Math 6630: Numerical Solutions of Partial Differential Equations Finite difference methods for stationary problems
 See LeVeque 2007, Chapters 2, 3, 4

Akil Narayan ${ }^{1}$
${ }^{1}$ Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute
University of Utah

January 23, 2023

Finite difference methods for 1D
Recall: we have discussed finite difference methods for the ODE:

$$
\begin{aligned}
-u^{\prime \prime}(x) & =f(x), \\
u(0) & =g_{0}, \\
u(1) & =g_{1} .
\end{aligned}
$$

The scheme essentially boils down to,

$$
-D_{+} D_{-} u_{j}=f_{j}, \quad j=1, \ldots, N
$$

where,

$$
f_{j}=f\left(x_{j}\right), \quad u_{j} \approx u\left(x_{j}\right), \quad x_{j}=j h
$$

We established:

- The scheme amounts to solving an $N \times N$ sparse linear system
- The scheme is second-order convergent

Finite difference methods for 1D
Recall: we have discussed finite difference methods for the ODE:

$$
\begin{aligned}
-u^{\prime \prime}(x) & =f(x) \\
u(0) & =g_{0} \\
u(1) & =g_{1}
\end{aligned}
$$

The scheme essentially boils down to,

$$
-D_{+} D_{-} u_{j}=f_{j}
$$

$$
j=1, \ldots, N, M
$$

where,

$$
f_{j}=f\left(x_{j}\right), \quad u_{j} \approx u\left(x_{j}\right), \quad x_{j}=j h
$$

We established:

- The scheme amounts to solving an $I / \times \not / y$ sparse linear system
- The scheme is second-order convergent

Partial Differential Equations

The appropriate generalization of our 1D ODE problem is an elliptic equation. In 2 D , we'll use the notation,

$$
u=u(x, y), \quad \nabla=\left(\partial_{x}, \partial_{y}\right)^{T}, \quad \Delta=\partial_{x}^{2}+\partial_{y}^{2}
$$

A fairly general form for a 2D linear elliptic equation is the following:

$$
\begin{array}{rr}
-\nabla \cdot(\boldsymbol{\kappa}(x, y) \nabla u)=f(x, y), & (x, y) \in(0,1)^{2} \\
u(0, y)=g_{0}(y), u(1, y)=g_{1}(y), & y \in[0,1] \\
u(x, 0)=h_{0}(x), u(x, 1)=h_{1}(x), & x \in[0,1],
\end{array}
$$

where $\kappa(x, y)$ is a symmetric matrix that is positive definite everywhere, i.e.,

$$
v^{T} \kappa(x, y) v>0, \quad \forall(x, y) \in[0,1]^{2}, v \in \mathbb{R}^{2}, v \neq 0
$$

Like the 1D case, this PDE models

- Spatially-dependent temperature u due to heat diffusion
- κ encodes the heat diffusion, allowing heterogeneous, anisotropic heat diffusion.
- This equation also arises in electrostatics, graviational modeling, fluid flow,

Partial Differential Equations

The appropriate generalization of our 1D ODE problem is an elliptic equation. In 2 D , we'll use the notation,

$$
u=u(x, y), \quad \nabla=\left(\partial_{x}, \partial_{y}\right)^{T}, \quad \Delta=\partial_{x}^{2}+\partial_{y}^{2}
$$

A fairly general form for a 2D linear elliptic equation is the following:

$$
\begin{aligned}
& -\nabla \cdot(\boldsymbol{\kappa}(x, y) \nabla u)=f(x, y), \\
& u(0, y)=g_{0}(y), u(1, y)=g_{1}(y), \\
& u(x, 0)=h_{0}(x), u(x, 1)=h_{1}(x),
\end{aligned}
$$

$$
(x, y) \in(0,1)^{2}
$$

$$
y \in[0,1]
$$

$$
x \in[0,1],
$$

where $\boldsymbol{\kappa}(x, y)$ is a symmetric matrix that is positive definite everywhere, i.e.,

$$
\boldsymbol{v}^{T} \boldsymbol{\kappa}(x, y) \boldsymbol{v}>0, \quad \forall(x, y) \in[0,1]^{2}, \boldsymbol{v} \in \mathbb{R}^{2}, \boldsymbol{v} \neq \mathbf{0} .
$$

Like the 1D case, this PDE models

- Spatially-dependent temperature u due to heat diffusion
- κ encodes the heat diffusion, allowing heterogeneous, anisotropic heat diffusion.
- This equation also arises in electrostatics, graviational modeling, fluid flow,

Partial Differential Equations

The appropriate generalization of our 1D ODE problem is an elliptic equation. In 2 D , we'll use the notation,

$$
u=u(x, y), \quad \nabla=\left(\partial_{x}, \partial_{y}\right)^{T}, \quad \Delta=\partial_{x}^{2}+\partial_{y}^{2}
$$

A fairly general form for a 2D linear elliptic equation is the following:

$$
\begin{array}{rrr}
-\nabla \cdot(\boldsymbol{\kappa}(x, y) \nabla u)=f(x, y), & (x, y) \in(0,1)^{2} \\
u(0, y)=g_{0}(y), u(1, y)=g_{1}(y), & y \in[0,1] \\
u(x, 0)=h_{0}(x), u(x, 1)=h_{1}(x), & x \in[0,1],
\end{array}
$$

where $\boldsymbol{\kappa}(x, y)$ is a symmetric matrix that is positive definite everywhere, i.e.,

$$
\boldsymbol{v}^{T} \boldsymbol{\kappa}(x, y) \boldsymbol{v}>0, \quad \forall(x, y) \in[0,1]^{2}, \boldsymbol{v} \in \mathbb{R}^{2}, \boldsymbol{v} \neq \mathbf{0} .
$$

Like the 1 D case, this PDE models

- Spatially-dependent temperature u due to heat diffusion
- $\boldsymbol{\kappa}$ encodes the heat diffusion, allowing heterogeneous, anisotropic heat diffusion.
- This equation also arises in electrostatics, graviational modeling, fluid flow,

Common Specializations

The general elliptic problem is more recognizable with certain simplifications:
If we take $\boldsymbol{\kappa}=\boldsymbol{I}$, then we obtain Poisson's equation:

$$
-\Delta u=f
$$

If we further specialize to $f=0$, we obtain Laplace's equation:

$$
-\Delta u=0 .
$$

FD discretization

For simplicity, consider Poisson's equation:

$$
\begin{array}{cr}
-\Delta u=f(x, y), & (x, y) \in(0,1)^{2} \\
u(0, y)=g_{0}(y), u(1, y)=g_{1}(y), & y \in[0,1] \\
u(x, 0)=h_{0}(x), u(x, 1)=h_{1}(x), & x \in[0,1],
\end{array}
$$

We define a uniform, isotropic grid of mesh spacing $h=1 /(M+1)$ over $[0,1]^{2}$:

$$
u_{i, j} \approx u\left(x_{i}, y_{j}\right), \quad x_{i}=i h, \quad y_{j}=j h
$$

for $i, j=0, \ldots, M+1$. The unknowns are $u_{i, j}$ for $i, j=1, \ldots, M$.
An FD discretization proceeds in essentially the same way as before:

$$
\begin{aligned}
& u_{x x}\left(x_{i}, y_{j}\right) \approx D_{+}^{x} D_{-}^{x} u_{i, j}=\frac{1}{h^{2}}\left(u_{i+1, j}-2 u_{i, j}+u_{i-1, j}\right), \\
& u_{y y}\left(x_{i}, y_{j}\right) \approx D_{+}^{y} D_{-}^{y} u_{i, j}=\frac{1}{h^{2}}\left(u_{i+1, j}-2 u_{i, j}+u_{i-1, j}\right),
\end{aligned}
$$

with local truncation errors,

hence we expect second-order accuracy with this discretization.

FD discretization

For simplicity, consider Poisson's equation:

$$
\begin{array}{cr}
-\Delta u=f(x, y), & (x, y) \in(0,1)^{2} \\
u(0, y)=g_{0}(y), u(1, y)=g_{1}(y), & y \in[0,1] \\
u(x, 0)=h_{0}(x), u(x, 1)=h_{1}(x), & x \in[0,1]
\end{array}
$$

We define a uniform, isotropic grid of mesh spacing $h=1 /(M+1)$ over $[0,1]^{2}$:

$$
u_{i, j} \approx u\left(x_{i}, y_{j}\right), \quad x_{i}=i h, \quad y_{j}=j h
$$

for $i, j=0, \ldots, M+1$. The unknowns are $u_{i, j}$ for $i, j=1, \ldots, M$.
An FD discretization proceeds in essentially the same way as before:

$$
\begin{aligned}
& u_{x x}\left(x_{i}, y_{j}\right) \approx D_{+}^{x} D_{-}^{x} u_{i, j}=\frac{1}{h^{2}}\left(u_{i+1, j}-2 u_{i, j}+u_{i-1, j}\right), \\
& u_{y y}\left(x_{i}, y_{j}\right) \approx D_{+}^{y} D_{-}^{y} u_{i, j}=\frac{1}{h^{2}}\left(\frac{u_{i+1, j}}{i_{i, j \nmid}}-2 u_{i, j}+u_{i-1, j}\right), \\
& \text { uncation errors, }
\end{aligned}
$$

with local truncation errors,

$$
\begin{aligned}
& D_{+}^{x} D_{-}^{x} u\left(x_{i}, y_{j}\right)-u_{x x}\left(x_{i}, y_{j}\right) \simeq C h^{2} u_{x x x x}=\mathcal{O}\left(h^{2}\right) \\
& D_{+}^{y} D_{-}^{y} u\left(x_{i}, y_{j}\right)-u_{y y}\left(x_{i}, y_{j}\right) \simeq C h^{2} u_{y y y y}=\mathcal{O}\left(h^{2}\right)
\end{aligned}
$$

hence we expect second-order accuracy with this discretization.

The full scheme is then given by,

$$
\begin{array}{rr}
& -u_{i, j+1} \\
-u_{i-1, j} \\
+4 u_{i, j} \\
-u_{i, j-1}
\end{array} \quad-u_{i+1, j}=h^{2} f_{i, j}, \quad i, j=1, \ldots, M .
$$

with the boundary conditions,

$$
\begin{aligned}
& u_{0, j}=g_{0}\left(y_{j}\right) \\
& u_{i, 0}=h_{0}\left(x_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& M_{y+j}=g_{1}\left(y_{j}\right) \\
& u_{i, y}=h_{1}\left(x_{i}\right)
\end{aligned}
$$

Note that above we approximate Δu with grid values on' a 5 -point stencil. Hence we are using a 5 -point stencil approximation for the Laplacian.

As one might expect, the above can again be written as a linear system:
\square

$$
\boldsymbol{u}=\left(u_{i, j}\right)_{i, j=1}^{M},
$$

where \hat{f} is a vector depending only on f and the boundary conditions.

The scheme

The full scheme is then given by,

$$
\begin{array}{cc}
-u_{i, j+1} \\
-u_{i-1, j} & +4 u_{i, j} \\
-u_{i, j-1}
\end{array}-u_{i+1, j}=h^{2} f_{i, j}, \quad i, j=1, \ldots, M
$$

with the boundary conditions,

$$
\begin{array}{ll}
u_{0, j}=g_{0}\left(y_{j}\right), & u_{1, j}=g_{1}\left(y_{j}\right) \\
u_{i, 0}=h_{0}\left(x_{i}\right), & u_{i, 1}=h_{1}\left(x_{i}\right)
\end{array}
$$

Note that above we approximate Δu with grid values on a 5-point stencil. Hence we are using a 5-point stencil approximation for the Laplacian.

As one might expect, the above can again be written as a linear system:

$$
\boldsymbol{A} \boldsymbol{u}=\hat{\boldsymbol{f}}, \quad \boldsymbol{u}=\left(u_{i, j}\right)_{i, j=1}^{M},
$$

where $\hat{\boldsymbol{f}}$ is a vector depending only on f and the boundary conditions.

Computational considerations in 2D

$$
\boldsymbol{A} \boldsymbol{u}=\hat{\boldsymbol{f}}
$$

$$
\boldsymbol{u}=\left(u_{i, j}\right)_{i, j=1}^{M},
$$

Unlike in 1D:

- \boldsymbol{A} is not a tridiagonal (or pentadiagonal) matrix, but is still sparse
- The ordering of the unknowns $\left(u_{i, j}\right)_{i, j=1}^{M}$ matters a considerable deal in determining the sparsity pattern of \boldsymbol{A}.
- \boldsymbol{A} is $M^{2} \times M^{2}$, and \boldsymbol{u} contains M^{2} degrees of freedom - much larger!
- There are no more simple "tricks" to invert \boldsymbol{A} in $\mathcal{O}\left(M^{2}\right)$ time, although iterative methods can solve the problem in $\mathcal{O}\left(M^{2} \log M\right)$ time.
However, some things are essentially the same:
- The scheme is second-order accurate (convergent) in h. (The LTE is second-order, and the scheme is stable.)
- In 1D, scaling h by $1 / 2$ attained a reduced error scaled by $1 / 4$. Since scaling h by $1 / 2$ doubles the degrees of freedom, this is a superlinear (quadratic) payoff.
- In 2D, scaling h by $1 / 2$ again attains a reduced error scaled by $1 / 4$. But scaling h by $1 / 2$ quadruples the degrees of freedom, so this is only a linear payoff.

Computational considerations in 2D

$$
\boldsymbol{A} \boldsymbol{u}=\hat{\boldsymbol{f}}, \quad \boldsymbol{u}=\left(u_{i, j}\right)_{i, j=1}^{M}
$$

Unlike in 1D:

- \boldsymbol{A} is not a tridiagonal (or pentadiagonal) matrix, but is still sparse
- The ordering of the unknowns $\left(u_{i, j}\right)_{i, j=1}^{M}$ matters a considerable deal in determining the sparsity pattern of \boldsymbol{A}.
- \boldsymbol{A} is $M^{2} \times M^{2}$, and \boldsymbol{u} contains M^{2} degrees of freedom - much larger!
- There are no more simple "tricks" to invert \boldsymbol{A} in $\mathcal{O}\left(M^{2}\right)$ time, although iterative methods can solve the problem in $\mathcal{O}\left(M^{2} \log M\right)$ time.
However, some things are essentially the same:
- The scheme is second-order accurate (convergent) in h. (The LTE is second-order, and the scheme is stable.)
- In 1D, scaling h by $1 / 2$ attained a reduced error scaled by $1 / 4$. Since scaling h by $1 / 2$ doubles the degrees of freedom, this is a superlinear (quadratic) payoff.
- In 2D, scaling h by $1 / 2$ again attains a reduced error scaled by $1 / 4$. But scaling h by $1 / 2$ quadruples the degrees of freedom, so this is only a linear payoff.

To higher dimensions
Laplace's equation (indeed, generally any elliptic equation) is essentially the same in an arbitrary number of dimensions d :

$$
-\Delta u=f, \quad \Delta u:=\frac{\partial^{2} u}{\partial x_{1}^{2}}+\cdots+\frac{\partial^{2} u}{\partial x_{d}^{2}}
$$

As expected, the same FD approach works, discretizing dimension-by-dimension.
The resulting Laplacian stencil has $2 d+1$ points - the system matrix \boldsymbol{A} is sparse, with only $2 d+1$ non-zero entries per row. ©

With a uniform, isotropic grid of mesh spacing $h=1 /(M+1)$, there are $M^{d} \sim(1 / h)^{d}$ degrees of freedom. \odot

Solving the linear system with iterative methods can be accomplished in slightly superlinear time, $\mathcal{O}\left(d M^{d} \log M\right)$ time. ©

The scheme is still stable, and the LTE is second-order in h. (2)

To higher dimensions
Laplace's equation (indeed, generally any elliptic equation) is essentially the same in an arbitrary number of dimensions d :

$$
-\Delta u=f, \quad \Delta u:=\frac{\partial^{2} u}{\partial x_{1}^{2}}+\cdots+\frac{\partial^{2} u}{\partial x_{d}^{2}}
$$

As expected, the same FD approach works, discretizing dimension-by-dimension.
The resulting Laplacian stencil has $2 d+1$ points - the system matrix \boldsymbol{A} is sparse, with only $2 d+1$ non-zero entries per row. ©

With a uniform, isotropic grid of mesh spacing $h=1 /(M+1)$, there are $M^{d} \sim(1 / h)^{d}$ degrees of freedom. ©

Solving the linear system with iterative methods can be accomplished in slightly superlinear time, $\mathcal{O}\left(d M^{d} \log M\right)$ time. ©

The scheme is still stable, and the LTE is second-order in $h . \mathcal{P}^{-}$

To higher dimensions
Laplace's equation (indeed, generally any elliptic equation) is essentially the same in an arbitrary number of dimensions d :

$$
-\Delta u=f, \quad \Delta u:=\frac{\partial^{2} u}{\partial x_{1}^{2}}+\cdots+\frac{\partial^{2} u}{\partial x_{d}^{2}}
$$

As expected, the same FD approach works, discretizing dimension-by-dimension.
The cost vs. accuracy payoff is sublinear if $d \geqslant 3$. ©
In particular, $h \leftarrow h / 2$ requires 2^{d} times more degrees of freedom, with an error reduced to only 2^{-2} times the original amount.

More pedantically, the order of convergence, relative to the number of degrees of freedom $N=M^{d}$, is $2 / d$, i.e., the error scales like $N^{-2 / d}$.

This exponential attentuation of convergence is one manifestation of the curse of dimensionality.

Delaying the curse of dimensionality

At least in 2D, there is a "trick" that restores second-order convergence relative to the degrees of freedom, i.e., has error that is fourth-order in h.

The idea is as follows: we know that the standard 5-point stencil Laplacian approximation satisfies,
$\Delta_{5} u_{i, j}=\frac{1}{h^{2}}\left(-u_{i+1, j}-u_{i-1, j}-u_{i, j+1}-u_{i, j-1}+4 u_{i, j}\right) \simeq \Delta u\left(x_{i}, y_{j}\right)+C h^{2}\left(u_{x x x x x}\right.$
The LTE term $u_{x x x x}+u_{y y y y}$ is not something we know how to compute without
knowledge of u, but this expression is similar to the biharmonic operator:

$$
\Delta^{2}:=\Delta \Delta u=\left(\partial_{x}^{2}+\partial_{y}^{2}\right)\left(\partial_{x}^{2}+\partial_{y}^{2}\right) u=u_{x x x x}+2 u_{x x y y}+u_{y y y y} .
$$

The reason this is interesting is that

$$
\Delta^{2} u=\Delta \Delta u=\Delta f
$$

and we know f, so in principle can compute Δf.
l.e., can we "change" the LTE expression to resemble $\Delta^{2} u$?

Delaying the curse of dimensionality

At least in 2D, there is a "trick" that restores second-order convergence relative to the degrees of freedom, i.e., has error that is fourth-order in h.

The idea is as follows: we know that the standard 5 -point stencil Laplacian approximation satisfies,
$\Delta_{5} u_{i, j}=\frac{1}{h^{2}}\left(-u_{i+1, j}-u_{i-1, j}-u_{i, j+1}-u_{i, j-1}+4 u_{i, j}\right) \simeq \Delta u\left(x_{i}, y_{j}\right)+C h^{2}\left(u_{x x x x}+\right.$

The LTE term $\overline{u_{x x x}}+u_{y y y y}$ is not something we knay how to compute without knowledge of u, but this expression is similar to the biharmonic operator:

$$
\Delta^{2}:=\Delta \Delta u=\left(\partial_{x}^{2}+\partial_{y}^{2}\right)\left(\partial_{x}^{2}+\partial_{y}^{2}\right) u=u_{x x x x}+2 u_{x x y y}+u_{y y y y}
$$

The reason this is interesting is that
and we know f, so in principle can compute Δf.
I.e., can we "change" the LTE expression to resemble $\Delta^{2} u$?

Delaying the curse of dimensionality

At least in 2D, there is a "trick" that restores second-order convergence relative to the degrees of freedom, i.e., has error that is fourth-order in h.

The idea is as follows: we know that the standard 5 -point stencil Laplacian approximation satisfies,
$\Delta_{5} u_{i, j}=\frac{1}{h^{2}}\left(-u_{i+1, j}-u_{i-1, j}-u_{i, j+1}-u_{i, j-1}+4 u_{i, j}\right) \simeq \Delta u\left(x_{i}, y_{j}\right)+C h^{2}\left(u_{x x x x}+\right.$
The LTE term $u_{x x x x}+u_{y y y y}$ is not something we know how to compute without knowledge of u, but this expression is similar to the biharmonic operator:

$$
\Delta^{2}:=\Delta \Delta u=\left(\partial_{x}^{2}+\partial_{y}^{2}\right)\left(\partial_{x}^{2}+\partial_{y}^{2}\right) u=u_{x x x x}+2 u_{x x y y}+u_{y y y y}
$$

The reason this is interesting is that

$$
\Lambda_{u}=f \xrightarrow{\Delta} \quad \Delta^{2} u=\Delta \Delta u=\Delta f
$$

and we know f, so in principle can compute Δf.
I.e., can we "change" the LTE expression to resemble $\Delta^{2} u$?

The 9-point stencil, I

We will attain a biharmonic-like LTE via a combination of two 5 -point stencils. The first stencil is $\Delta_{5} u_{i, j}$, that we are already familiar with.

The second stencil is essentially the same, but is "rotated" by 45° :

$$
\widetilde{\Delta}_{5} u_{i, j}=\begin{array}{ll}
-u_{i-1, j+1} \\
-u_{i-1, j-1}
\end{array}+4 u_{i, j} \quad-u_{i+1, j+1} \quad \approx 2 h^{2} \Delta u\left(x_{i}, y_{j}\right)
$$

The LTE for this approximation similarly contains fourth derivatives, but of a different type.

If we consider a combination of these approximations,
\square
and choose $\lambda=1 / 3$, then after some (painful) computation, we find,

This results in the 9-point stencil approximation:

The 9-point stencil, I

We will attain a biharmonic-like LTE via a combination of two 5 -point stencils. The first stencil is $\Delta_{5} u_{i, j}$, that we are already familiar with.

The second stencil is essentially the same, but is "rotated" by 45° :

$$
\widetilde{\Delta}_{5} u_{i, j}=\begin{aligned}
& -u_{i-1, j+1} \\
& -u_{i-1, j-1}
\end{aligned}+4 u_{i, j} \underbrace{}_{-u_{i+1, j-1}} \approx 2 h^{2} \Delta u\left(x_{i}, y_{j}\right)
$$

The LTE for this approximation similarly contains fourth derivatives, but of a different type.

If we consider a combination of these approximations,

$$
\lambda \Delta_{5} u_{i, j}+(1-\lambda) \widetilde{\Delta}_{5} u_{i, j}
$$

and choose $\lambda=1 / 3$, then after some (painful) computation, we find,

$$
\Delta u\left(x_{i}, y_{j}\right)+\frac{1}{12} h^{2}\left(\Delta^{2} u\left(x_{i}, y_{j}\right)\right)+\mathcal{O}\left(h^{4}\right) \simeq \frac{2}{3} \Delta_{5} u_{i, j}+\frac{1}{3} \widetilde{\Delta}_{5} u_{i, j}
$$

This results in the 9 -point stencil approximation:

$$
\Delta u\left(x_{i}, y_{j}\right) \approx \Delta_{9} u_{i, j}:=\frac{1}{6 h^{2}}\left(\begin{array}{ccc}
-u_{i-1, j+1} & -4 u_{i, j+1} & -u_{i+1, j+1} \\
-4 u_{i-1, j} & 20 u_{i, j} & -4 u_{i+1, j} \\
-u_{i-1, j-1} & -4 u_{i, j-1} & -u_{i+1, j-1}
\end{array}\right)
$$

The 9-point stencil, II

What have we accomplished? The LTE for the 9-point approximation is
$h^{2} / 12 \Delta^{2} u+\mathcal{O}\left(h^{4}\right)=h^{2} / 12 \Delta f+\mathcal{O}\left(h^{4}\right)$.
$\left(h^{2} / 12\right) a^{2} u$
$\left(h^{2} \% 2\right) \Delta f$
then clearly $\Delta f=0$, hence, the FD scheme

$$
\Delta_{9} u_{i, j}=f_{i, j}
$$

is automatically 4th-order accurate in h. Thus, our 9-point stencil achieves 4th order convergence in h, or second-order convergence in $M^{2} \sim 1 / h^{2}$. l.e., this scheme achieves quadratic accuracy vs cost payoff.

For Poisson's equation $(f \neq 0)$, then if we have the ability to compute $F:=\Delta f$, then the modified FD scheme,

$$
\Delta_{9} u_{i, j}=f_{i, j}+\frac{h^{2}}{12} F_{i, j}
$$

will be 4th order accurate in h. If Δf is not explicitly computable, the same accuracy is achievable via the approximation,

$$
\Delta_{9} u_{i, j}=f_{i, j}+\frac{h^{2}}{12} \Delta_{5} f_{i, j}
$$

The 9-point stencil, II

What have we accomplished? The LTE for the 9-point approximation is $h^{2} / 12 \Delta^{2} u+\mathcal{O}\left(h^{4}\right)=h^{2} / 12 \Delta f+\mathcal{O}\left(h^{4}\right)$.

For Laplace's equation $(f=0)$, then clearly $\Delta f=0$, hence, the FD scheme

$$
\Delta_{9} u_{i, j}=f / \chi_{\mathrm{i}}, \quad 0
$$

is automatically 4th-order accurate in h. Thus, our 9-point stencil achieves 4th order convergence in h, or second-order convergence in $M^{2} \sim 1 / h^{2}$. I.e., this scheme achieves quadratic accuracy vs cost payoff.

For Poisson's equation $(f \neq 0)$, then if we have the ability to compute $F:=\Delta f$, then the modified FD scheme,

will be 4 th order accurate in h. If Δf is not explicitly computable, the same accuracy is achievable via the approximation,

The 9-point stencil, II

What have we accomplished? The LTE for the 9-point approximation is $h^{2} / 12 \Delta^{2} u+\mathcal{O}\left(h^{4}\right)=h^{2} / 12 \Delta f+\mathcal{O}\left(h^{4}\right)$.

For Laplace's equation $(f=0)$, then clearly $\Delta f=0$, hence, the FD scheme

$$
\Delta_{9} u_{i, j}=f_{i, j},
$$

is automatically 4th-order accurate in h. Thus, our 9-point stencil achieves 4th order convergence in h, or second-order convergence in $M^{2} \sim 1 / h^{2}$. I.e., this scheme achieves quadratic accuracy vs cost payoff.

For Poisson's equation $(f \neq 0)$, then if we have the ability to compute $F:=\Delta f$, then the modified FD scheme,

$$
\Delta_{9} u_{i, j}=f_{i, j}+\frac{h^{2}}{12} F_{i, j}
$$

will be 4th order accurate in h. If Δf is not explicitly computable, the same accuracy is achievable via the approximation,

$$
\Delta_{9} u_{i, j}=f_{i, j}+\frac{h^{2}}{12} \Delta_{5} f_{i, j}
$$

Deferred corrections

The previous idea is not really generalizable to other problems, as we must hope that a serendipitous stencil that achieves a particular LTE is identifiable.

The method of deferred corrections seeks to make the above idea more practical: for the Poisson problem, first we compute the solution $\widetilde{\boldsymbol{u}}$ to

$$
\Delta_{5} \widetilde{u}_{i, j}=f_{i, j},
$$

and second use $\widetilde{\boldsymbol{u}}$ to compute approximations to the 5-point LTE truncation error

$$
\widetilde{\boldsymbol{u}} \xrightarrow{\text { approximate } h^{2} / 12\left(u_{x x x x}+u_{y y y y}\right)} F_{i, j}
$$

Finally, we solve the corrected problem for \boldsymbol{u} :

$$
\Delta_{5} u_{i, j}=f_{i, j}+F_{i, j}
$$

With proper construction of $F_{i, j}$, this scheme is again fourth-order accurate in h.

References I

ReVeque, Randall J. (2007). Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. SIAM. ISBN: 978-0-89871-783-9.

