The Fourier transform and its properties

MATH 3150 Lecture 08

April 6, 2021

Haberman 5th edition: Sections 10.1-10.3

PDE's on infinite domains
We have been solving PDEs on bounded spatial domains, e.g.,

$$
u_{t}=u_{x x}, \quad-L<x<L
$$

for some finite L.

PDE's on infinite domains
We have been solving PDEs on bounded spatial domains, e.g.,

$$
u_{t}=u_{x x}, \quad-L<x<L
$$

for some finite L.
Goal for the rest of the semester: solve PDEs on unbounded domains, e.g.,

$$
u_{t}=u_{x x}, \quad-\infty<x<\infty
$$

The ideas for bounded domains will extend almost directly to unbounded domains, but the language will look rather different.

The essential change

The main difference on unbounded domains is: we will exchange a Fourier Series for a Fourier Transform.

In practice, this replaces summations by integration. Given a funciton $f(x)$,

$$
\begin{aligned}
\text { Fourier Series } & =\sum_{n=0}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right) \\
\text { Fourier Transform } & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{i \omega x} d x
\end{aligned}
$$

The main difference on unbounded domains is: we will exchange a Fourier Series for a Fourier Transform.

In practice, this replaces summations by integration. Given a funciton $f(x)$,

$$
\begin{aligned}
\text { Fourier Series } & =\sum_{n=0}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right) \\
\text { Fourier Transform } & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{i \omega x} d x
\end{aligned}
$$

- The series is determined by the frequency coefficients a_{n}, b_{n}. The transform is determined by the frequency function $F(\omega)$.
- Series: the parameter n is frequency (is discrete). Transform: the parameter ω is frequency (is continuous).
- Series: summation. Transform: integration.

The next few weeks

Rough outline of next few weeks:

- (1.5 classes) derive relationship between Fourier series and Fourier transform
- (2.5 classes) explore Fourier transform properties
- (2 classes) use Fourier transforms to solve PDEs.

Fourier Series \longrightarrow Fourier transform
There are two ways we'll consider to make the connection between a series and a transform.

First method: via a PDE.

$$
\begin{aligned}
u_{t} & =u_{x x}, & -\infty<x<\infty \\
\lim _{x \rightarrow \infty}|u(x, t)| & =0, & t \geqslant 0
\end{aligned}
$$

What are the eigenvalues for this problem?

Fourier Series \longrightarrow Fourier transform
Second method: directly from Fourier series on $[-L, L]$

$$
F S(x)=\sum_{n=0}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

What happens as $L \uparrow \infty$?

The Fourier transform, I
Either method we have discussed results in the following definition:

Definition

Given a function $f(x)$, the Fourier transform of f is $F(\omega)$, defined as

$$
F(\omega)=\mathcal{F}\{f\}(\omega)=\frac{1}{2 \pi} f(x) e^{i \omega x} \mathrm{~d} x, \quad-\infty<\omega<\infty
$$

Given a function $F(\omega)$, the inverse Fourier transform of F is $f(x)$, defined as

$$
f(x)=\mathcal{F}^{-1}\{F\}(x)=\int_{-\infty}^{\infty} F(\omega) e^{-i \omega x} \mathrm{~d} x, \quad-\infty<x<\infty
$$

The Fourier transform, I
Either method we have discussed results in the following definition:

Definition

Given a function $f(x)$, the Fourier transform of f is $F(\omega)$, defined as

$$
F(\omega)=\mathcal{F}\{f\}(\omega)=\frac{1}{2 \pi} f(x) e^{i \omega x} \mathrm{~d} x, \quad-\infty<\omega<\infty
$$

Given a function $F(\omega)$, the inverse Fourier transform of F is $f(x)$, defined as

$$
f(x)=\mathcal{F}^{-1}\{F\}(x)=\int_{-\infty}^{\infty} F(\omega) e^{-i \omega x} \mathrm{~d} x, \quad-\infty<x<\infty
$$

Like in the Fourier series case, it need not be the case that $\mathcal{F}^{-1}\{\mathcal{F}\{f\}\}=f$. In general:

$$
\frac{1}{2}\left[f\left(x^{+}\right)+f\left(x^{-}\right)\right]=\mathcal{F}^{-1}(\mathcal{F}(f))
$$

The Fourier transform, II

$$
F(\omega)=\mathcal{F}\{f\}(\omega)=\frac{1}{2 \pi} f(x) e^{i \omega x} \mathrm{~d} x, \quad f(x)=\mathcal{F}^{-1}\{F\}(x)=\int_{-\infty}^{\infty} F(\omega) e^{-i \omega x} \mathrm{~d} x
$$

The Fourier transform is a direct analogue of Fourier series:

The Fourier transform, II

$$
F(\omega)=\mathcal{F}\{f\}(\omega)=\frac{1}{2 \pi} f(x) e^{i \omega x} \mathrm{~d} x, \quad f(x)=\mathcal{F}^{-1}\{F\}(x)=\int_{-\infty}^{\infty} F(\omega) e^{-i \omega x} \mathrm{~d} x
$$

The Fourier transform is a direct analogue of Fourier series:

1. Fourier Series: a_{n}, b_{n} are the frequency components. Fourier Transform: $F(\omega)$ determines the frequency components

The Fourier transform, II

$$
F(\omega)=\mathcal{F}\{f\}(\omega)=\frac{1}{2 \pi} f(x) e^{i \omega x} \mathrm{~d} x, \quad f(x)=\mathcal{F}^{-1}\{F\}(x)=\int_{-\infty}^{\infty} F(\omega) e^{-i \omega x} \mathrm{~d} x
$$

The Fourier transform is a direct analogue of Fourier series:

1. Fourier Series: a_{n}, b_{n} are the frequency components. Fourier Transform: $F(\omega)$ determines the frequency components
2. Fourier Series: The series is formed by summing components over all frequencies. Fourier Transform: The inverse transform is formed by integrating components over all frequences.

The Fourier transform, II

$$
F(\omega)=\mathcal{F}\{f\}(\omega)=\frac{1}{2 \pi} f(x) e^{i \omega x} \mathrm{~d} x, \quad f(x)=\mathcal{F}^{-1}\{F\}(x)=\int_{-\infty}^{\infty} F(\omega) e^{-i \omega x} \mathrm{~d} x
$$

The Fourier transform is a direct analogue of Fourier series:

1. Fourier Series: a_{n}, b_{n} are the frequency components. Fourier Transform: $F(\omega)$ determines the frequency components
2. Fourier Series: The series is formed by summing components over all frequencies. Fourier Transform: The inverse transform is formed by integrating components over all frequences.
3. Fourier series: applies over a bounded domain. Fourier Transform: applies over an infinite domain.

Fourier transform examples
Example
Compute the Fourier transform of $f(x)=\exp (-|x|)$.

Fourier transform examples

Example

Compute the Fourier transform of $f(x)=\exp (-|x|)$.

Example

Let $\beta>0$ be given. Show that the Fourier transform of $f(x)=\exp \left(-x^{2} /(4 \beta)\right)$ is $F(\omega)=\sqrt{\frac{\beta}{\pi}} \exp \left(-\beta \omega^{2}\right)$.

