The wave equation

MATH 3150 Lecture 07

March 23, 2021

Haberman 5th edition: Section 4.1 - 4.4

The wave equation

We've seen two types of PDE's so far:

$$u_t = u_{xx}, u = u(x,t),$$

$$u_{xx} + u_{yy} = 0, u = u(x,y).$$

The wave equation

We've seen two types of PDE's so far:

$$u_t = u_{xx}, u = u(x,t),$$

$$u_{xx} + u_{yy} = 0, u = u(x,y).$$

We will consider one more type of PDE in this class, the wave equation,

$$u_{tt} = u_{xx}, u = u(x,t).$$

Derivation of the wave equation

In one spatial dimension, the wave equation models displacement of an "idealized" string.

Applications of the wave equation

The wave equation models, unsurprisingly, wave phenomena occurring in

- electromagnetic (light) propagation
- acoustic phenomena
- mechanical stress waves/vibrations/oscillations
- (celestial) gravitational studies
- quantum mechanics

Initial/boundary conditions

Like the heat equation and Laplace's equation, the wave equation requires boundary conditions.

These conditions may be of Dirichlet or Neumann type:

• (Dirichlet) u(0,t), u(L,t): Ends of the string are fixed.

Initial/boundary conditions

Like the heat equation and Laplace's equation, the wave equation requires boundary conditions.

These conditions may be of Dirichlet or Neumann type:

- (Dirichlet) u(0,t), u(L,t): Ends of the string are fixed.
- (Neumann) $\frac{\partial u}{\partial x}(0,t)$, $\frac{\partial u}{\partial x}(L,t)$: Ends of the string are free to vertically move.

Initial/boundary conditions

Like the heat equation and Laplace's equation, the wave equation requires boundary conditions.

These conditions may be of Dirichlet or Neumann type:

- (Dirichlet) u(0,t), u(L,t): Ends of the string are fixed.
- (Neumann) $\frac{\partial u}{\partial x}(0,t)$, $\frac{\partial u}{\partial x}(L,t)$: Ends of the string are free to vertically move.

Initial conditions: the wave equation is second-order in time.

As a result, we require two initial conditions: the value of u and its time derivative:

$$u(x,0) = f(x),$$
 $\frac{\partial u}{\partial t}(x,0) = g(x).$

Solving the wave equation

The particular wave equation we consider is a linear, homogeneous PDE. Therefore, we can use separation of variables to solve.

Example

Compute the solution u(x,t) to the following PDE:

$$u_{tt} = c^2 u_{xx},$$

$$u(x,0) = f(x),$$

$$u(0,t) = 0,$$

$$\frac{\partial u}{\partial t}(x,0) = g(x)$$

$$u(L,t) = 0.$$

Physically, one can discern *normal modes* and *natural frequencies* from a mathematical solution.