PDEs on infinite domains

MATH 3150 Lecture 10

April 20, 2021

Haberman 5th edition: Section 10.4

Given a function $f(x)$ defined on the real line, $-\infty<x<\infty$, the Fourier transform of f is defined as

$$
\mathcal{F}\{f\}(\omega)=F(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{i \omega x} \mathrm{~d} x, \quad-\infty<\omega<\infty
$$

Given a function $F(\omega)$ defined on the real line, $-\infty<\omega<\infty$, the inverse Fourier transform of F is defined as

$$
\mathcal{F}^{-1}\{F\}(x)=f(x)=\int_{-\infty}^{\infty} F(\omega) e^{-i \omega x} \mathrm{~d} \omega, \quad-\infty<x<\infty
$$

We will now use the Fourier transform to solve PDEs on infinite domains.

The heat equation
Using the Fourier transform, compute the solution to the PDE,

$$
\begin{aligned}
u_{t} & =k u_{x x}, & t>0,-\infty<x<\infty \\
u(x, 0) & =f(x) &
\end{aligned}
$$

The heat kernel, I

The function,

$$
h(x, t)=\frac{1}{\sqrt{4 \pi k t}} \exp \left(-\frac{x^{2}}{4 k t}\right)
$$

is called the heat kernel.

The heat kernel, I
The function,

$$
h(x, t)=\frac{1}{\sqrt{4 \pi k t}} \exp \left(-\frac{x^{2}}{4 k t}\right)
$$

is called the heat kernel.
From the previous example, the solution to the heat equation is simply written:

$$
u(x, t)=f(x) * h(x, t)
$$

where the convolution is taken over the x variable.

The heat kernel, II
Note that the heat kernel is actually a particular solution to the heat equation.

Example

Show that the solution $u(x, t)$ to $u_{t}=k u_{x x}$ with initial data $u(x, 0)=\delta(x)$ is the heat kernel $u(x, t)=h(x, t)$.

The heat kernel, II
Note that the heat kernel is actually a particular solution to the heat equation.

Example

Show that the solution $u(x, t)$ to $u_{t}=k u_{x x}$ with initial data $u(x, 0)=\delta(x)$ is the heat kernel $u(x, t)=h(x, t)$.
The heat kernel is an example of a broader class of solutions.

The heat kernel, III

Suppose L is a linear differential operator (in both x and t), and that L is first-order in t.
Let $q(x, t)$ be the solution to the PDE with Dirac mass initial data,

$$
\begin{aligned}
L q & =0, & t>0,-\infty<x<\infty \\
q(x, 0) & =\delta(x) . &
\end{aligned}
$$

Such solutions q are also sometimes called fundamental solutions or impulse responses.

If $L=\frac{\partial}{\partial t}-\frac{\partial^{2}}{\partial x^{2}}$, then $q(x, t)$ is the heat kernel $h(x, t)$.

The heat kernel, III

Suppose L is a linear differential operator (in both x and t), and that L is first-order in t.
Let $q(x, t)$ be the solution to the PDE with Dirac mass initial data,

$$
\begin{aligned}
L q & =0, & t>0,-\infty<x<\infty \\
q(x, 0) & =\delta(x) . &
\end{aligned}
$$

Such solutions q are also sometimes called fundamental solutions or impulse responses.

If $L=\frac{\partial}{\partial t}-\frac{\partial^{2}}{\partial x^{2}}$, then $q(x, t)$ is the heat kernel $h(x, t)$.

Example

With the notation above, show that the solution u to the PDE

$$
\begin{aligned}
L u & =0, & t>0,-\infty<x<\infty \\
u(x, 0) & =f(x) &
\end{aligned}
$$

is given by $u=f * q$, where the convolution is taken over the x variable.

The wave equation
Using the Fourier transform, compute the solution to the PDE,

$$
\begin{aligned}
u_{t t} & =c^{2} u_{x x}, & t>0,-\infty<x<\infty \\
u(x, 0) & =f(x), & \frac{\partial u}{\partial t}(x, 0)=g(x) .
\end{aligned}
$$

The wave equation

Using the Fourier transform, compute the solution to the PDE,

$$
\begin{aligned}
u_{t t} & =c^{2} u_{x x}, & t>0,-\infty<x<\infty \\
u(x, 0) & =f(x), & \frac{\partial u}{\partial t}(x, 0)=g(x) .
\end{aligned}
$$

Specialize the solution above to the case $g=0$.

Other PDEs

Using the Fourier transform, compute the solution to the PDE,

$$
\begin{aligned}
u_{t} & =c u_{x}, & t>0,-\infty<x<\infty \\
u(x, 0) & =f(x), &
\end{aligned}
$$

