
Department of Mathematics, University of Utah
Numerical Solutions of PDE

MATH 6630 – Section 001 – Spring 2023

Project 1
Finite difference methods
Due Friday, March 3, 2021

You must complete only one of the three exercises below, of your choice.

Submit your project via Github in a project named math6630-project-1 by adding me (akilnarayan)
as a collaborator to the repository. You may set up and share the repository before the due date.
I will only clone the project after the due date.

A LATEX template (that you should use for your submission) is located at https://github.com/
akilnarayan/math6630-project-1-template, which also contains the typesetting source for the
problem statements below. You can delete the typesetting for the problems that you choose not
to complete. You may amend the template in any reasonable way you choose (e.g., if you prefer a
different style/font).

1. (Finite difference methods in 1D)
Consider the ordinary differential equation:

d

dx

(
κ(x)

d

dx
u(x)

)
= f(x), x ∈ [0, 1], (1)

with homogeneous Dirichlet boundary conditions, u(0) = u(1) = 0 , and where scalar diffusion
coefficient κ is given by,

κ(x) = 2 +

5∑
ℓ=1

1

ℓ+ 1
sin(ℓπx).

The goal of this exercise will be to numerically compute solutions to this problem.

(a) Define the operator,

D̃0u(xj) =
u(xj + h/2)− u(xj − h/2)

h
, h = 1/(N + 1), xj := jh,

for a fixed number of points N ∈ N. Then with uj the numerical solution approximating
u(xj) for solving the d = 1 version of (1), consider the scheme,

D̃0

(
κ(xj)D̃0uj

)
= f(xj), j ∈ [N ]. (2)

Show that, for smooth u and κ, this scheme has second-order local truncation error.

1



Project 1
MATH6630 Numerical Solutions of PDE University of Utah

(b) Construct an exact solution via themathed of manufactured solutions: posit an exact (smooth)
solution u(x) (that satisfies the boundary conditions!) and, compute f in (1) so that your
posited solutions satifies (1).

(c) Implement the scheme above for solving (1), setting f to be the function identified in part (b),
so that you know the exact solution. Show that indeed you achieve second-order convergence
in h (say in the hd/2-scaled vector ℓ2 norm) . (To “show” this, plot on a log scale the error
as a function of a discretization parameter, such as h or N , and verify that the slope of the
resulting line is what is expected.)

2. (Finite difference methods in 2/3D)
Consider the following partial differential equation that generalizes (1):

∇ · (κ(x)∇u(x)) = f(x), x ∈ [0, 1]d, (3)

again with homoegenous Dirichlet boundary conditions, u
∣∣
∂[0,1]d

= 0. Set the diffusion coefficient

to be,

κ(x) = 2 +
3∑

k,ℓ=1

1

(k + 1)(ℓ+ 1)
sin(ℓπx1) sin(kπx2), x = (x1, x2)

T .

This problem involves numerically solving the PDE above.

(a) Consider d = 2. To discretize the ∇ operator for d = 2, x = (x1, x2)
T , use,

∇ ∼

(
D̃0,1

D̃0,2

)
,

where D̃0,1 and D̃0,1 are one-dimensional versions of (2) operating in the x1 and x2 directions,
respectively. Use the method of manufactured solutions to define an appropriate f so that
you know the exact solution. Verify expected order of accuracy (say in h) as in the previous
problem. What novel practical aspects arise in the two-dimensional case compared to the 1D
case?

(b) Can you extend your solver to three dimensions? Do you still observe high-order convergence?
Note that in either 2 or 3 dimensions, you may want to consider iterative methods for solving
the linear system. (Does the matrix A in your linear system have special properties or
structure?) Note also that for these problems, if u is a vector containing the degrees of
freedom for the solution u, then you can evaluate u 7→ Au without forming the full d-
dimensional A matrix, and instead using only “one-dimensional” versions of A.

3. (Finite difference methods for time-dependent problems)
Consider the PDE,

ut + aux = 0, u(x, 0) = exp(sin 2πx), x ∈ [0, 1),

with periodic boundary conditions, where k is the timestep. In this problem, we’ll use the following
Lax-Wendroff scheme to numerically solve this PDE:

D+unj = −aD0u
j
n +

a2k

2
D+D−u

n
j .
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(a) Show that this scheme has local truncation error that is order h2 in space and k2 in time.

(b) Compute the stability bound relating k and h via von Neumann stability analysis.

(c) Implement the Lax-Wendroff scheme (say with a = 1 and integrating up to time T = 1) and
numerically verify that the scheme is second-order in space, and second-order in time.
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