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L09-S01The Fourier transform

Given a function fpxq defined on the real line, ´8 ă x ă 8, the Fourier transform
of f is defined as

Ftfupωq “ F pωq “
1

2π

ż 8

´8

fpxqeiωxdx, ´8 ă ω ă 8.

Given a function F pωq defined on the real line, ´8 ă ω ă 8, the inverse Fourier
transform of F is defined as

F´1
tF upxq “ fpxq “

ż 8

´8

F pωqe´iωxdω, ´8 ă x ă 8.

We will spend some time learning about properties of this transform.
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L09-S02Gaussian invariance

A function of the form fpxq “ expp´x2q is called a Gaussian.

We’ve seen that

F
"

exp

ˆ

´
x2

4β

˙*

“

c

β

π
expp´βω2

q.

Thus, the Fourier transform of a Gaussian is another Gaussian.

Moreover,

functions that are very concentated in physical space are spread out in
frequency space

functions that are very concentated in frequency space are spread out in
physical space
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L09-S03Shift theorems

From homework #8: Given f with Ftfu “ F ,

F tfpx´ βqu “ eiωβF pωq,

for any real number β.

Example
Given f , compute Ftfpxqeiβxu in terms of F , the Fourier transform of f .

I.e.:

shifts in frequency space correspond to multiplication by complex exponential
in physical space

shifts in physical space correspond to multiplication by complex exponential in
frequency space
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L09-S04Differentiation

What does differentiation look like in frequency space?

First easy case: if f “ fpx, tq has a Fourier transform with respect to the x variable,

Ftfu “ F pω, tq “
1

2π

ż 8

´8

fpxqeiωxdx,

then

F
"

Bf

Bt

*

“
BF

Bt
.

The more interesting case: what about differentiation in the x variable?

Example
If f “ fpxq, compute Ftf 1u in terms of F .
Thus,

differentiation in physical space corresponds to multiplication by ω in frequency
space
differentiation in frequency space corresponds to multiplication by x in physical
space

What happens for higher-order derivatives?
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L09-S05The Dirac delta function

We introduce the Dirac delta function or Dirac mass, δpxq.

Informally, this is often introduced as

δpxq

"

“8”, x “ 0
0, x ‰ 0

More rigorously, this is a “function” satisfying the following property:
ż 8

´8

fpxqδpxqdx “ fp0q,

for every smooth function f .

Example
Compute the Fourier transform of δpx´ x0q, where x0 is a real number.
Thus,

Dirac masses in physical space correspond to complex exponentials in
frequency space
Dirac masses in frequency space correspond to complex exponentials in
physical space
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L09-S06Convolution, I

The final and perhaps most technical property of Fourier transforms answers the
following question:

If pf, F q and pg,Gq are Fourier transform pairs, then what is the inverse Fourier
transform of F pωqGpωq?

I.e., what does multiplication in frequency space correspond to in physical space?

Example
Compute F´1

pFGq in terms of f , g.
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L09-S07Convolution, II

This motivates the following definition:

Definition
Let functions f and g be given. The convolution of f and g is the function h
defined as

hpxq “ pf ˚ gqpxq “
1

2π

ż 8

´8

gpsqfpx´ sqds

Therefore,

Multiplication in frequency space corresponds to convolution in physical space

Multiplication in physical space corresponds to convolution in frequency space

Example
Compute the inverse Fourier transform of F pωqeiβω in terms of f using
convolutions.
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