Due today: HW 1 (midnight) } Convas Due tomorran: Quiz 1 (midnight) } Arailable now: HW 2 (due Feb. 9)

L03-S00

Linearity and superposition

MATH 3150 Lecture 03

February 2, 2021

Haberman 5th edition: Sections $\frac{2 \cdot 1 - 2 \cdot 2}{2 \cdot 1 \cdot 2 \cdot 2}$

PDEs and the heat equation

With k > 0 a constant, the heat equation is a PDE

$$u_t = k u_{xx}$$
. $u(\chi_t)$, $(?)$

×

For a well-posed problem, we also need initial and boundary conditions.

PDEs and the heat equation

With k > 0 a constant, the heat equation is a PDE

$$u_t = k \, u_{xx}.$$

For a well-posed problem, we also need initial and boundary conditions.

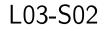
The PDE above can be equivalently described by *linear operators*.

This alternative description allows us to leverage *linearity* to analyze PDE solutions.

Ex: Let f(x) be a function.
Then
$$\frac{d}{dx}$$
 is a lineer operation: for any functions
f,g, and any constants C1, C2, then

$\frac{d}{dx}\left(c_{1}f(x)+c_{2}g(x)\right)=c_{1}\frac{d}{dx}f(x)+c_{2}\frac{d}{dx}g(x)$

PDEs as linear operators



The heat equation,

$$u_t = k \, u_{xx},$$

can equivalently be written as

$$L[u] = 0, \qquad L[u] \coloneqq \left(\frac{\partial}{\partial t} - k\frac{\partial^2}{\partial x^2}\right)u = u_t - ku_{xx}.$$

$$L \coloneqq \frac{\partial}{\partial t} = \frac{1}{2k} + \frac{1}{2k} +$$

L03-S02

PDEs as linear operators

The heat equation,

$$u_t = k \, u_{xx},$$

can equivalently be written as

$$L[u] = 0,$$
 $L[u] \coloneqq \left(\frac{\partial}{\partial t} - k\frac{\partial^2}{\partial x^2}\right)u = u_t - ku_{xx}.$

L above is a (differential) operator.

Similar to linear functions, linear operators satisfy linearity conditions.

Definition

An operator L is linear if, given any 2 functions u_1 , u_2 , and any 2 real scalars c_1, c_2 ,

$$L[c_1u_1 + c_2u_2] = c_1L[u_1] + c_2L[u_2].$$

A PDE is <u>linear</u> if it can be written as L[u] = f for some linear operator L_{r}

where f is a given, arbitrary function. "Is an operator L lineer?" = Does it satisfy L[c,u,t c_u_3=c, L[u,]+ c_L[u_2]?

L03-S03

Linearity

Example

Show that the heat equation operator, $L = \frac{\partial}{\partial t} - k \frac{\partial^2}{\partial r^2}$, is linear.

Show LEC, U, + C2U2] = C, LEU, J + C2 LEU2], where C1, C2 are constants, and 41, U2 are functions of (X, t).

$$\left[\left[c_{1}u_{1}+c_{2}u_{2}\right]=\left(\frac{2}{2t}-k\frac{2^{2}}{2x^{2}}\right)\left(c_{1}u_{1}+c_{2}u_{2}\right)\right]$$

$$= \frac{\partial}{\partial t} \left(C_1 U_1 + C_2 U_2 \right) - k \frac{\partial^2}{\partial x^2} \left(C_1 U_1 + C_2 U_2 \right)$$

 $= C_1 [14_1] + C_2 L [14_2].$ So L is linear.

The PDF $U_t = K u_{xx} + \chi^2 t^2$ is also lineer since: $Liu_J = f$, where $f = \chi^2 t^2$.

> nonlineer in Xit. lineer/constant wrt U.

L03-S03

Linearity

Example

Show that the heat equation operator, $L = \frac{\partial}{\partial t} - k \frac{\partial^2}{\partial x^2}$, is linear.

Example

Determine if the operator L defined by $L[u] = \frac{\partial}{\partial x} (u^2)$ is linear or nonlinear.

Suppose
$$u = u(x, t)$$
, $L[u] = \frac{2}{3x}(u^2) = 2u \cdot u_x$
Chain rule
Consider $L[2u] = \frac{2}{3x}((2u)^2) = 4\frac{2}{3x}(u^2)$
 $= 4 \cdot L[u] \neq 2L[u]$

If $L[u] = \frac{2}{2\pi}(2u) - 2 lineor$

Homogeneous equations and conditions

In this class, we will exclusively address linear PDEs.

Another useful characterization is whether or not PDEs are homogeneous.

Definition A linear PDE L[u] = f is <u>homogeneous</u> if f = 0. E_{X} . $u_{t} = K u_{XX}$ is a lines, homogeneous PDE. $U_{t} = K u_{XX} + \chi^{2} t^{2}$ is a lines, non-homogeneous PDE.

$$U_t = K_{M_{XX}} + Q(X,t), \quad Q \neq 0 \implies hon-homogeneous$$

 $L[u] = Q \qquad PDE.$

103-504

Homogeneous equations and conditions

In this class, we will exclusively address linear PDEs.

Another useful characterization is whether or not PDEs are homogeneous.

Definition

A linear PDE L[u] = f is <u>homogeneous</u> if f = 0.

The *homogeneous* characterization extends to boundary conditions.

Definition

Consider a PDE in one spatial dimension. U = U(x, t)

- The initial condition u(x,0) = f(x) is <u>homogeneous</u> if f = 0.
- The boundary condition $u(0,t) = T_1(t)$ is a <u>homogeneous</u> Dirichlet condition if $T_1(t) = 0$.
- The boundary condition $u_x(0,t) = T_1(t)$ is a <u>homogeneous</u> Neumann condition if $T_1(t) = 0$.

Homogeneous equations and conditions

In this class, we will exclusively address linear PDEs.

Another useful characterization is whether or not PDEs are homogeneous.

Definition

A linear PDE L[u] = f is <u>homogeneous</u> if f = 0.

The *homogeneous* characterization extends to boundary conditions.

Definition

Consider a PDE in one spatial dimension.

- The initial condition u(x,0) = f(x) is <u>homogeneous</u> if f = 0.
- The boundary condition $u(0,t) = T_1(t)$ is a <u>homogeneous</u> Dirichlet condition if $T_1(t) = 0$.
- The boundary condition $u_x(0,t) = T_1(t)$ is a <u>homogeneous</u> Neumann condition if $T_1(t) = 0$.

Linear, homogeneous equations need not have homogeneous boundary conditions.

 $U_t = kU_{XX}$ u(x, 0) = sin(TX) u(0, t) = 0 $u_x(L, t) = 3$ (homogeneous PDE) (non-homogeneous IC) (homogeneous Dirichlet BC) (non-homogeneous Neumann BC)

Superposition

The main utility we will get out of these classifications is superposition. Theorem (Principle of Superposition) If u_1 and u_2 are both solutions to a linear and homogeneous PDE, then $c_1u_1 + c_2u_2$, for any constants c_1 and c_2 , is also a solution to the PDE. The above property applies only addresses the PDE! It does not consider initial and/or boundary conditions.

$$L[y_1]=0 + L[u_2]=0 \longrightarrow L[c_1y_1+c_2y_2]=0$$

 $m_{experposition}$

Examples, I

Example

Verify superposition for the following ODE and solutions u_1 , u_2 :

$$u''(x) + \frac{\pi^2}{L^2}u = 0, \qquad u(0) = 0, \qquad u(L) = 0.$$

$$u_1(x) = 0, \qquad u_2(x) = \sin\left(\frac{\pi x}{L}\right),$$

$$Lineer_1 homogeneous ODE: L[u] = 0, \qquad L = \left(\frac{\delta^2}{\delta x^2} + \frac{\pi^2}{L^2}\right)$$
Let $(1, 1) (2, be \quad Constants: L[c_1u, + c_2u_2]$
Let $(1, 1) (2, be \quad Constants: L[c_1u, + c_2u_2])$
Let $(1, 1) (2, be \quad Constants: L[c_1u, + c_2u_2])$
Let $(1, 1) (2, be \quad Constants: L[c_1u, + c_2u_2])$
Let $(1, 1) (2, be \quad Constants: L[c_1u, + c_2u_2])$

Linearity

 $= \left(\frac{d^{2}}{dx^{2}} + \frac{\pi^{2}}{L^{2}}\right) \left(c_{1} \cdot O + c_{2} \cdot \sin\left(\frac{\pi x}{L}\right)\right)$ $= c_{2} \frac{d^{2}}{dx^{2}} \sin\left(\frac{\pi x}{L}\right) + c_{2} \frac{\pi^{2}}{L^{2}} \sin\left(\frac{\pi x}{L}\right)$ $= -c_{2} \left(\frac{\pi}{L}\right)^{2} \sin\left(\frac{\pi x}{L}\right) + c_{2} \frac{\pi^{2}}{L^{2}} \sin\left(\frac{\pi x}{L}\right)$ $= O = c_{1} L [u_{1}] + c_{2} L [u_{2}] \quad \text{since}$ $u_{1} \text{ and } u_{2} \text{ are solutions } c_{0} L [u_{1}] = L [u_{2}] = O$ $\implies c_{1} u_{1} + c_{2} u_{2} \text{ satisfies the } OD \in V$

Examples, I

Example

Verify superposition for the following ODE and solutions u_1 , u_2 :

$$u''(x) + \frac{\pi^2}{L^2}u = 0,$$
 $u(0) = 0,$ $u(L) = 0.$

$$u_1(x) = 0,$$
 $u_2(x) = \sin\left(\frac{\pi x}{L}\right),$

Example

Uz Verify superposition for the following PDE and solutions u_1 , u_2 :

$$u_t = u_{xx},$$
 $u(0,t) = 0,$ $u(L,t) = 0$

$$(x,t) = 0,$$
 $u_2(x,t) = \exp\left(-(\pi/L)^2 t\right) \sin\left(\frac{\pi x}{L}\right),$

MATH 3150-002 - U. Utah

 $\widehat{u_1}$

Linearity

 $U_{3}(k,t) = e_{X} D\left(-\left(\frac{2\pi}{L}\right)^{2} t\right) \sin\left(\frac{2\pi}{L}\right)$ Define $L[u] = \frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial u^2}$ Then $[[u_2]=0$ and $L[u_3]=0$, Let g, c2 be constants: $C_{3} \qquad \left[\left[c_{\mathbf{D}} \mathbf{y}_{2} + C_{\mathbf{Z}} \mathbf{y}_{\mathbf{X}} \right] \right]$ $= c_2 \left[L \left[u_2 \right] \right] + c_3 \left[L \left[u_3 \right] \right] = 0,$ $S_{0}: u(x,t) = c_{2} exp(-(T_{2})^{2}t) sin(\frac{T_{2}}{2})$ $+c_{3}\exp\left(-\left(\frac{2\pi}{L}\right)^{2}t\right)\sin\left(\frac{2\pi}{L}\right)$ Satisfiel Ut= 4.2X. Note that U2, U3 and C2U2+C3U3 all also satisfy BC's. l'he cause BC's are homogeneous)

Examples, II

Example

Analyze superposition for the following PDE and solutions u_1 , u_2 :

Wrang
$$u''(x) + \pi^2 u = 0$$
, $u(0) = 0$, $u(1) = 1$
as $u_1(x) = x$, $u_2(x) = x + \sin(\pi x)$,
Can verify: $L[u] := \frac{d^2}{dx^2} u + \int_1^2 u - \int_1^2 x$
then $L[u_1] := 0$, $L[u_2] := 0$,
and $U_1(0) := U_2(0) := 0$ (BC)
and $U_1(1) := V_2(1) := (BC)$

But: (i) $\lfloor \lfloor u \rfloor^{=0}$ is not a homogeneous PDE $(-TT^{2}x)$. (ii) Right-hand BC ($u(\lfloor)=1$) is not homogeneous. \Rightarrow C, $u_{1} + c_{2}u_{2}$ need not satisfy PDE (don't have superposition) C, $u_{1} + c_{2}u_{2}$ need not satisfy $u(\lfloor)=\lfloor$. E.g. $u_{1}(\lfloor)+u_{2}(\lfloor)=\lfloor+\rfloor=2\neq 1$