Linearity and superposition

MATH 3150 Lecture 03

February 2, 2021

Haberman 5th edition: Sections 2.1.2-2

PDEs and the heat equation

With $k>0$ a constant, the heat equation is a PDE

$$
u_{t}=k u_{x x} .
$$

For a well-posed problem, we also need initial and boundary conditions.

PDEs and the heat equation

With $k>0$ a constant, the heat equation is a PDE

$$
u_{t}=k u_{x x} .
$$

For a well-posed problem, we also need initial and boundary conditions.

The PDE above can be equivalently described by linear operators.

This alternative description allows us to leverage linearity to analyze PDE solutions.

PDEs as linear operators

The heat equation,

$$
u_{t}=k u_{x x}
$$

can equivalently be written as

$$
L[u]=0, \quad L[u]:=\left(\frac{\partial}{\partial t}-k \frac{\partial^{2}}{\partial x^{2}}\right) u=u_{t}-k u_{x x}
$$

PDEs as linear operators

The heat equation,

$$
u_{t}=k u_{x x}
$$

can equivalently be written as

$$
L[u]=0, \quad L[u]:=\left(\frac{\partial}{\partial t}-k \frac{\partial^{2}}{\partial x^{2}}\right) u=u_{t}-k u_{x x}
$$

L above is a (differential) operator.
Similar to linear functions, linear operators satisfy linearity conditions.

Definition

An operator L is linear if, given any 2 functions u_{1}, u_{2}, and any 2 real scalars c_{1}, c_{2},

$$
L\left[c_{1} u_{1}+c_{2} u_{2}\right]=c_{1} L\left[u_{1}\right]+c_{2} L\left[u_{2}\right]
$$

A PDE is linear if it can be written as $L[u]=f$ for some linear operator L.

Linearity

Example

Show that the heat equation operator, $L=\frac{\partial}{\partial t}-k \frac{\partial^{2}}{\partial x^{2}}$, is linear.

Linearity

Example

Show that the heat equation operator, $L=\frac{\partial}{\partial t}-k \frac{\partial^{2}}{\partial x^{2}}$, is linear.
Example
Determine if the operator L defined by $L[u]=\frac{\partial}{\partial x}\left(u^{2}\right)$ is linear or nonlinear.

Homogeneous equations and conditions
In this class, we will exclusively address linear PDEs.
Another useful characterization is whether or not PDEs are homogeneous.
Definition
A linear PDE $L[u]=f$ is homogeneous if $f=0$.

Homogeneous equations and conditions

In this class, we will exclusively address linear PDEs.
Another useful characterization is whether or not PDEs are homogeneous.

Definition

A linear PDE $L[u]=f$ is homogeneous if $f=0$.
The homogeneous characterization extends to boundary conditions.

Definition

Consider a PDE in one spatial dimension.

- The initial condition $u(x, 0)=f(x)$ is homogeneous if $f=0$.
- The boundary condition $u(0, t)=T_{1}(t)$ is a homogeneous Dirichlet condition if $T_{1}(t)=0$.
- The boundary condition $u_{x}(0, t)=T_{1}(t)$ is a homogeneous Neumann condition if $T_{1}(t)=0$.

Homogeneous equations and conditions

In this class, we will exclusively address linear PDEs.
Another useful characterization is whether or not PDEs are homogeneous.

Definition

A linear PDE $L[u]=f$ is homogeneous if $f=0$.
The homogeneous characterization extends to boundary conditions.

Definition

Consider a PDE in one spatial dimension.

- The initial condition $u(x, 0)=f(x)$ is homogeneous if $f=0$.
- The boundary condition $u(0, t)=T_{1}(t)$ is a homogeneous Dirichlet condition if $T_{1}(t)=0$.
- The boundary condition $u_{x}(0, t)=T_{1}(t)$ is a homogeneous Neumann condition if $T_{1}(t)=0$.

Linear, homogeneous equations need not have homogeneous boundary conditions.

Superposition

The main utility we will get out of these classifications is superposition. Theorem (Principle of Superposition)
If u_{1} and u_{2} are both solutions to a linear and homogeneous PDE, then $c_{1} u_{1}+c_{2} u_{2}$, for any constants c_{1} and c_{2}, is also a solution to the $P D E$. The above property applies only addresses the PDE! It does not consider initial and/or boundary conditions.

Examples, I

Example

Verify superposition for the following ODE and solutions u_{1}, u_{2} :

$$
\begin{array}{cc}
u^{\prime \prime}(x)+\frac{\pi^{2}}{L^{2}} u=0, & u(0)=0, \\
u_{1}(x)=0, & u(L)=0 \\
u_{2}(x)=\sin \left(\frac{\pi x}{L}\right)
\end{array}
$$

Examples, I

Example

Verify superposition for the following ODE and solutions u_{1}, u_{2} :

$$
\begin{array}{cc}
u^{\prime \prime}(x)+\frac{\pi^{2}}{L^{2}} u=0, & u(0)=0, \\
u_{1}(x)=0, & u(L)=0 . \\
u_{2}(x)=\sin \left(\frac{\pi x}{L}\right),
\end{array}
$$

Example

Verify superposition for the following PDE and solutions u_{1}, u_{2} :

$$
\begin{array}{ccc}
u_{t}=u_{x x}, & u(0, t)=0, & u(L, t)=0 \\
u_{1}(x, t)=0, & u_{2}(x, t)=\exp \left(-(\pi / L)^{2} t\right) \sin \left(\frac{\pi x}{L}\right),
\end{array}
$$

Examples, II

Example

Analyze superposition for the following PDE and solutions u_{1}, u_{2} :

$$
\begin{array}{cc}
u^{\prime \prime}(x)+\pi^{2} u=0, & u(0)=0, \\
u_{1}(x)=x, & u_{2}(x)=x+\sin (\pi x)=1
\end{array}
$$

