Separation of Variables

MATH 3150 Lecture 04

February 4, 2021

Haberman 5th edition: Sections 2.3-2.4

PDEs and the heat equation

Consider the following PDE problem for $u(x, t)$:

$$
\begin{aligned}
u_{t} & =k u_{x x} \\
u(0, t) & =0
\end{aligned}
$$

$$
\begin{aligned}
& u(x, 0)=f(x) \\
& u(L, t)=0
\end{aligned}
$$

for $0 \leqslant x \leqslant L$ and $t \geqslant 0$.

PDEs and the heat equation

Consider the following PDE problem for $u(x, t)$:

$$
\begin{array}{rlrl}
u_{t} & =k u_{x x}, & & u(x, 0)=f(x), \\
u(0, t) & =0, & u(L, t)=0,
\end{array}
$$

for $0 \leqslant x \leqslant L$ and $t \geqslant 0$.

Our goal for the next 2 weeks is to show how to solve equations like the above one.

The technique we will use for this is Separation of Variables.

Separation of variables

Separation of variables has three (major) steps:

1. "Separate variables"

- Use an educated guess to turn PDEs into ODEs
- Rewrite PDE boundary conditions as ODE conditions

2. Satisfy boundary conditions: compute eigenvalues and eigenfunctions

- Solve an ODE boundary value problem
- Compute eigenvalues corresponding to nontrivial (nonzero) solutions

3. Satisfy initial conditions

- Use superposition to write the general solution to the PDE
- Compute particular solution satisfying initial data

Step 1: Separate variables

Solve for $u(x, t)$:

$$
\begin{aligned}
u_{t} & =k u_{x x} \\
u(0, t) & =0
\end{aligned}
$$

$$
\begin{aligned}
& u(x, 0)=f(x) \\
& u(L, t)=0
\end{aligned}
$$

Step 2: Boundary conditions (eigenvalues/eigenfunctions)

$$
\begin{aligned}
u_{t} & =k u_{x x} \\
u(0, t) & =0
\end{aligned}
$$

$$
\begin{aligned}
& u(x, 0)=f(x), \\
& u(L, t)=0
\end{aligned}
$$

Step 3: General solution and initial conditions

$$
\begin{aligned}
u_{t} & =k u_{x x} \\
u(0, t) & =0
\end{aligned}
$$

$$
\begin{aligned}
& u(x, 0)=f(x) \\
& u(L, t)=0
\end{aligned}
$$

Separation of variables

Separation of variables has three (major) steps:

1. "Separate variables"

- Use an educated guess to turn PDEs into ODEs
- Rewrite PDE boundary conditions as ODE conditions

2. Satisfy boundary conditions: compute eigenvalues and eigenfunctions

- Solve an ODE boundary value problem
- Compute eigenvalues corresponding to nontrivial (nonzero) solutions

3. Satisfy initial conditions

- Use superposition to write the general solution to the PDE
- Compute particular solution satisfying initial data

More examples, I

Example

Solve for $u(x, t)$:

$$
\begin{aligned}
u_{t} & =k u_{x x}, & u(x, 0) & =f(x), \\
\frac{\partial u}{\partial x}(0, t) & =0, & \frac{\partial u}{\partial x}(L, t) & =0 .
\end{aligned}
$$

More examples, II

Example

Solve for $u(x, t)$:

$$
\begin{aligned}
u_{t} & =k u_{x x}, & u(x, 0) & =f(x) \\
u(0, t) & =u(L, t), & \frac{\partial u}{\partial x}(0, t) & =\frac{\partial u}{\partial x}(L, t)
\end{aligned}
$$

