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Initial value problems

u1ptq “ fpt;uq, up0q “ u0.

un « uptnq

un`1 « un `
ª tn`1

tn

fpt,uptqqdt

We have previously discussed
– Simple schemes: forward/backward Euler, Crank-Nicolson
– Consistency and LTE
– 0-stability and scheme convergence
– absolute/A-stability and consequences

Now we’ll delve into more advanced schemes, in particular multi-stage schemes.
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Higher-order schemes

The schemes we’ve seen previously are relatively low order: first order for
Euler-type, and second order for Crank-Nicolson.

Recall that our schemes result from discretization (approximation) of an integral:

uptn`1q “ uptnq `
ª tn`1

tn

fpt,uptqqdt

un`1 « un `
ª tn`1

tn

fpt,uptqqdt.

Our choices so far were to
– Use a one-point approximation using the left-hand value (forward Euler)
– Use a one-point approximation using the right-hand value (backward Euler)
– Use a two-point Trapezoidal approximation (Crank-Nicolson)
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Higher-order schemes

The schemes we’ve seen previously are relatively low order: first order for
Euler-type, and second order for Crank-Nicolson.

Recall that our schemes result from discretization (approximation) of an integral:

uptn`1q “ uptnq `
ª tn`1

tn

fpt,uptqqdt

un`1 « un `
ª tn`1

tn

fpt,uptqqdt.

In moving foward, we could consider the approximation
ª tn`1

tn

fpt,uptqqdt «
sÿ

j“1

kbjfptn,j ,uptn,jqq, tn,j “ tn ` kcj ,

for some constants bj and cj and number of points s.
For example, we could determine these constants by enforcing high-degree
polynomial interpolation conditions.

The major problem with this approach is that it’s unclear what approximation
should be used for u at the intermediate time points tn,j .
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A simple method
To illustrate what we must accomplish, let us consider a simple case.

We’ll again use a one-point method to approximate the integral, but collocate the
point at the midpoint of the interval:

ª tn`1

tn

fpt,uptqqdt « kb1fptn,1,uptn,1qq, tn,1 “ tn ` k
2
.

I.e., we have chosen c1 “ 1{2, and bj must be determined.

Note, however, that consistency of the approximation requires b1 “ 1.

Therefore, the (only) major question we have to answer is how we compute uptn,1q
from un.

A straightforward idea is to approximate uptn,1q with, say, Euler’s method:

uptn ` k{2q « U1 :“ un ` k
2
fptn,unq

un`1 “ un ` kfptn ` k{2,U1q.
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Order of consistency, I

uptn ` k{2q « U1 :“ un ` k
2
fptn,unq

un`1 “ un ` kfptn ` k{2,U1q.

This idea seems fruitful, but there is a conceptual problem: Note that,

D`un “ fptn ` k{2,uptn ` k{2qq ` Opk2q

leading to an order-2 scheme.
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Order of consistency, II

uptn ` k{2q « U1 :“ un ` k
2
fptn,unq

un`1 “ un ` kfptn ` k{2,U1q.
D`un “ fptn ` k{2,uptn ` k{2qq ` Opk2q

The problem is that we are approximating with U1, which is only first-order
accurate. Neverheless, one can show that this approximation is sufficient to retain
an overall second-order LTE:

fptn ` k{2,U1q « fptn ` k{2,uptn ` k{2qq

` pU1 ´ uptn ` 1{2qq Bf
Bu ptn ` k{2,uptn ` k{2qq

fptn ` k{2,uptn ` k{2qq “ fptn ` k{2,U1q

` puptn ` 1{2q ´ U1q Bf
Bu ptn ` k{2,uptn ` k{2qq

“ fptn ` k{2,U1q ` Opk2q.
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The midpoint method

uptn ` k{2q « U1 :“ un ` k
2
fptn,unq

un`1 “ un ` kfptn ` k{2,U1q.

Thus, the procedure above is actually second-order accurate, and is our first
example of an explicit second-order method.

This scheme is called the (explicit) midpoint method.

The above shows how we might hope to generate higher-order schemes using
higher-order quadrature.

Some happy coincidences occurred above, in particular making computations
somewhat simple. In general, things are more technical.
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Multi-stage methods

A generalization of our previous approach is the quadrature approximation:
ª tn`1

tn

fpt,uptqqdt «
sÿ

j“1

kbjfptn,j ,uptn,jqq, tn,j “ tn ` kcj ,

This leads to the following scheme:

uptn,jq « U j “ un ` k
sÿ

`“1

aj,`fptn,`,U `q tn,j “ tn ` kcj ,

un`1 “ un ` k
sÿ

j“1

bjfptn,j ,U jq,

where the aj,`, bj , and cj coefficients must be identified.
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A generalization of our previous approach is the quadrature approximation:
ª tn`1

tn

fpt,uptqqdt «
sÿ

j“1

kbjfptn,j ,uptn,jqq, tn,j “ tn ` kcj ,

This leads to the following scheme:

uptn,jq « U j “ un ` k
sÿ

`“1

aj,`fptn,`,U `q tn,j “ tn ` kcj ,

un`1 “ un ` k
sÿ

j“1

bjfptn,j ,U jq,

where the aj,`, bj , and cj coefficients must be identified.

The above is the general form for a multi-stage scheme with s intermediate stages.
It is more commonly known as a Runge-Kutta method.

– If aj,` ‰ 0 for any ` ° j, then the procedure above is implicit. Otherwise it is
explicit.

– If the overall scheme has order p LTE, it is typically not necessary that U j

correspond to an order p LTE.
– For s • 3, deriving and matching appropriate conditions can be quite

cumbersome.
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Consistency for order conditions

To see why things get hairy, first note that,

u1 “ fptn,uptnqq “ f “: f p0q

u2 “ d
dt

f “ f t ` Bf
Buu1 “: f p1q

u3 “ d
dt

f p1q “ f p1q
t ` Bf p1q

Bu u1 “: f p2q

...

And by direct Taylor expansion, we have

D`uptnq “ u1 ` k
2
u2 ` ¨ ¨ ¨ .

“ f p0q ` k
2
f p1q ` ¨ ¨ ¨ .
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Consistency for order conditions

To see why things get hairy, first note that,

u1 “ fptn,uptnqq “ f “: f p0q

u2 “ d
dt

f “ f t ` Bf
Buu1 “: f p1q

u3 “ d
dt

f p1q “ f p1q
t ` Bf p1q

Bu u1 “: f p2q

...

And by direct Taylor expansion, we have

D`uptnq “ u1 ` k
2
u2 ` ¨ ¨ ¨ .

“ f p0q ` k
2
f p1q ` ¨ ¨ ¨ .

Therefore, attaining an order p LTE amounts to enforcing,
sÿ

j“1

bjfptn,j ,U jq “ f p0q ` k
2
f p1q ` ¨ ¨ ¨ ` kp´1

p!
f pp´1q ` Opkpq.

This then involves Taylor expansions for fptn,j ,U jq. /
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Order conditions

We can count the number of required matching conditions (e.g., different types of
derivatives) necessary to achieve order p:

p 1 2 3 4 5 6 7 8
# of conditions 1 2 4 8 17 37 115 200

And we can compare this to the number of free parameters for an s-stage method:

s 1 2 3 4 5 6 7 8
# of parameters 1 3 6 10 15 21 28 36
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Order conditions

We can count the number of required matching conditions (e.g., different types of
derivatives) necessary to achieve order p:

p 1 2 3 4 5 6 7 8
# of conditions 1 2 4 8 17 37 115 200

And we can compare this to the number of free parameters for an s-stage method:

s 1 2 3 4 5 6 7 8
# of parameters 1 3 6 10 15 21 28 36

This suggests that there is an order barrier, i.e., an order at which we must invest
a superlinear number of stages relative to the order p. In fact, this is a theorem:

Theorem
There is no pth order Runge-Kutta method with s “ p stages if p • 5.
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Order conditions

We can count the number of required matching conditions (e.g., different types of
derivatives) necessary to achieve order p:

p 1 2 3 4 5 6 7 8
# of conditions 1 2 4 8 17 37 115 200

And we can compare this to the number of free parameters for an s-stage method:

s 1 2 3 4 5 6 7 8
# of parameters 1 3 6 10 15 21 28 36

This suggests that there is an order barrier, i.e., an order at which we must invest
a superlinear number of stages relative to the order p. In fact, this is a theorem:

Theorem
There is no pth order Runge-Kutta method with s “ p stages if p • 5.

However, the situation is not so dire as the tables above suggest:

Stages s 1 2 3 4 5 6 7 8 9 10
Achievable RK order p 1 2 3 4 4 5 6 6 7 7

In particular, this suggests that s “ p “ 4 is an optimal tradeoff point.
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Butcher tableaus

tn,j “ tn ` kcj ,

uptn,jq « U j “ un ` k
sÿ

`“1

aj,`fptn,`,U `q

un`1 “ un ` k
sÿ

j“1

bjfptn,j ,U jq,

In order to compactly communicate RK schemes, the Butcher tableau is the
standard tool: the parameters aj,`, bj , and cj are collected and arranged as follows:

c1 a11 a12 ¨ ¨ ¨ a1s

c2 a21 a22 ¨ ¨ ¨ a2s

...
...

...
. . .

...
cs as1 as2 ¨ ¨ ¨ ass

b1 b2 ¨ ¨ ¨ bs
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Some familiar schemes

Using tableau notation we can rehash some schemes we’ve previously seen:

0 0
1

1 1
1

0 0 0
1 1

2
1
2

1
2

1
2

Forward Euler Backward Euler Crank-Nicolson
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More examples

There is a one-parameter family of two-stage second-order methods:

0 0 0
c c 0

1 ´ 1
2c

1
2c

for c P p0, 1s:
– c “ 1: explicit trapezoid method
– c “ 1{2: explicit midpoint method
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More examples

There is a one-parameter family of two-stage second-order methods:

0 0 0
c c 0

1 ´ 1
2c

1
2c

for c P p0, 1s:
– c “ 1: explicit trapezoid method
– c “ 1{2: explicit midpoint method

And here is the classical fourth-order RK scheme:

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0

1 0 0 1 0
1
6

1
3

1
3

1
6
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Stability, convergence
Multi-stage (RK) methods are 0-stable, hence we obtain convergence
commensurate with the LTE.
(Recall that this does not imply practical utility of error estimates)

A more interesting investigation involves the region of stability for these methods.

Note that this investigation makes sense since for A-stability we consider a scalar
problem with,

fpt, uq “ �u,

and so intermediate stages have the form,

Uj “ un ` k
sÿ

`“1

aj,`fptn,`, U`q “ un ` z
sÿ

`“1

aj,`U`,

where z “ �k. Therefore, the update is,

un`1 “ un ` k
sÿ

j“1

bjfptn ` kcj , Ujq “ un ` z
sÿ

j“1

bjUj ,

which is a polynomial in z if the method is explicit.
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Regions of stability

For some “standard” explicit RK methods of orders 1 ´ 4, stability regions are as
follows: Chapter 4: One-Step Methods 89

Figure 4.4: Stability regions for p-stage explicit Runge-Kutta methods of
order p, p = 1,2,3,4. The inner circle corresponds to forward Euler, p = 1.
The larger p is, the larger the stability region. Note the "ear lobes" of the
fourth-order method protruding into the right half-plane.

For explicit Runge-Kutta methods R(z) is a polynomial in z = h\ given,
e.g., by the expression whose magnitude appears in (4.19). Thus, to find
the boundary of the region of absolute stability, we find the roots z(0) of

for a sequence of values. Starting with 6 = 0, for which z = 0, we
repeatedly increase 0 by a small increment, each time applying a root finder
to find the corresponding z, starting from z of the previous 9 as a first
guess,11 until the stability boundary curve returns to the origin.

It is also possible to compute the region of absolute stability via a brute
force approach. To do this, we first form a grid over a large part of the
complex plane including the origin. Then at each mesh point Zij, if |.R(2ij)| <
1, we mark Zij as being inside the stability region.

Finally, we note that no explicit Runge-Kutta method can have an un-
bounded region of absolute stability. This is because all Runge-Kutta meth-

This is an elementary example of a continuation method.

Figure: ROS for RK methods of order 1, 2, 3, 4. Darkest region for p “ 1, lightest for

p “ 4. Ascher and Petzold 1998, Figure 4.4

Note that, by this measure of stability, higher order methods are more stable than
lower order ones.
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Practical RK methods: error estimation

In “production”-level simulations, a single time-stepping method is rarely used in
isolation: methods are used in combination to empirically measure error.

The basic idea behind error estimation is to compute two approximations:
– un: a less accurate approximation (typically ñ lower order)
– run: a more accurate approximation (typically ñ higher order)
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Practical RK methods: error estimation

In “production”-level simulations, a single time-stepping method is rarely used in
isolation: methods are used in combination to empirically measure error.

The basic idea behind error estimation is to compute two approximations:
– un: a less accurate approximation (typically ñ lower order)
– run: a more accurate approximation (typically ñ higher order)

If run is (much) more accurate than un, then,

}en} “ }un ´ uptnq} « }un ´ run},

and the latter is computable.

A simplistic idea: use two multi-stage methods, say un is RK3 and run is RK4.

The downside: this essentially requires (a little more than) twice the work.
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Embedded multi-stage methods

Embedded methods allow us to construct more efficient error estimation procedures.

Consider a multi-stage method,

tn,j “ tn ` kcj ,

U j “ un ` k
sÿ

`“1

aj,`fptn,`,U `q

un`1 “ un ` k
sÿ

j“1

bjfptn,j ,U jq,

with local truncation error LTEn „ kp.
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Embedded multi-stage methods

Embedded methods allow us to construct more efficient error estimation procedures.

Consider a multi-stage method,

tn,j “ tn ` kcj ,

U j “ un ` k
sÿ

`“1

aj,`fptn,`,U `q

un`1 “ un ` k
sÿ

j“1

bjfptn,j ,U jq,

with local truncation error LTEn „ kp.

Suppose, somehow, we can identify other values of bj for a different approximation:

run`1 “ un ` k
sÿ

j“1

rbjU j ,

so that the LTE for run obeys LTEn „ kp`1.
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Embedded multi-stage methods

Embedded methods allow us to construct more efficient error estimation procedures.

Consider a multi-stage method,

tn,j “ tn ` kcj ,

U j “ un ` k
sÿ

`“1

aj,`fptn,`,U `q

un`1 “ un ` k
sÿ

j“1

bjfptn,j ,U jq,

with local truncation error LTEn „ kp.

Suppose, somehow, we can identify other values of bj for a different approximation:

run`1 “ un ` k
sÿ

j“1

rbjU j ,

so that the LTE for run obeys LTEn „ kp`1. Since k ! 1, we can reasonbly
expect that run is much more accurate than un.
RK methods, with two pairs of bj coefficients corresponding to different orders, are
called embedded methods.
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An embedded method example

The following is a particularly well-known embedded method of order 4/5:

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45 ´ 56

15
32
9

8
9

19372
6561 ´ 25360

2187
64448
6561 ´ 212

729

1 9017
3168 ´ 355

33
46732
5247

49
176 ´ 5103

18656

1 35
384 0 500

1113
125
192 ´ 2187

6784
11
84

5179
57600 0 7571

16695
393
640 ´ 92097

339200
187
2100

1
40

35
384 0 500

1113
125
192 ´ 2187

6784
11
84 0

This is the Dormand-Prince 4(5) method.

Note that this has more stages (7) than a corresponding non-embedded order-5 RK
method (6).
Nevertheless, this extra stage is typically worth the effort.
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Embedded methods and adaptive time-stepping

With an embedded method, say of order p, we can attempt to certify error
tolerances:

}en} « }un ´ run} „ Opkpq

This implies that to achieve }en} „ ✏tol, then we should choose a new time step pk
satisfying,

˜
pk
k

¸p

}un ´ run} « ✏tol.

This furnishes a precise, computable strategy with an embedded method for
adaptively choosing k “ �t.
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Embedded methods and adaptive time-stepping

With an embedded method, say of order p, we can attempt to certify error
tolerances:

}en} « }un ´ run} „ Opkpq

This implies that to achieve }en} „ ✏tol, then we should choose a new time step pk
satisfying,

˜
pk
k

¸p

}un ´ run} « ✏tol.

This furnishes a precise, computable strategy with an embedded method for
adaptively choosing k “ �t.

This strategy is actually what is used in many popular suites.
For example, the following are implementations of a Dormand-Prince 4(5)
embedded method with adaptive time-stepping:

– Matlab’s ode45 command
– SciPy’s integrate.ode command via the

integrate.ode.set_integrator(’dopri5’) option
– Julia’s solve(..., DP5()) command from DifferentialEquations.jl
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Multi-stage odds and ends

There are numerous concepts in multi-stage methods we haven’t discussed:
– dense output
– singly/diagonally implicit RK (S/DIRK), low-storage RK (LSRK), ...
– stiff problems and order reduction
– Gauss/-Radau/-Lobatto implicit RK methods
– error estimation/embedding for stiff problems
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