L09-S00

Fourier transform properties

MATH 3150 Lecture 09

April 13, 2021

Haberman 5th edition: Sections 10.3, 10.4
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The Fourier transform L09-501

Given a function f(z) defined on the real line, —c0 < & < o0, the Fourier transform
of f is defined as

F{f}w) = F(w) = % f fla)e'rda, —® < w< .

Given a function F'(w) defined on the real line, —c0 < w < 0, the inverse Fourier
transform of F is defined as

FYF}(x) J F(w)e ™" dw, —0 < T < 0.

We will spend some time learning about properties of this transform.
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G o . L09-502
aussian invariance

A function of the form f(x) = exp(—x?) is called a Gaussian.

We've seen that
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G o . L09-502
aussian invariance

A function of the form f(x) = exp(—x?) is called a Gaussian.

f{exp (—%)} = \/éexp(—ﬂWQ).

Thus, the Fourier transform of a Gaussian is another Gaussian.

We've seen that
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G o . L09-502
aussian invariance

A function of the form f(x) = exp(—x?) is called a Gaussian.

f{exp (—%)} = \/gexp(—ﬂwg).

Thus, the Fourier transform of a Gaussian is another Gaussian.

We've seen that

Moreover,
o functions that are very concentated in physical space are spread out in
frequency space
o functions that are very concentated in frequency space are spread out in
physical space
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Shift theorems L09-503

From homework #8: Given f with F{f} = F,
F{f(z—p)} =" Fw),

for any real number f3.
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Shift theorems L09-503

From homework #8: Given f with F{f} = F,
Fif(x=B)} = " Flw),
for any real number f3.

Example
Given f, compute F{f(z)e’?} in terms of F, the Fourier transform of f.
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Shift theorems L09-503

From homework #8: Given f with F{f} = F,
F{f(z—p)} =" Fw),

for any real number f3.

Example

Given f, compute ]-'{f(x)eiﬁz} in terms of F', the Fourier transform of f.
le.:

@ shifts in frequency space correspond to multiplication by complex exponential
in physical space

@ shifts in physical space correspond to multiplication by complex exponential in
frequency space
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Differentiation L09-504

What does differentiation look like in frequency space?

First easy case: if f = f(z,t) has a Fourier transform with respect to the z variable,

Flib =Pl = 5= [ s,

of\ _ oF
f{%}—ﬁ

then
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Differentiation L09-504

What does differentiation look like in frequency space?

First easy case: if f = f(z,t) has a Fourier transform with respect to the z variable,
1 (® i
FUy =Pt = o | fla)ed,
2m J_ o

then

of\ _ oF
f{%}—ﬁ

The more interesting case: what about differentiation in the x variable?

Example
If f = f(z), compute F{f'} in terms of F.
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Differentiation L09-504

What does differentiation look like in frequency space?

First easy case: if f = f(x,t) has a Fourier transform with respect to the x variable,

Flib =Pl = 5= [ s,

then
of oF
F{—=¢=—.
7 -%
The more interesting case: what about differentiation in the x variable?
Example
If f = f(x), compute F{f'} in terms of F.
Thus,
o differentiation in physical space corresponds to multiplication by w in frequency
space
o differentiation in frequency space corresponds to multiplication by z in physical
space

What happens for higher-order derivatives?

MATH 3150-002 — U. Utah Fourier transform properties



The Dirac delta function L09-S05

We introduce the Dirac delta function or Dirac mass, §(z).

Informally, this is often introduced as

©’, x=
5(“’){ 0, #0
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The Dirac delta function L09-S05

We introduce the Dirac delta function or Dirac mass, §(z).

Informally, this is often introduced as

“w”’ ‘,L.=0
5(“’){ 0, #0

More rigorously, this is a “function” satisfying the following property:
o0
| t@ss = s,
—o0

for every smooth function f.

MATH 3150-002 — U. Utah Fourier transform properties



The Dirac delta function L09-S05

We introduce the Dirac delta function or Dirac mass, §(z).

Informally, this is often introduced as

“w”’ ‘,L.=0
5(“’){ 0, #0

More rigorously, this is a “function” satisfying the following property:
o0
| t@ss = s,
—o0

for every smooth function f.

Example

Compute the Fourier transform of §(x — o), where zg is a real number.
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The Dirac delta function L09-S05

We introduce the Dirac delta function or Dirac mass, §(z).

Informally, this is often introduced as

“w”’ ‘,L.=0
5(“’){ 0, #0

More rigorously, this is a “function” satisfying the following property:
o0
| t@ss = s,
—o0

for every smooth function f.

Example
Compute the Fourier transform of §(x — o), where zg is a real number.
Thus,
@ Dirac masses in physical space correspond to complex exponentials in
frequency space
o Dirac masses in frequency space correspond to complex exponentials in
physical space
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Convolution, | L09-S06

The final and perhaps most technical property of Fourier transforms answers the
following question:

If (f,F) and (g, G) are Fourier transform pairs, then what is the inverse Fourier
transform of F(w)G(w)?

l.e., what does multiplication in frequency space correspond to in physical space?

MATH 3150-002 — U. Utah Fourier transform properties



Convolution, | L09-S06

The final and perhaps most technical property of Fourier transforms answers the
following question:

If (f,F) and (g, G) are Fourier transform pairs, then what is the inverse Fourier
transform of F(w)G(w)?

l.e., what does multiplication in frequency space correspond to in physical space?

Example
Compute F~! (FG) in terms of f, g.
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Convolution, Il L09-507

This motivates the following definition:

Definition

Let functions f and g be given. The convolution of f and g is the function h
defined as

0

W)= (Fx)@) = — | g(s)f(x — s)ds

2m J_ o
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Convolution, Il L09-507

This motivates the following definition:

Definition

Let functions f and g be given. The convolution of f and g is the function h
defined as

1 o0
h(z) = (f+g)(@) = 5| 9(s)f(z—s)ds
™ —00
Therefore,
@ Multiplication in frequency space corresponds to convolution in physical space

e Multiplication in physical space corresponds to convolution in frequency space
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Convolution, Il L09-507

This motivates the following definition:

Definition

Let functions f and g be given. The convolution of f and g is the function h
defined as

1 o0
h(z) = (f+g)(@) = 5| 9(s)f(z—s)ds
™ —00
Therefore,
@ Multiplication in frequency space corresponds to convolution in physical space

e Multiplication in physical space corresponds to convolution in frequency space

Example
Compute the inverse Fourier transform of F'(w)e in terms of f using
convolutions.
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