Department of Mathematics, University of Utah
 Numerical Solutions of PDE MATH 6630 - Section 001 - Spring 2023

Project 1
Finite difference methods
Due Friday, March 3, 2021

You must complete only one of the three exercises below, of your choice.
Submit your project via Github in a project named math6630-project-1 by adding me (akilnarayan) as a collaborator to the repository. You may set up and share the repository before the due date. I will only clone the project after the due date.

A ATEX template (that you should use for your submission) is located at https://github.com/ akilnarayan/math6630-project-1-template, which also contains the typesetting source for the problem statements below. You can delete the typesetting for the problems that you choose not to complete. You may amend the template in any reasonable way you choose (e.g., if you prefer a different style/font).

1. (Finite difference methods in 1D)

Consider the ordinary differential equation:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\kappa(x) \frac{\mathrm{d}}{\mathrm{~d} x} u(x)\right)=f(x), \quad x \in[0,1] \tag{1}
\end{equation*}
$$

with homogeneous Dirichlet boundary conditions, $u(0)=u(1)=0$, and where scalar diffusion coefficient κ is given by,

$$
\kappa(x)=2+\sum_{\ell=1}^{5} \frac{1}{\ell+1} \sin (\ell \pi x) .
$$

The goal of this exercise will be to numerically compute solutions to this problem.
(a) Define the operator,

$$
\widetilde{D}_{0} u\left(x_{j}\right)=\frac{u\left(x_{j}+h / 2\right)-u\left(x_{j}-h / 2\right)}{h}, \quad h=1 /(N+1), \quad x_{j}:=j h,
$$

for a fixed number of points $N \in \mathbb{N}$. Then with u_{j} the numerical solution approximating $u\left(x_{j}\right)$ for solving the $d=1$ version of (1), consider the scheme,

$$
\begin{equation*}
\widetilde{D}_{0}\left(\kappa\left(x_{j}\right) \widetilde{D}_{0} u_{j}\right)=f\left(x_{j}\right), \quad j \in[N] \tag{2}
\end{equation*}
$$

Show that, for smooth u and κ, this scheme has second-order local truncation error.
(b) Construct an exact solution via the mathed of manufactured solutions: posit an exact (smooth) solution $u(x)$ (that satisfies the boundary conditions!) and, compute f in (1) so that your posited solutions satifies (1).
(c) Implement the scheme above for solving (1), setting f to be the function identified in part (b), so that you know the exact solution. Show that indeed you achieve second-order convergence in h (say in the $h^{d / 2}$-scaled vector ℓ^{2} norm). (To "show" this, plot on a log scale the error as a function of a discretization parameter, such as h or N, and verify that the slope of the resulting line is what is expected.)
2. (Finite difference methods in 2/3D)

Consider the following partial differential equation that generalizes (1):

$$
\begin{equation*}
\nabla \cdot(\kappa(\boldsymbol{x}) \nabla \boldsymbol{u}(\boldsymbol{x}))=f(\boldsymbol{x}), \quad \boldsymbol{x} \in[0,1]^{d} \tag{3}
\end{equation*}
$$

again with homoegenous Dirichlet boundary conditions, $\left.u\right|_{\partial[0,1]^{d}}=0$. Set the diffusion coefficient to be,

$$
\kappa(\boldsymbol{x})=2+\sum_{k, \ell=1}^{3} \frac{1}{(k+1)(\ell+1)} \sin \left(\ell \pi x_{1}\right) \sin \left(k \pi x_{2}\right), \quad \boldsymbol{x}=\left(x_{1}, x_{2}\right)^{T}
$$

This problem involves numerically solving the PDE above.
(a) Consider $d=2$. To discretize the ∇ operator for $d=2, \boldsymbol{x}=\left(x_{1}, x_{2}\right)^{T}$, use,

$$
\nabla \sim\binom{\widetilde{D}_{0,1}}{\widetilde{D}_{0,2}}
$$

where $\widetilde{D}_{0,1}$ and $\widetilde{D}_{0,1}$ are one-dimensional versions of (2) operating in the x_{1} and x_{2} directions, respectively. Use the method of manufactured solutions to define an appropriate f so that you know the exact solution. Verify expected order of accuracy (say in h) as in the previous problem. What novel practical aspects arise in the two-dimensional case compared to the 1D case?
(b) Can you extend your solver to three dimensions? Do you still observe high-order convergence? Note that in either 2 or 3 dimensions, you may want to consider iterative methods for solving the linear system. (Does the matrix \boldsymbol{A} in your linear system have special properties or structure?) Note also that for these problems, if \boldsymbol{u} is a vector containing the degrees of freedom for the solution u, then you can evaluate $\boldsymbol{u} \mapsto \boldsymbol{A} \boldsymbol{u}$ without forming the full d dimensional \boldsymbol{A} matrix, and instead using only "one-dimensional" versions of \boldsymbol{A}.
3. (Finite difference methods for time-dependent problems) Consider the PDE,

$$
u_{t}+a u_{x}=0, \quad u(x, 0)=\exp (\sin 2 \pi x), \quad x \in[0,1)
$$

with periodic boundary conditions, where k is the timestep. In this problem, we'll use the following Lax-Wendroff scheme to numerically solve this PDE:

$$
D^{+} u_{j}^{n}=-a D_{0} u_{n}^{j}+\frac{a^{2} k}{2} D_{+} D_{-} u_{j}^{n} .
$$

(a) Show that this scheme has local truncation error that is order h^{2} in space and k^{2} in time.
(b) Compute the stability bound relating k and h via von Neumann stability analysis.
(c) Implement the Lax-Wendroff scheme (say with $a=1$ and integrating up to time $T=1$) and numerically verify that the scheme is second-order in space, and second-order in time.

