This week: last week of new material
Next Tuesday (Apr. 27) : review Session.
p
last day of closes
Wed May 5: Final exam @ 8 am.
(same format as midterms)

- Hew $\# 9$ due today.
- Quiz (\#7?) on canvas due tomorrow (available you).
- Hw\#IO posited, due Apr. 27 (last day of classes)
(last one)
- Quiz (\#8?) due on Apr. 27. (Available Mar. Apr. 26-27).
(last one)

Office hows Thuseday this week
-Thursday, (Apr. 22) from 2-3pm (specie time) (on Canvas calendar)

PDEs on infinite domains

MATH 3150 Lecture 09

April 13, 2021

Haberman 5th edition: Section 10.4

The Fourier transform

Given a function $f(x)$ defined on the real line, $-\infty<x<\infty$, the Fourier transform of f is defined as

$$
\mathcal{F}\{f\}(\omega)=F(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{i \omega x} \mathrm{~d} x, \quad-\infty<\omega<\infty .
$$

Given a function $F(\omega)$ defined on the real line, $-\infty<\omega<\infty$, the inverse Fourier transform of F is defined as

$$
\begin{aligned}
& \quad \mathcal{F}^{-1}\{F\}(x)=f(x)=\int_{-\infty}^{\infty} F(\omega) e^{-i \omega x} \mathrm{~d} \omega, \quad-\infty<x<\infty . \\
& \text { if } f \text { is smooth, then } \mathscr{L}^{-1}\{\mathscr{L}\{f\}\}=f .
\end{aligned}
$$

We will now use the Fourier transform to solve PDEs on infinite domains.

Using the Fourier transform, compute the solution to the PDE,

$$
\begin{aligned}
& u_{t}=k u_{x x}, \\
& t>0,-\infty<x<\infty \\
& u(x, 0)=f(x) \text {. } \\
& k>0 \text { given } \\
& u_{t}=k u_{x x} \xrightarrow[\text { in } x \text {-spence }]{\mathscr{g}} \mathcal{f}\left\{\frac{\partial}{\partial t} u\right\}=k \mathscr{L}\left\{u_{x x}\right\} \\
& \left\lfloor\frac{\partial}{\partial t} \text { is "ingpendent" of ge in } x\right. \\
& \frac{\partial}{\partial t} \mathscr{L}\{u\}=k \mathscr{L}\left\{u_{x x}\right\} \\
& \text { if } U(w, t)=\mathcal{L}\{u(x, t)\} \text {, then } \mathcal{J}\left\{u_{x x}\right\}=(-i \omega)^{2} U(\omega, t)
\end{aligned}
$$

$$
\begin{gathered}
\frac{\partial}{\partial t} U(\omega, t)=(-i \omega)^{2} k U(\omega, t) \\
U_{t}=-k \omega^{2} U \\
u(x, 0)=f(x) \xrightarrow{g} U(\omega, 0)=F(\omega)
\end{gathered}
$$

Summary: $\left.\begin{array}{rl}\frac{\partial}{\partial t} U(w, t) & =-k \omega^{2} U \\ U(w, 0)=F(w)\end{array}\right\} \begin{gathered}\text { ordmary diff. can. } \\ \text { (initial value paten) }\end{gathered}$

$$
U(\omega, 0)=F(\omega) \quad \int \text { (initial value problem) }
$$

treat w as an independent parameter.

$$
\begin{aligned}
& U_{t}=-k w^{2} U \quad\left(\text { compare to } y^{\prime}=a y\right) \\
& U(w, t)=C \exp \left(-k \omega^{2} t\right)
\end{aligned}
$$

(from OOE'S: separable qu, constant Toff homigereors eq, exact equation)
Note: C is a constant with respect to t.
But it can depend on $w, C=C(w)$
General solis: $U(\omega, t)=C(\omega) \exp \left(-k \omega^{2} t\right)$

$$
t=0\left(\begin{array}{l}
U(\omega, 0)=F(\omega) \\
U(\omega, 0)=C(\omega) \Rightarrow C(\omega)=F(\omega)
\end{array}\right.
$$

$P D E$ solution (in free space) : $U\left(\omega_{1} t\right)=F(\omega) \exp \left(-k \omega^{2} t\right)$ in physical space?

Define $G(\omega, t)=\exp \left(-k t \omega^{2}\right) \Longrightarrow g(x, t)=\sqrt{\frac{\pi}{k t}} \cdot \exp \left(\frac{-x^{2}}{4 k t}\right)$
formula sheet $a=k t$

$$
\begin{aligned}
& U(\omega, t)=F(\omega) G(\omega, t) \\
& \Rightarrow u(x, t)=(f * g)(x, t) \\
&=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(s) g(x-s, t) d s \\
&=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(s) \sqrt{\frac{\pi}{k t}} \exp \left(\frac{-(x-s)^{2}}{4 k t}\right) d s \\
& u(x, t)=\int_{-\infty}^{\infty} f(s) \sqrt{\frac{1}{4 \pi k t}} \exp \left(\frac{-(x-s)^{2}}{4 k t}\right) d s
\end{aligned}
$$

Define $h(x, t)=\frac{1}{\sqrt{4 \pi k t}} \exp \left(-\frac{x^{2}}{4 k t}\right)$

t large
$h(x, t)$

$h(x, t)$ is a Gaussian, whose with increases in time.

The heat kernel, I
The function,

$$
h(x, t)=\frac{1}{\sqrt{4 \pi k t}} \exp \left(-\frac{x^{2}}{4 k t}\right)
$$

is called the heat kernel.

The heat kernel, I
The function,

$$
h(x, t)=\frac{1}{\sqrt{4 \pi k t}} \exp \left(-\frac{x^{2}}{4 k t}\right)
$$

is called the heat kernel.
From the previous example, the solution to the heat equation is simply written:

$$
u(x, t)=(f(x) * h(x, t), \cdots 2 \pi
$$

where the convolution is taken over the x variable.

The heat kernel, II
Note that the heat kernel is actually a particular solution to the heat equation.
Example
Show that the solution $u(x, t)$ to $u_{t}=k u_{x x}$ with initial data $u(x, 0)=\delta(x)$ is the heat kernel $u(x, t)=h(x, t)$.

$$
\begin{aligned}
u_{t}=k u_{x x} \stackrel{\infty}{\sim} u_{t} & =k(-j w)^{2} u \\
& =-k w^{2} U
\end{aligned}
$$

$$
\begin{aligned}
& U(\omega, t)=\mathbb{C}(\omega) \exp \left(-k \omega^{2} t\right) \\
& U(\omega, 0)=?
\end{aligned}
$$

$$
\begin{aligned}
& U(w, 0)=\mathcal{Z}\{\delta(x)\}=\frac{1}{2 \pi} \\
& \Rightarrow U(w, 0)=C(w)=\frac{1}{2 \pi} \\
& U(w, t)=\frac{1}{2 \pi} \exp \left(-k w^{2} t\right) \\
& U(x, t)=\frac{1}{2 \pi} \sqrt{\frac{\pi}{k t}} \exp \left(-\frac{x^{2}}{4 \cdot k t}\right) \\
&=\frac{1}{\sqrt{4 \pi k t}} \exp \left(-x^{2} / 4 k t\right)=h(x, t)
\end{aligned}
$$

The heat kernel, II

Note that the heat kernel is actually a particular solution to the heat equation.

Example

Show that the solution $u(x, t)$ to $u_{t}=k u_{x x}$ with initial data $u(x, 0)=\delta(x)$ is the heat kernel $u(x, t)=h(x, t)$.
The heat kernel is an example of a broader class of solutions.

The heat kernel, III

Suppose L is a linear differential operator (in both x and t), and that L is first-order in t.
Let $q(x, t)$ be the solution to the PDE with Dirac mass initial data,

$$
\begin{aligned}
L q & =0, & t>0,-\infty<x<\infty \\
q(x, 0) & =\delta(x) . &
\end{aligned}
$$

Such solutions q are also sometimes called fundamental solutions or impulse responses.

If $L=\frac{\partial}{\partial t}-\frac{\partial^{2}}{\partial x^{2}}$, then $q(x, t)$ is the heat kernel $h(x, t)$.

The heat kernel, III

Suppose L is a linear differential operator (in both x and t), and that L is first-order in t.
Let $q(x, t)$ be the solution to the PDE with Dirac mass initial data,

$$
\begin{aligned}
L q & =0, & t>0,-\infty<x<\infty \\
q(x, 0) & =\delta(x) . &
\end{aligned}
$$

Such solutions q are also sometimes called fundamental solutions or impulse responses.

If $L=\frac{\partial}{\partial t}-\frac{\partial^{2}}{\partial x^{2}}$, then $q(x, t)$ is the heat kernel $h(x, t)$.

Example

With the notation above, show that the solution u to the PDE

$$
\begin{aligned}
L u & =0, & t>0,-\infty<x<\infty \\
u(x, 0) & =f(x) &
\end{aligned}
$$

is given by $u=f * q$, where the convolution is taken over the x variable.

- How \#10 due Tuesday
- Quiz due an Tuesday (Canvas)
- Tuesday is a review session (office hours)
- Office hows today are a special time:2-3pm
- Final exam: Wed May 5 @ $8 \mathrm{am}_{\mathrm{m}}$ (till 10 am)
- formula sheer on web/Canvas (3 pages)
- is cumulative (covers all homework material)

The wave equation
Using the Fourier transform, compute the solution to the PDE,

$$
\begin{aligned}
u_{t t} & =c^{2} u_{x x}, & t>0,-\infty<x<\infty \\
u(x, 0) & =f(x), & \frac{\partial u}{\partial t}(x, 0)=g(x) .
\end{aligned}
$$

The wave equation
Using the Fourier transform, compute the solution to the PDE,

$$
\begin{aligned}
u_{t t} & =c^{2} u_{x x}, & t>0,-\infty<x<\infty \quad C \text { is given } \\
u(x, 0) & =f(x), & \frac{\partial u}{\partial t}(x, 0)=g(x) .
\end{aligned}
$$

Specialize the solution above to the case $g=0$.
Assume $g=0$ to start.

$$
\begin{aligned}
& u_{t t}=c^{2} u_{x k} \xrightarrow{\mathcal{J} \operatorname{lin} x)} U_{t t}=c^{2}(-j \omega)^{2} U, U=U(w, t) \\
& u_{(x, 0)} \xrightarrow[\mathcal{J}]{ } \quad U(w, 0)=F(\omega) \\
& u_{t}(x, 0) \xrightarrow{\sigma} U_{t}(w, 0)=G(\omega)=0
\end{aligned}
$$

$$
\left.\begin{array}{l}
U_{t t}+c^{2} w^{2} U=0 \\
U(w, 0)=F(w) \\
U_{t}(w, 0)=0
\end{array}\right\} \begin{aligned}
& \text { ODE } \\
& \text { linear, homogeneous, constant-creff. }
\end{aligned}
$$

Characteristro eq roots: $r= \pm j c \omega \quad\left(r^{2}+c^{2} \omega^{2}=0\right)$

$$
U(\omega, t)=A(\omega) \cos (\omega c t)+B(\omega) \sin (\omega c t)
$$

initial data:

$$
\begin{aligned}
U(\omega, 0) & =A(\omega) \Rightarrow A=F \\
& =F(\omega) \\
U_{t}(\omega, 0) & =\omega c B(\omega)=0 \\
& \Rightarrow B=0 .
\end{aligned}
$$

$$
\begin{aligned}
& U(\omega, t)=F(\omega) \cos (\omega c t) \\
& \begin{aligned}
& \mathcal{L}^{-1}\{F(\omega) \cos (\omega c t)\}=? \\
& \text { recall: } \cos \theta=\frac{1}{2}\left(e^{j \theta}+e^{-i \theta}\right) \\
&\left(\text { from } e^{i \theta}=\cos \theta+i \sin \theta\right)
\end{aligned} \\
& F(\omega) \cos (\omega c t)=\frac{1}{2} F(\omega) e^{j \omega c t}+\frac{1}{2} F(\omega) e^{-i \omega c t}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow u(x, t) & =\mathcal{L}^{-1}\{u(\omega, t)\} \\
& =\frac{1}{2} \mathcal{L}^{-1}\left\{F(\omega) e^{i \omega c t}\right\}+\frac{1}{2} \mathcal{L}^{-1}\left\{F(\omega) e^{-i \omega c t}\right\} \\
u(x, t) & =\frac{1}{2} f(x-c t)+\frac{1}{2} f(x+c t)
\end{aligned}
$$

recall: un $x, 0)=f(x)$
$f(x-c t)=f(x)$ shifted $c t$ units to the right
$f(x-c t)=$ wave moving to the right with speed c.
$f(x+c t)$:" "" left with speed C.

Solutimes depends on initial data at $x \pm c t$. "Information" travels at a finite speed c.

What if $g(x) \neq 0$? $\quad u_{t}(x, 0)=g(x)$
Most things are uncharged: $U_{t t}+c^{2} w^{2} U=0$

$$
\begin{aligned}
& U(w, \notin)=F(w) \\
& U_{t}(w, t)=G(w) \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& U(w, t)=A(w) \cos (w c t)+B(w) \sin (w c t) \\
& U_{t}(w, t)=-w c A(w) \sin (w c t)+w c B(w) \cos (u c t) \\
& \Rightarrow A(\omega)=F(\omega), \quad B(\omega)=\frac{G(\omega)}{\omega c} \\
& U(\omega, t)=\frac{F(\omega) \cos (u c t)}{\text { we already }}+\frac{\frac{G / \omega)}{\omega c} \sin (\omega c t)}{\text { focus on }} \\
& \text { know how } \\
& \text { this. } \\
& \text { to inverse } \\
& \text { transform this } \\
& \sigma^{-1}\left\{\frac{\sigma(\omega)}{\omega c} \sin (\omega c t)\right\}=? \\
& \text { since } \sin (\omega c t)=\frac{1}{2 i}\left[e^{i \omega c t}-e^{-i \omega c t}\right] \\
& \frac{G(\omega)}{\omega c} \sin (\text { oct })=\frac{1}{2 c} \frac{G(\omega)}{i \omega} e^{i \omega c t}-\frac{1}{2 c} \frac{G(\omega)}{i \omega} e^{-i \omega c t}
\end{aligned}
$$

Consider $\mathcal{L}^{-1}\left\{\frac{G(\omega)}{j \omega} e^{i \omega c t}\right\}$
From the shift property: this equals the inverse transform of $\frac{G(w)}{i \omega}$ evaluated at $x-c t$

What is $\operatorname{og}^{-1}\left\{\frac{G(\omega)}{j \omega}\right\}$?
formula sheet
Define $H(\omega)=\frac{G(\omega)}{j \omega}, \quad h(x)=\alpha^{-1}\{H\}$
Note: $f^{-1}\{i \omega \cdot H(\omega)\}=-\frac{d}{d x} h(x)$
11

$$
\begin{aligned}
& \mathcal{L}^{-1}\{G\}=g(x) \\
& \Rightarrow h(x)=-\int^{x} g(s) d s+k_{1}, k_{1} \cdot u_{n} \ln o w n \\
& \Rightarrow L^{-1}\left\{\frac{G(w)}{j w} e^{i w c t}\right\}=h(x-(t) \\
&=-\int x-c t \\
& g(s) d s+k_{1}
\end{aligned}
$$

and $j^{-1}\left\{\frac{G(w)}{j w} e^{-j w c t}\right\}=-\int \begin{aligned} & x+c t \\ & g(s) d s\end{aligned}$

$$
+k_{2}
$$

Putting it all together:

$$
\frac{G(w)}{w C} \sin (w C t)=\frac{1}{2 \bar{c}} \frac{G(\dot{w})}{i \omega} e^{i \omega c t}-\frac{1}{2 c} \frac{h(w)}{j w} e^{-j w c t}
$$

$$
\begin{aligned}
\Rightarrow & \mathscr{L}-1
\end{aligned} \begin{aligned}
w c & f(w) \sin (w c t)\} \\
= & \frac{-1}{2 c} \int^{x-c t} g(s) d s+\frac{k_{1}}{2 c} \\
& +\frac{1}{2 c} \int^{x+c t} g(s) d s-\frac{k_{2}}{2 c} \\
= & k+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s
\end{aligned}
$$

unknawn
constant

$$
\begin{aligned}
& u(x, t)=\alpha-1\{u(w, t)\} \\
& =\mathcal{L}^{-1}\left\{F(\omega) \cos (w(t)\}+\mathcal{L}^{-1}\left\{\frac{G / \omega)}{w c} \sin (w(t)\}\right.\right. \\
& =\frac{1}{2} f(x-c t)+\frac{1}{2} f(x+c t)+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s \\
& +k
\end{aligned}
$$

$$
\begin{aligned}
& k=? \\
& u(x, 0)=f(x) \\
& u(x, 0)\left.=\frac{1}{2} f(x)+\frac{1}{2} f(x)+\frac{1}{2 c} \int_{x}^{x} g s\right) d s+k \\
&=f(x)+k \\
& \Rightarrow k=0 \\
& u(x, t)=\frac{1}{2} f(x-c t)+\frac{1}{2} f(x+c t)+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s
\end{aligned}
$$

"D'Alembert's Formula"

Other PDEs
Using the Fourier transform, compute the solution to the PDE,

$$
\begin{aligned}
u_{t} & =c u_{x}, & & t>0,-\infty<x<\infty \\
u(x, 0) & =f(x), & & \text { C given }
\end{aligned}
$$

Fourier transform:

$$
\begin{aligned}
& U_{t}=-j \omega c U \\
& U(w, O)=F(w)
\end{aligned}
$$

$$
\begin{aligned}
& U(\omega, t)=A(\omega) e^{-i \omega c t} \quad\left(\text { compose } y^{\prime}=b y\right) \\
& U(\omega, 0)=F(\omega) \Rightarrow A(\omega)=F(\omega) \\
& U(\omega, t)=F(\omega) e^{-i \omega c t}
\end{aligned}
$$

$$
\begin{aligned}
u(x, t) & =g^{-1}\left\{F(\omega) e^{-i \omega c t}\right\} \\
& =f(x-c t)=f(x+c t)=u(x, t)
\end{aligned}
$$

This is a ware moving to the left with speed C. $u_{t}=c u_{x}$: "one-sised" wave equation.

