Fourier transform properties

MATH 3150 Lecture 09

April 13, 2021

Haberman 5th edition: Sections 10.3, 10.4

The Fourier transform
Given a function $f(x)$ defined on the real line, $-\infty<x<\infty$, the Fourier transform of f is defined as

$$
\mathcal{F}\{f\}(\omega)=F(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{i \omega x} \mathrm{~d} x, \quad-\infty<\omega<\infty
$$

Given a function $F(\omega)$ defined on the real line, $-\infty<\omega<\infty$, the inverse Fourier transform of F is defined as

$$
\mathcal{F}^{-1}\{F\}(x)=f(x)=\int_{-\infty}^{\infty} F(\omega) e^{-i \omega x} \mathrm{~d} \omega, \quad-\infty<x<\infty
$$

We will spend some time learning about properties of this transform.

Gaussian invariance

A function of the form $f(x)=\exp \left(-x^{2}\right)$ is called a Gaussian.
We've seen that

$$
\mathcal{F}\left\{\exp \left(-\frac{x^{2}}{4 \beta}\right)\right\}=\sqrt{\frac{\beta}{\pi}} \exp \left(-\beta \omega^{2}\right) .
$$

Gaussian invariance

A function of the form $f(x)=\exp \left(-x^{2}\right)$ is called a Gaussian.
We've seen that

$$
\mathcal{F}\left\{\exp \left(-\frac{x^{2}}{4 \beta}\right)\right\}=\sqrt{\frac{\beta}{\pi}} \exp \left(-\beta \omega^{2}\right) .
$$

Thus, the Fourier transform of a Gaussian is another Gaussian.

Gaussian invariance

A function of the form $f(x)=\exp \left(-x^{2}\right)$ is called a Gaussian.
We've seen that

$$
\mathcal{F}\left\{\exp \left(-\frac{x^{2}}{4 \beta}\right)\right\}=\sqrt{\frac{\beta}{\pi}} \exp \left(-\beta \omega^{2}\right) .
$$

Thus, the Fourier transform of a Gaussian is another Gaussian.
Moreover,

- functions that are very concentated in physical space are spread out in frequency space
- functions that are very concentated in frequency space are spread out in physical space

Shift theorems
From homework \#8: Given f with $\mathcal{F}\{f\}=F$,

$$
\mathcal{F}\{f(x-\beta)\}=e^{i \omega \beta} F(\omega),
$$

for any real number β.

Shift theorems
From homework \#8: Given f with $\mathcal{F}\{f\}=F$,

$$
\mathcal{F}\{f(x-\beta)\}=e^{i \omega \beta} F(\omega),
$$

for any real number β.
Example
Given f, compute $\mathcal{F}\left\{f(x) e^{i \beta x}\right\}$ in terms of F, the Fourier transform of f.

Shift theorems
From homework \#8: Given f with $\mathcal{F}\{f\}=F$,

$$
\mathcal{F}\{f(x-\beta)\}=e^{i \omega \beta} F(\omega),
$$

for any real number β.

Example

Given f, compute $\mathcal{F}\left\{f(x) e^{i \beta x}\right\}$ in terms of F, the Fourier transform of f. l.e.:

- shifts in frequency space correspond to multiplication by complex exponential in physical space
- shifts in physical space correspond to multiplication by complex exponential in frequency space

Differentiation

What does differentiation look like in frequency space?
First easy case: if $f=f(x, t)$ has a Fourier transform with respect to the x variable,

$$
\mathcal{F}\{f\}=F(\omega, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{i \omega x} \mathrm{~d} x,
$$

then

$$
\mathcal{F}\left\{\frac{\partial f}{\partial t}\right\}=\frac{\partial F}{\partial t} .
$$

Differentiation

What does differentiation look like in frequency space?
First easy case: if $f=f(x, t)$ has a Fourier transform with respect to the x variable,

$$
\mathcal{F}\{f\}=F(\omega, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{i \omega x} \mathrm{~d} x
$$

then

$$
\mathcal{F}\left\{\frac{\partial f}{\partial t}\right\}=\frac{\partial F}{\partial t} .
$$

The more interesting case: what about differentiation in the x variable?
Example
If $f=f(x)$, compute $\mathcal{F}\left\{f^{\prime}\right\}$ in terms of F.

What does differentiation look like in frequency space?
First easy case: if $f=f(x, t)$ has a Fourier transform with respect to the x variable,

$$
\mathcal{F}\{f\}=F(\omega, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{i \omega x} \mathrm{~d} x
$$

then

$$
\mathcal{F}\left\{\frac{\partial f}{\partial t}\right\}=\frac{\partial F}{\partial t} .
$$

The more interesting case: what about differentiation in the x variable?

Example

If $f=f(x)$, compute $\mathcal{F}\left\{f^{\prime}\right\}$ in terms of F.
Thus,

- differentiation in physical space corresponds to multiplication by ω in frequency space
- differentiation in frequency space corresponds to multiplication by x in physical space
What happens for higher-order derivatives?

The Dirac delta function
We introduce the Dirac delta function or Dirac mass, $\delta(x)$.
Informally, this is often introduced as

$$
\delta(x)\left\{\begin{array}{rr}
" \infty ", & x=0 \\
0, & x \neq 0
\end{array}\right.
$$

The Dirac delta function
We introduce the Dirac delta function or Dirac mass, $\delta(x)$.
Informally, this is often introduced as

$$
\delta(x)\left\{\begin{array}{rr}
" \infty ", & x=0 \\
0, & x \neq 0
\end{array}\right.
$$

More rigorously, this is a "function" satisfying the following property:

$$
\int_{-\infty}^{\infty} f(x) \delta(x) \mathrm{d} x=f(0)
$$

for every smooth function f.

The Dirac delta function
We introduce the Dirac delta function or Dirac mass, $\delta(x)$.
Informally, this is often introduced as

$$
\delta(x)\left\{\begin{array}{rr}
" \infty ", & x=0 \\
0, & x \neq 0
\end{array}\right.
$$

More rigorously, this is a "function" satisfying the following property:

$$
\int_{-\infty}^{\infty} f(x) \delta(x) \mathrm{d} x=f(0)
$$

for every smooth function f.

Example

Compute the Fourier transform of $\delta\left(x-x_{0}\right)$, where x_{0} is a real number.

The Dirac delta function
We introduce the Dirac delta function or Dirac mass, $\delta(x)$.
Informally, this is often introduced as

$$
\delta(x)\left\{\begin{array}{rr}
" \infty ", & x=0 \\
0, & x \neq 0
\end{array}\right.
$$

More rigorously, this is a "function" satisfying the following property:

$$
\int_{-\infty}^{\infty} f(x) \delta(x) \mathrm{d} x=f(0)
$$

for every smooth function f.

Example

Compute the Fourier transform of $\delta\left(x-x_{0}\right)$, where x_{0} is a real number.
Thus,

- Dirac masses in physical space correspond to complex exponentials in frequency space
- Dirac masses in frequency space correspond to complex exponentials in physical space

The final and perhaps most technical property of Fourier transforms answers the following question:

If (f, F) and (g, G) are Fourier transform pairs, then what is the inverse Fourier transform of $F(\omega) G(\omega)$?
I.e., what does multiplication in frequency space correspond to in physical space?

The final and perhaps most technical property of Fourier transforms answers the following question:

If (f, F) and (g, G) are Fourier transform pairs, then what is the inverse Fourier transform of $F(\omega) G(\omega)$?
I.e., what does multiplication in frequency space correspond to in physical space?

Example

Compute $\mathcal{F}^{-1}(F G)$ in terms of f, g.

Convolution, II

This motivates the following definition:

Definition

Let functions f and g be given. The convolution of f and g is the function h defined as

$$
h(x)=(f * g)(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(s) f(x-s) \mathrm{d} s
$$

Convolution, II

This motivates the following definition:

Definition

Let functions f and g be given. The convolution of f and g is the function h defined as

$$
h(x)=(f * g)(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(s) f(x-s) \mathrm{d} s
$$

Therefore,

- Multiplication in frequency space corresponds to convolution in physical space
- Multiplication in physical space corresponds to convolution in frequency space

Convolution, II

This motivates the following definition:

Definition

Let functions f and g be given. The convolution of f and g is the function h defined as

$$
h(x)=(f * g)(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(s) f(x-s) \mathrm{d} s
$$

Therefore,

- Multiplication in frequency space corresponds to convolution in physical space
- Multiplication in physical space corresponds to convolution in frequency space

Example

Compute the inverse Fourier transform of $F(\omega) e^{i \beta \omega}$ in terms of f using convolutions.

