- HF \# $\# 8$ due today
- Quiz due tome mow (Canvas), available now.
- It w \#q a a mailable (due next Tues, Apr. 20).
- Office hours today $1-2 \mathrm{pm}$.

Fourier transform properties

MATH 3150 Lecture 09

April 13, 2021

Haberman 5th edition: Sections 10.3, 10.4

The Fourier transform

Given a function $f(x)$ defined on the real line, $-\infty<x<\infty$, the Fourier transform of f is defined as

$$
\begin{aligned}
& \mathcal{F}\{f\}(\omega)=F(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{i \omega x} \mathrm{~d} x, \quad-\infty<\omega<\infty . \\
& \omega \sim \text { eigenvalue d. (from Farrier Series) }
\end{aligned}
$$

Given a function $F(\omega)$ defined on the real line, $-\infty<\omega<\infty$, the inverse Fourier transform of F is defined as

$$
\mathcal{F}^{-1}\{F\}(x)=f(x)=\int_{-\infty}^{\infty} F(\omega) e^{-i \omega x} \mathrm{~d} \omega, \quad-\infty<x<\infty .
$$

We will spend some time learning about properties of this transform. w: "frequency" variable
From HW: $\mathcal{L}, \mathcal{J L}^{-1}$ are linear operators

Gaussian invariance

A function of the form $f(x)=\exp \left(-x^{2}\right)$ is called a Gaussian.
We've seen that $\quad \beta>0$
$\begin{aligned} & \substack{\wedge \\ \text { from last } \\ \text { lecture }}\end{aligned} \mathcal{F}\left\{\exp \left(-\frac{x^{2}}{4 \beta}\right)\right\}=\sqrt{\frac{\beta}{\pi}} \exp \left(-\beta \omega^{2}\right)$.

Gaussian invariance
A function of the form $f(x)=\exp \left(-x^{2}\right)$ is called a Gaussian.
We've seen that

$$
\mathcal{F}\{\overbrace{\left.\exp \left(-\frac{x^{2}}{4 \beta}\right)\right\}}^{f(x)}=\overbrace{\sqrt{\frac{\beta}{\pi}} \exp \left(-\beta \omega^{2}\right)}^{F(\omega)}
$$

Thus, the Fourier transform of a Gaussian is another Gaussian.

Gaussian invariance
A function of the form $f(x)=\exp \left(-x^{2}\right)$ is called a Gaussian.
We've seen that

$$
\mathcal{F}\left\{\exp \left(-\frac{x^{2}}{4 \beta}\right)\right\}=\sqrt{\frac{\beta}{\pi}} \exp \left(-\beta \omega^{2}\right) .
$$

Thus, the Fourier transform of a Gaussian is another Gaussian.
Moreover,

- functions that are very concentrated in physical space are spread out in frequency space
- functions that are very concentrated in frequency space are spread out in physical space

Shift theorems

From homework \#8: Given f with $\mathcal{F}\{f\}=F$,

$$
\mathcal{F}\{f(x-\beta)\}=e^{i \omega \beta} F(\omega),
$$

for any real number β.

Shift theorems
From homework \#8: Given f with $\mathcal{F}\{f\}=F$,

$$
\mathcal{F}\{f(x-\beta)\}=e^{i \omega \beta} F(\omega)
$$

for any real number β.
Example
Given f, compute $\mathcal{F}\left\{f(x) e^{i \beta x}\right\}$ in terms of F, the Fourier transform of f.

$$
\begin{aligned}
F & =\mathcal{L}\{f(x)\} \\
\mathcal{L}\left\{f(x) e^{i \beta x}\right\} & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{i \beta x} e^{i \omega x} d x \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{i(\beta+\omega) x} d x \\
& =F(\omega+\beta)
\end{aligned}
$$

Shift theorems

From homework \#8: Given f with $\mathcal{F}\{f\}=F$,

$$
\mathcal{F}\{f(x-\beta)\}=e^{i \omega \beta} F(\omega),
$$

for any real number β.

Example

Given f, compute $\mathcal{F}\left\{f(x) e^{i \beta x}\right\}$ in terms of F, the Fourier transform of f. I.e.:

- shifts in frequency space correspond to multiplication by complex exponential in physical space
- shifts in physical space correspond to multiplication by complex exponential in frequency space

Differentiation

What does differentiation look like in frequency space?
First easy case: if $f=f(x, t)$ has a Fourier transform with respect to the x variable,

$$
\mathcal{F}\{f\}=F(\omega, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{f(x, t)}{}(x) e^{i \omega x} \mathrm{~d} x,
$$

then

$$
\mathcal{F}\left\{\frac{\partial f}{\partial t}\right\}=\frac{\partial F}{\partial t}=\frac{\partial}{\partial t} \mathcal{L}\{f\}
$$

Differentiation
What does differentiation look like in frequency space?
First easy case: if $f=f(x, t)$ has a Fourier transform with respect to the x variable,

$$
\mathcal{F}\{f\}=F(\omega, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{i \omega x} \mathrm{~d} x
$$

then

$$
\mathcal{F}\left\{\frac{\partial f}{\partial t}\right\}=\frac{\partial F}{\partial t}
$$

The more interesting case: what about differentiation in the x variable?
Example
If $f=f(x)$, compute $\mathcal{F}\left\{f^{\prime}\right\}$ in terms of $F=\mathcal{L}\{f\}$

$$
\mathcal{L}\left\{f^{\prime}(x)\right\}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f^{\prime}(x) e^{i \omega x} d x
$$

integrate by parts:

$$
\begin{gathered}
u=e^{i \omega x} \quad v=f(x) \\
d u=i \omega e^{i \omega x} d x \quad d v=f^{\prime}(x) d x \\
\frac{1}{2 \pi} \int_{-\infty}^{\infty} f^{\prime}(x) e^{i \omega x} d x=\frac{1}{2 \pi}\left[\left.e^{i \omega x} f(x)\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty} f(x) i \omega e^{i \omega x} d x\right]
\end{gathered}
$$

in order for $\int_{-\infty}^{\infty} f(x) e^{i \omega x} d x$ to exit, then

$$
\begin{aligned}
& \lim _{x \rightarrow \pm \infty}\left|f(x) e^{i \omega x}\right|=0 \\
\Rightarrow & \left.e^{i \omega x} f(x)\right|_{-\infty} ^{\infty}=0 \\
\frac{1}{2 \pi} \int_{-\infty}^{\infty} f^{\prime}(x) e^{j \omega x} d x= & \frac{1}{2 \pi}\left[0-j \omega \int_{-\infty}^{\infty} f(x) e^{j \omega x} d x\right] \\
= & -i \omega \cdot \frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{i \omega x} d x \\
= & -i \omega F(\omega) \\
\mathscr{L}\left\{f^{\prime}(x)\right\}= & -i \omega \operatorname{L}\{f\}
\end{aligned}
$$

You can extend this property: if n is a positive integer and LI $\left\{f^{(n)}(x)\right\}$ exists, then

$$
\mathcal{L}\left\{f^{(n)}(x)\right\}=(-i \omega)^{n} \mathscr{L}\{f\} .
$$

What does differentiation look like in frequency space?
First easy case: if $f=f(x, t)$ has a Fourier transform with respect to the x variable,

$$
\mathcal{F}\{f\}=F(\omega, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{i \omega x} \mathrm{~d} x,
$$

then

$$
\mathcal{F}\left\{\frac{\partial f}{\partial t}\right\}=\frac{\partial F}{\partial t} .
$$

The more interesting case: what about differentiation in the x variable?

Example

If $f=f(x)$, compute $\mathcal{F}\left\{f^{\prime}\right\}$ in terms of F.
Thus,

- differentiation in physical space corresponds to multiplication by ω in frequency space
- differentiation in frequency space corresponds to multiplication by x in physical space
What happens for higher-order derivatives?

The Dirac delta function

We introduce the Dirac delta function or Dirac mass, $\delta(x)$.
Informally, this is often introduced as

$$
\begin{aligned}
& \delta(x)\left\{\begin{array}{rr}
" \infty ", & x=0 \\
0, & x \neq 0
\end{array}\right. \\
& \delta(x)=
\end{aligned}
$$

The Dirac delta function
We introduce the Dirac delta function or Dirac mass, $\delta(x)$.
Informally, this is often introduced as

$$
\begin{array}{r}
f(x)= \\
\delta(\not)
\end{array}\left\{\begin{array}{rr}
" \infty ", & x=0 \\
0, & x \neq 0
\end{array}\right.
$$

More rigorously, this is a "function" satisfying the following property:

$$
\int_{-\infty}^{\infty} f(x) \delta(x) \mathrm{d} x=f(0)
$$

$$
\int f(x) \delta_{\varepsilon}(x) d x \approx f(0)
$$

The Dirac delta function
We introduce the Dirac delta function or Dirac mass, $\delta(x)$.
Informally, this is often introduced as

$$
\delta(x)\left\{\begin{array}{rr}
" \infty ", & x=0 \\
0, & x \neq 0
\end{array}\right.
$$

More rigorously, this is a "function" satisfying the following property:

$$
\int_{-\infty}^{\infty} f(x) \delta(x) \mathrm{d} x=f(0)
$$

for every smooth function f.
Example

Compute the Fourier transform of $\delta\left(x-x_{0}\right)$, where x_{0} is a real number.

$$
\begin{aligned}
\mathcal{L}\left\{\delta\left(x-x_{0}\right)\right\} & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \delta\left(x-x_{0}\right) e^{i \omega x} d x \\
u=x-x_{0} & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \delta(u) e^{i \omega\left(u+x_{0}\right)} d u=\frac{1}{2 \pi} e^{i \omega\left(0+x_{0}\right)}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & \mathcal{I}\left\{f\left(x-x_{0}\right)\right\}=\frac{1}{2 \pi} e^{i w x_{0}} \\
& \text { i.e., } \mathcal{J}\{f(x)\}=\frac{1}{2 \pi} \text { (constant) }
\end{aligned}
$$

Apr 15: Hew 9 is due Tuesday.
Quiz next Twes/wed (Canvas)
(Next up: Ho \#10)
Final exam formula sheet is posted

The Dirac delta function
We introduce the Dirac delta function or Dirac mass, $\delta(x)$.
Informally, this is often introduced as

$$
\begin{aligned}
& f(x)= \\
& \delta(x)
\end{aligned}\left\{\begin{array}{rr}
" \infty ", & x=0 \\
0, & x \neq 0
\end{array}\right.
$$

More rigorously, this is a "function" satisfying the following property:
for every smooth function f.

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f(x) \delta(x) \mathrm{d} x=f(0), \\
& \quad \int_{-\infty}^{\infty} f(x) \delta\left(x-x_{0}\right) d x=f\left(x_{0}\right)
\end{aligned}
$$

Example

Compute the Fourier transform of $\delta\left(x-x_{0}\right)$, where x_{0} is a real number.
Thus,

$$
\text { also Constants }\left(e^{j \omega \cdot 0}\right)
$$

- Dirac masses in physical space correspond to complex exponentials in frequency space
- Dirac masses in frequency space correspond to complex exponentials in physical space

Convolution, I

The final and perhaps most technical property of Fourier transforms answers the following question:

$F=\mathcal{L}\{f\}, G=\mathcal{L}\{g\}$

If (f, F) and (g, G) are Fourier transform pairs, then what is the inverse Fourier transform of $F(\omega) G(\omega)$? What is $\mathcal{f}-1\{F(\omega) G(\omega)\}$?
I.e., what does multiplication in frequency space correspond to in physical space?

Convolution, I
The final and perhaps most technical property of Fourier transforms answers the following question:

If (f, F) and (g, G) are Fourier transform pairs, then what is the inverse Fourier transform of $F(\omega) G(\omega)$?
I.e., what does multiplication in frequency space correspond to in physical space?

Example
Compute $\mathcal{F}^{-1}(F G)$ in terms of f, g.

$$
\begin{aligned}
\mathscr{L}^{\infty-1}\{F(\omega) G(\omega)\}= & \int_{-\infty}^{\infty} \underbrace{\frac{1}{2 \pi}(\omega)} \int_{-\infty}^{\infty} f(s) e^{i \omega s} d s \quad(s \neq x) \\
= & \frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(s) e^{i \omega s} d s e^{-i \omega x} G(\omega) d \omega
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(s) e^{i \omega s} e^{-i \omega x} G(\omega) d s d \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(s) e^{i \omega s} e^{-i \omega x} G(\omega) d \omega d s \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(s) \int_{-\infty}^{\infty} G(\omega) e^{-i \omega(x-s)} d \omega d s \\
& \quad \text { rccall: } \mathcal{L}^{-1}\{G\}(x)=\int_{-\infty}^{\infty} G(\omega) e^{-i \omega x} d \omega \\
& \Rightarrow \int_{-\infty}^{\infty} G(\omega) e^{-i \omega}(x-s) d \omega=g(x-s) \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(s) g(x-s) d s=\mathcal{L}^{-1}\{F(\omega) G(\omega)\} \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(s) f(x-s) d s \quad(u-s u b s+t u t i o n) \\
& u=x-s
\end{aligned}
$$

Convolution, II

This motivates the following definition:

Definition

Let functions f and g be given. The convolution of f and g is the function h defined as

$$
\begin{aligned}
h(x)=(f * g)(x) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(s) f(x-s) \mathrm{d} s \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(s) g(x-s) d s
\end{aligned}
$$

Convolution, II

This motivates the following definition:

Definition

Let functions f and g be given. The convolution of f and g is the function h defined as

$$
h(x)=(f * g)(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(s) f(x-s) \mathrm{d} s
$$

Therefore,

- Multiplication in frequency space corresponds to convolution in physical space
- Multiplication in physical space corresponds to convolution in frequency space

Loosely speaking, convolution is "local" avergighg/smoothing. $f+g: \quad f$ is "aresageb" by g
g is "average b" by f.

$$
f * g=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(s) g(x-s)
$$

what is $\int_{-\infty}^{\infty} f(s) g(x-s) d s$?

$f(s)$

$$
\int_{-\infty}^{\infty} f(s) g(x-s) d s=0
$$

(no overlap, integrand is 0)
= area under curve

this is a local average of f around x.
\Rightarrow convolution locally averages f around x.
\Rightarrow convolution smears out graphs.

Convolution, II

This motivates the following definition:

Definition

Let functions f and g be given. The convolution of f and g is the function h defined as

$$
h(x)=(f * g)(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(s) f(x-s) \mathrm{d} s
$$

Therefore,

- Multiplication in frequency space corresponds to convolution in physical space
- Multiplication in physical space corresponds to convolution in frequency space

Example

Compute the inverse Fourier transform of $F(\omega) e^{i \beta \omega}$ in terms of f using convolutions.
(You have 3 ways to compere this inverse FT: (1) convolution, (2) shift properties, (3) Definition of inverse FT)

$$
\begin{gathered}
\left.F(\omega) e^{i \beta \omega}=F(\omega) G / \omega\right) \quad\left(G(\omega)=e^{i \beta \omega}\right) \\
\mathcal{L}-1
\end{gathered}\{F G\}=f * g \quad \begin{aligned}
& \left.g=\mathcal{L}-1 e^{i \beta \omega}\right\} ?
\end{aligned}
$$

Recall: $\mathcal{L}\left\{\delta\left(x-x_{0}\right)\right\}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \delta\left(x-x_{0}\right) e^{i \omega x} d x$

$$
=\frac{1}{2 \pi} e^{i \omega x_{0}}
$$

$$
\begin{aligned}
\Rightarrow g=g^{-1}\left\{e^{i \beta \omega}\right\} & =2 \pi \mathcal{L}^{-1}\left\{\frac{1}{2 \pi} e^{i \beta \omega}\right\} \\
& =2 \pi \delta(x-\beta)
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \mathcal{L}^{-1}\left\{F(\omega) e^{i \beta \omega}\right\} & =f *(2 \pi \delta(x-\beta)) \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(s) 2 \pi \delta((x-s)-\beta) d s \\
& =\int_{-\infty}^{\infty} f(s) \delta((x-\beta)-s) d s \\
& =\int_{-\infty}^{\infty} f(s) \delta(s-(x-\beta)) d s
\end{aligned}
$$

Dirac mass centered@

$$
\begin{array}{r}
s=x-\beta \\
=f(x-\beta)=\mathcal{L}^{-1}\left\{F(\omega) e^{i \beta \omega}\right\}
\end{array}
$$

Consider another convolution example:
Given f, F

Let $g(x)=\cos (\nu x) \quad \nu$: positive constant.

$$
\begin{aligned}
& =\frac{1}{2}\left[e^{i v x}+e^{-i v x}\right] \\
& \begin{aligned}
u_{\sin g} f^{-1}\left\{\delta\left(\omega-\omega_{0}\right)\right\} & =\int_{-\infty}^{\infty} \delta\left(\omega-\omega_{0}\right) e^{-i \omega x} d \omega \\
& =e^{-i \omega_{0} x} \\
\mathcal{G}\{g\}=G(\omega)=\frac{1}{2}[\delta(\omega-\nu) & +\delta(\omega+\nu)]
\end{aligned}
\end{aligned}
$$

What does $f(x)$ lg (x) correspond to in frequency space?
$f(x) \cos (\nu x) \quad$ formula sheet

$$
\begin{aligned}
2 \pi \mathcal{L}\{f(x) \cos (v x)\} & =F * G \\
& =F *\left(\frac{1}{2} \delta(w-v)+\frac{1}{2} \delta(w+\nu)\right)
\end{aligned}
$$

$\Rightarrow f(x) \cos (v x)$: takes freq content of f and
Shifts it to center on frequency.
This is "amplitude modulation" (AM) Cradio).
v : carver frequency

