Due Today: HW O Zon canvas Due Tomorran: Quiz O Zon canvas Due next Tuesday: HW 1 (Feb 2).

L01-S00

The heat equation

MATH 3150 Lecture 01

January 26, 2021

Haberman 5th edition: Section 1.2

Partial Differential Equations (PDEs)

Overall goal of today: derive a PDE governing heat diffusion.

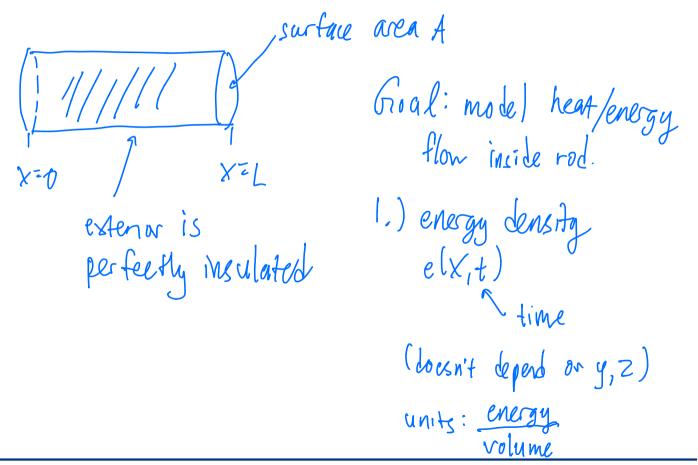
Basic outline:

- Model heat diffusion in an idealized rod
- Energy conservation + Fourier's Law
- Heat equation (PDE) results from taking limits

101-S01

Conductive rod model

We consider a model for an idealized rod.



Heat equation

101-S02

total every in rol:

$$E = \int_{rel}^{L} e(x,t) dx$$

$$= \int_{0}^{L} \int_{s} e(x,t) ds dx$$

$$\lim_{length} \int_{surface} area$$

$$= A \int_{0}^{L} e(x,t) dx$$

$$(because e is constant
across surface area).$$
2.) hear flux $\varphi(x,t)$. Units: every
area-time
$$\iint_{area-time} \varphi(x,t)$$
3.)" external "sources (external heating/cooling)
 $Q(x,t)$: every per unit volume, due to external sources.
Units: every
volume-time
$$\int_{0}^{L} e(x,t) dx$$

Step 1: Use conservation of energy to relate e, Q, Q.

Conservation of heat energy (differential form) L01-S03

Rate-of-change form:

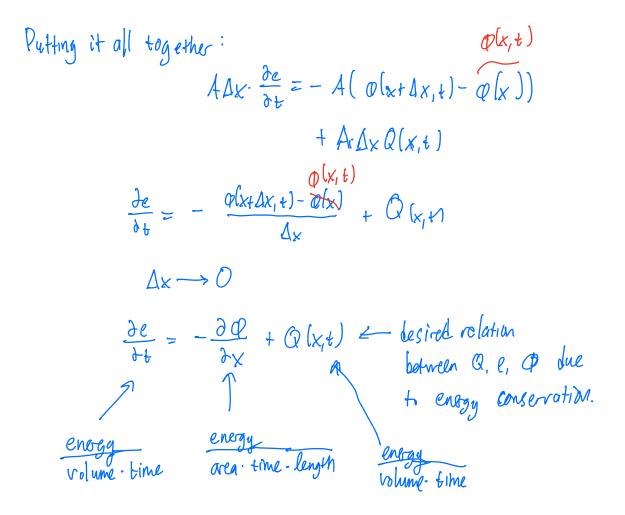
(Rate of energy change) = (energy flux due to flow across boundary)+ (external energy sources)

Rate of energy change: consider a small slice of rod

$$A_{X}$$

 A_{X}
 A

If
$$\Delta x$$
 is vog small: then $e(x,t)$ is approximately
anstant from x to $xt\Delta x$.
I.e.: $\int_{x}^{xt\Delta x} e(x_{1}t) dx \approx \Delta x \cdot e(x_{1}t)$
 \Rightarrow total energy rate of change = $A\Delta x \cdot \frac{\partial e}{\partial t}$.
Energy flow due to flux : $+Aq(x_{1}t) \int_{a}^{\Delta x} -A \cdot q(x_{1}\Delta x, t)$
rate of energy change
units of q : $\frac{energy}{arca-time}$
rate of energy change due to flux: $-Aq(x_{1}\Delta x, t) + Aq(x, t)$.
Energy change due to external sources :
 $Q(x,t)$: energy imparted to
row per unit time.
 $Q(x,t)$: energy imparted to
 $row per unit time.$
 $Q(x,t)$.
 $Q(x,t) dx$
 $Q(x,t)$.
 $Q(x,t) dx$
 $Q(x,t)$.



Conservation of heat energy (integral form)

We can obtain the same result using an integrated energy approach. Rate-of-change form:

(Rate of energy change) = (energy flux due to flow across boundary) + (external energy sources) rate of energy change HA So elx,+) dx) $+A \Phi(a, \epsilon)$ e is constant aeross $A \ (b,t)$ cross-cectional surface. X=h X=0 6 - 1 $\mathbf{a} \geq 0$ energy $flux = -A(\varphi(b,t) - \varphi(q,t))$ $= -AT \left(\frac{b}{2} \frac{\partial q}{\partial x} dx \right)$

101-S04

$$\begin{aligned} \int_{\text{FTC}} F(b) - F(a) &= \int_{a}^{b} F'(x) \, dx \\ \text{external sources} &: \int_{\text{trul}} Q[x,t) \, dV \\ &= A \int_{a}^{b} Q[x,t] \, dx \\ Q \text{ independent of } g, z. \end{aligned}$$

$$\begin{aligned} \text{conservation of energy:} \quad \frac{\partial}{\partial t} \left(A \int_{a}^{b} e[x,e] \, dx \right) &= -A \int_{a}^{b} \frac{\partial q}{\partial x} \, dx \\ &+ A \int_{a}^{b} Q[x,t] \, dx \end{aligned}$$

$$\int_{a}^{b} \frac{\partial e}{\partial t} \, dx &= -\int_{a}^{b} \frac{\partial q}{\partial x} \, dx + \int_{a}^{b} Q[x,t] \, dx \end{aligned}$$

$$\int_{a}^{b} \left(\frac{\partial e}{\partial t} + \frac{\partial q}{\partial x} - Q(x,e) \right) \, dx = 0 \\ a, b \text{ are arbitrarg.} \\ \text{I.e. the equation abase is true for every } q, b. \end{aligned}$$

$$\begin{aligned} \Longrightarrow \quad \frac{\partial e}{\partial t} &= -\frac{\partial q}{\partial x} + Q(x,t) \end{aligned}$$

PDE from conservation of energy

We now have a PDE describing conservation of energy:

$$\frac{\partial e}{\partial t} + \frac{\partial \phi}{\partial x} - Q(x,t) = 0.$$
Next goal: rewrite this in terms of a single function. (*femperature*)
• Relate energy density to temperature via specific heat
• Relate energy flux to temperature via Fourier's Law
Prelimmonls: $p(x,t)$: mass density of rod ($\frac{musc}{rolume}$)
 $C(x,t)$: specific heat of rod.
 $\frac{Def'n}{f}$: amount of energy required to raise
 $\int unit of mass by 1 femp. Unit.$
 $units: (\frac{energy}{masc}, \frac{bemp cratter}{f}$)
Heat equation

L01-S05

Specific heat

Goal: relate energy density e to temperature u.

$$e(x,t) = \frac{energy}{volume}$$
 $C(x,t) = \frac{energy}{mass \cdot temperature}$ $p(x,t) = \frac{mass}{volume}$

u(x, t): temperature.

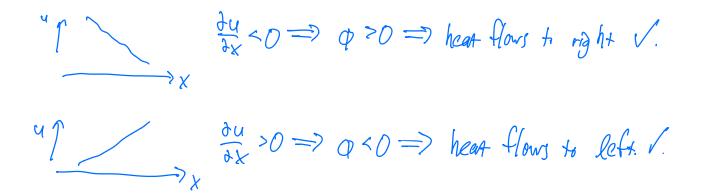
L01-S06

L01-S07

Fourier's Law

Goal: relate energy flux ϕ to temperature u.

Founer's Law is based on following observations: - constant temperature (in space) >> no flux. - heat flows tavard locations of low temperature. ("heat flows against temperature gradient") - rate of heat flow depends on the material. Quantitative description: $Q(x_{i}E) = -k_{o}\frac{\partial u}{\partial x}$ k_{o} diffusion Coefficient" "against" / temp. gradient tourier material-dependent constant.



The heat equation

(Energy conservation + specific heat definition + Fourier's Law) yield the heat equation.

$$\frac{\partial e}{\partial t} = -\frac{\partial Q}{\partial x} + Q(x,t)$$

$$e(x,t) = c(x,t) g(x,t) u(x,t)$$

$$\varphi = -k_0 \frac{\partial u}{\partial x}$$

$$\int \frac{\partial}{\partial t} \left(c(x,t) g(x,t) u(x,t) \right) = -\frac{\partial}{\partial x} \left(-k_0 \frac{\partial u}{\partial x} \right) + Q(x,t)$$

L01-S08

$$\frac{\partial}{\partial t} \left(c(x,t) p(x,t) u(x,t) \right) = k_0 u_{xx} + Q(x,t)$$
The heat equation (in general form)
 $k_0, C, p.$ and Q are given
u is the unknown. (that we'll solve for)
Common simplifications (that we'll almost always make):
C and p are constant.
no sources: Q=0
 $\frac{\partial}{\partial t} (c \cdot p. u(x,t)) = k_0 u_{xx}$
 $u_t = \frac{k_0}{Cp} u_{xx}$
define $k := \frac{k_0}{Cp}$ "thermal diffusivity"
 $u_t = ku_{xx}, u = u(x,t)$ The heat equation.

The heat equation, simplified

The typical simplification of the heat equation we'll use in this class:

$$u_t = k \, u_{xx},$$

with k > 0 a constant.

This equation is almost charge to model heat flar We need initial conditions (what state the rod starts in), and boundary conditions (what happens at $\chi=0$, $\chi=1$?).

101 - 509