficients corresponding to different orders, are called embedded methods.

An embedded method example

The following is a particularly well-known embedded method of order 4/5:

0							
$\frac{1}{5}$	$\frac{1}{5}$						
$\frac{3}{10}$	$\frac{3}{40}$	$\frac{9}{40}$					
$\frac{4}{5}$	$\frac{44}{45}$	$-\frac{56}{15}$	$\frac{32}{9}$				
$\frac{8}{9}$	$\frac{19372}{6561}$	$-\frac{25360}{2187}$	$\frac{64448}{6561}$	$-\frac{212}{729}$			
1	$\frac{9017}{3168}$	$-\frac{355}{33}$	$\frac{46732}{5247}$	$\frac{49}{176}$	$-\frac{5103}{18656}$		
1	$\frac{35}{384}$	0	$\frac{500}{1113}$	$\frac{125}{192}$	$-\frac{2187}{6784}$	$\frac{11}{84}$	
	$\frac{5179}{57600}$	0	$\frac{7571}{16695}$	$\frac{393}{640}$	$-\frac{92097}{339200}$	$\frac{187}{2100}$	$\frac{1}{40}$
	$\frac{35}{384}$	0	$\frac{500}{1113}$	$\frac{125}{192}$	$-\frac{2187}{6784}$	$\frac{11}{84}$	0

This is the Dormand-Prince 4(5) method.
Note that this has more stages (7) than a corresponding non-embedded order-5 RK method (6).
Nevertheless, this extra stage is typically worth the effort.

Embedded methods and adaptive time-stepping

With an embedded method, say of order p, we can attempt to certify error tolerances:

$$
\left\|\boldsymbol{e}_{n}\right\| \approx\left\|\boldsymbol{u}_{n}-\widetilde{\boldsymbol{u}}_{n}\right\| \sim \mathcal{O}\left(k^{p}\right)
$$

This implies that to achieve $\left\|\boldsymbol{e}_{n}\right\| \sim \epsilon_{\text {tol }}$, then we should choose a new time step \hat{k} satisfying,

$$
\left(\frac{\widehat{k}}{k}\right)^{p}\left\|\boldsymbol{u}_{n}-\widetilde{\boldsymbol{u}}_{n}\right\| \approx \epsilon_{\mathrm{tol}}
$$

This furnishes a precise, computable strategy with an embedded method for adaptively choosing $k=\Delta t$.

Embedded methods and adaptive time-stepping

With an embedded method, say of order p, we can attempt to certify error tolerances:

$$
\left\|\boldsymbol{e}_{n}\right\| \approx\left\|\boldsymbol{u}_{n}-\widetilde{\boldsymbol{u}}_{n}\right\| \sim \mathcal{O}\left(k^{p}\right)
$$

$$
u^{\prime}=f(t, 4)
$$

This implies that to achieve $\left\|\boldsymbol{e}_{n}\right\| \sim \epsilon_{\text {tol }}$, then we should choose a new time step \widehat{k} satisfying,

$$
\left(\frac{\widehat{k}}{k}\right)^{p}\left\|\boldsymbol{u}_{n}-\widetilde{\boldsymbol{u}}_{n}\right\| \approx \epsilon_{\mathrm{tol}}
$$

This furnishes a precise, computable strategy with an embedded method for adaptively choosing $k=\Delta t$.

This strategy is actually what is used in many popular suites.
For example, the following are implementations of a Dormand-Prince 4(5) embedded method with adaptive time-stepping:

- Matlab's ode45 command
- SciPy's integrate. ode command via the integrate.ode.set_integrator('dopri5') option
- Julia's solve(..., DP5()) command from DifferentialEquations.jl

Multi-stage odds and ends

$$
u^{\prime}=k u, \operatorname{Re} t \ll 0
$$

There are numerous concepts in multi-stage methods we haven't discussed:

- dense output
- singly/diagonally implicit RK (S/DIRK), low-storage RK (LSRK), ...
- stiff problems and order reduction
- Gauss/-Radau/-Lobatto implicit RK methods
- error estimation/embedding for stiff problems

References I

- Ascher, Uri M. and Linda R. Petzold (1998). Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM. ISBN: 978-1-61197-139-2.
- Butcher, J. C. (2006). "General Linear Methods". In: Acta Numerica 15, pp. 157-256. ISSN: 1474-0508, 0962-4929. DOI: 10.1017/S0962492906220014.
䡒 Dormand, J. R. and P. J. Prince (1980). "A Family of Embedded Runge-Kutta Formulae". In: Journal of Computational and Applied Mathematics 6.1, pp. 19-26. ISSN: 0377-0427. DOI: 10.1016/0771-050X (80)90013-3.
目 LeVeque, Randall J. (2007). Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. SIAM. ISBN: 978-0-89871-783-9.

